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Abstract: Data envelopment analysis (DEA) is a linear programming approach used to determine the
relative efficiencies of multiple decision-making units (DMUs). A transportation problem (TP) is a
special type of linear programming problem (LPP) which is used to minimize the total transportation
cost or maximize the total transportation profit of transporting a product from multiple sources to
multiple destinations. Because of the connection between the multi-objective TP (MOTP) and DEA,
DEA-based techniques are more often used to handle practical TPs. The objective of this work is
to investigate the TP with Fermatean fuzzy costs in the presence of numerous conflicting objectives.
In particular, a Fermatean fuzzy DEA (FFDEA) method is proposed to solve the Fermatean fuzzy
MOTP (FFMOTP). In this regard, every arc in FFMOTP is considered a DMU. Additionally, those
objective functions that should be maximized will be used to define the outputs of DMUs, while those
that should be minimized will be used to define the inputs of DMUs. As a consequence, two different
Fermatean fuzzy effciency scores (FFESs) will be obtained for every arc by solving the FFDEA models.
Therefore, unique FFESs will be obtained for every arc by finding the mean of these FFESs. Finally,
the FFMOTP will be transformed into a single objective Fermatean fuzzy TP (FFTP) that can be solved
by applying standard algorithms. A numerical example is illustrated to support the proposed method,
and the results obtained by using the proposed method are compared to those of existing techniques.
Moreover, the advantages of the proposed method are also discussed.
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1. Introduction

Data envelopment analysis (DEA) is a relatively new “data-oriented” technique for assessing the
performance of a group of two or more entities known as decision making units (DMUs) that convert
multiple inputs into multiple outputs. DEA allows for the evaluation of multiple inputs and outputs at
the same time without any assumptions on the distribution of data. Charnes et al. [1, 2] designed DEA
as a non-parametric approach for assessing the performance of predefined DMUs.

The problems in real life are too complex, and this complexity includes uncertainty in the form of
ambiguity, chance, or insufficient knowledge. Most of the parameters of the problem are defined
using language statements. Therefore, treating the decision-maker’s knowledge as fuzzy data will
provide better results. In humanistic systems, fuzzy modelling is a mathematical way of expressing
ambiguity and fuzziness. To handle the ambiguity and fuzziness of goods in real-world problems,
Zadeh [3] developed the concept of the fuzzy set (FS). Applications of fuzzy set theory in matrix
games can be seen in [4]. Meanwhile, the FS theory could not judge the nature of satisfaction and
dissatisfaction with human judgments. To overcome this shortcoming, Atanassov [5] presented a
theory of intuitionistic FSs (IFS) in 1986, which is an extension of the FS theory and is extremely
effective in dealing with imprecise information in real-world applications. Yager [6, 7] developed the
idea of a Pythagorean fuzzy set (PFS) in 2013, with the relaxing condition that the sum of the squares
of the belongingness and non-membership degrees should not exceed 1. Due to the restriction in PFS,
Senapati and Yager [8–10] introduced the theory of Fermatean fuzzy sets (FFS), a more generic
model than PFS in which the sum of the cubes of membership and non-membership degrees should
be less than or equal to 1. Further discussions and different applications related to Fermatean fuzzy
sets are also observed in [11, 12].

Linear programming (LP) is a fundamental method that uses linear functions to represent complex
connections and then discovers the optimal places. LP is used to find the optimal solution to a problem
with given constraints. We transform a real-world problem into a mathematical model in LP. “Fuzzy
LP” is concerned with the optimization of a variable function known as the “fuzzy objective function”
subject to a system of fuzzy linear equations and/or inequalities known as “restrictions” or “fuzzy
constraints.” Bellman and Zadeh [13] introduced the idea of decision-making in a fuzzy environment.
Zimmerman [14] proposed the concept of a fuzzy linear programming problem (LPP). Allahviranloo
et al. [15] solved fully fuzzy LPPs. Akram et al. [16–20] proposed different methods for solving the
fully Pythagorean fuzzy LPPs, and Mehmood et al. [21, 22] developed fully bipolar fuzzy LP models.
Ahmad et al. [23] developed a novel method for assessing LPP in a bipolar single-valued neutrosophic
environment.

A transportation problem (TP) is a special type of LPP in which goods are transported from multiple
sources to multiple destinations, subject to the supply and demand of the sources and destinations,
respectively. The basic idea of the TP is to minimize the total cost of transportation. Hitchcock [24]
originally introduced the concept of transportation in 1941 to transport commodities from multiple
sources to a number of destinations. Because of the relationship between the MOTP and DEA, DEA-
based techniques are more suited for dealing with real-world TPs. The literature reviews of TPs and
DEA is given in Table 1.
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Table 1. Literature review of TPs and DEA.
Reference Year Significance Influence
Banker et al. [25] 1984 Developed some models in DEA
Ahn [26] 1988 Devised some statistical and DEA evaluations of relative efficiencies
Roll et al. [27] 1991 Controlling factor weights in DEA
Sengupta [28] 1992 Introduced a fuzzy technique in DEA
Kao and Liu [29] 2000 Measured fuzzy efficiency in DEA
Saati et al. [30] 2002 Efficiency analyzed and ranked DMUs using fuzzy data
Lertworasirikul et al. [31] 2003 Introduced possibility approach of fuzzy DEA
Zerafat et al. [32] 2003 Proposed an alternative approach to assignment problem

using common set of weights in DEA
Cooper et al. [33] 2006 Provided introduction to DEA and its uses
Zhou et al. [34] 2008 A survey of DEA in energy and environmental studies
Guo [35] 2009 Applications of fuzzy DEA in locating problems
Lotfi et al. [36] 2009 Efficiency and effectiveness in multi-activity network DEA model
Lotfi et al. [37] 2010 Introduced relationship between multi-objective LP (MOLP) and DEA on CCR dual model
Mousavi-Avval et al. [38] 2011 Introduced an optimization approach for apple production using DEA
Amirteimoori [39] 2011 Developed an extended TP based on DEA
Amirteimoori [40] 2012 Devised an extended shortest path problem based on DEA
Nabavi-Pelesaraei [41] 2014 Introduced optimization of energy required and greenhouse gas emission in DEA
Zhu et al. [42] 2014 Applied a network DEA model to quantify the eco-efficiency of products
Azadi et al. [43] 2015 Developed a new fuzzy DEA model to evaluate efficiency in management context
Shirdel and Mortezaee [44] 2015 Proposed method for multi-criteria assignment problem using DEA
Azar et al. [45] 2016 Introduced new model to determine common set of weights in DEA
Mardania et al. [46] 2017 Presented a comprehensive review of DEA technique
Hatami-Marbini et al. [47] 2017 Measured fuzzy efficiency in DEA
Hatami-Marbini and Saati [48] 2018 Evaluated efficiency in two-stage DEA under fuzzy environment
Rizk-Allaha et al. [49] 2018 Developed MOTP under neutrosophic environment
Tavana et al. [50] 2018 Developed a hybrid DEA-MOLP model
Edalatpanah and Smarandache [51] 2019 Proposed DEA for simplified neutrosophic sets
Liu and Song [52] 2019 Group decision making based on DEA cross-efficiency using IFS
Edalatpanah [53] 2020 Developed DEA using triangular neutrosophic numbers
Bagheri et al. [54] 2020 Solved fully fuzzy MOTP using common set of weights in DEA
Soltani et al. [55] 2020 Developed a new two-stage DEA model in fuzzy environment
Sahoo [56] 2021 Studied Fermatean fuzzy TP based on new ranking function
Mondal et al. [57] 2021 Investigated intuitionistic fuzzy sustainable multi-objective

multi-item multi-choice step fixed-charge solid TP
Ghosh et al. [58] 2021 Studied multi-objective fully intuitionistic fuzzy fixed-charge solid TP
Giri and Roy [59] 2022 Evaluated neutrosophic multi-objective green four-dimensional fixed-charge TP
Ghosh et al. [60] 2022 Studied carbon mechanism on sustainable multi-objective solid TP

for waste management in Pythagorean hesitant fuzzy environment
Akram et al. [61] 2022 Obtained the solution of Fermatean fuzzy transportation problem

In the literature, numerous methods have been developed to solve the MOTP fuzzy environment
and intuitionistic fuzzy environment. Bagheri et al. [62] solved the MOTP using the DEA technique in
a fuzzy environment by considering cost coefficients as triangular fuzzy numbers. Since the FS theory
could not judge the nature of satisfaction and dissatisfaction with human judgments, our objective is
to extend the DEA technique to solve the MOTP in a Fermatean fuzzy environment, because the FFS
can handle situations in which uncertainty and ambiguity include hesitation. Therefore, we investigate
MOTP in a Fermatean fuzzy environment using triangular Fermatean fuzzy numbers (TFFNs). Our
main contributions are as follows:

1) Formulating the model of DEA in a Fermatean fuzzy environment.
2) Solving FFMOTP using FFDEA method by transforming it into single objective FFTP and then

solving single objective FFTP by converting it into a crisp one with the help of a ranking function.
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3) Demonstrating the proposed method’s validity with an example.
4) Comparing the results of the proposed method with those of existing techniques.
5) Providing the advantages of the proposed method over the existing techniques.

The rest of the paper is structured as follows: Section 2 gives some basic definitions and operations
of triangular Fermatean fuzzy numbers (TFFNs). In Section 3, the mathematical models of FFMOTP
and FFDEA are given. Section 4 presents the procedure for solving FFMOTP. A numerical example
and a comparative analysis are given in Section 5. Section 6 concludes the study.

2. Preliminaries

Definition 2.1. [8] Let X be a universal set. A Fermatean fuzzy set (FFS) ÃF on X is an object of the
form

ÃF = {〈y, µÃF (y), νÃF (y)〉 : y ∈ X},

where µÃF : X → [0, 1], νÃF : X → [0, 1], and

0 ≤ (µÃF (y))3 + (νÃF (y))3 ≤ 1,

for all y ∈ X. The values µÃF (y) and νÃF (y) represent the membership and non-membership degrees of
the element y in the set ÃF , respectively. Further, for all y ∈ X,

πÃF (y) =
3
√

1 − (µÃF (y))3 − (νÃF (y))3

represents the degree of hesitation for the element y in ÃF .

Definition 2.2. [9] A Fermatean fuzzy number (FFN) ÃF is a FFS defined on R with the following
conditions:
1) normal, i.e., there exists y ∈ R such that

µÃF (y) = 1 (so νÃF (y) = 0);

2) convex for the membership function (MF) (µÃF ), i.e.,

µÃF (δx + (1 − δ)y) ≥ min{µÃF (x), µÃF (y)},∀x, y ∈ R, δ ∈ [0, 1];

3) concave for the non-membership function (NMF) (νÃF ), i.e.,

νÃF (δx + (1 − δ)y) ≤ max{νÃF (x), νÃF (y)},∀x, y ∈ R, δ ∈ [0, 1].

We give here some basic definitions.

Definition 2.3. A triangular Fermatean fuzzy number (TFFN) ÃF = {(ul, um, ur); p, q} is a FFS with
the MF (µÃF ) and NMF (νÃF ) given as

µÃF (y) =



(y − ul)p
um − ul , ul ≤ y < um,

p, y = um,
(ur − y)p
ur − um , um < y ≤ ur,

0, y < ul or y > ur,
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νÃF (y) =



[um − y + q(y − ul)]
um − ul , ul ≤ y < um,

q, y = um,
[y − um + q(ur − y)]

ur − um , um < y ≤ ur,

1, y < ul or y > ur.

The values p and q represent the maximum value of MF (µÃF ) and minimum value of NMF (νÃF ),
respectively, such that p ∈ [0, 1], q ∈ [0, 1, ], and

0 ≤ p3 + q3 ≤ 1.

By taking p = 1 and q = 0 in Definition 2.3, the TFFN ÃF assumes the form ÃF = {(ul, um, ur);
(ul′ , um, ur′)} whose MF (µÃF ) and NMF (νÃF ) can be represented by

µÃF (y) =



y − ul

um − ul , ul ≤ y < um,

1, y = um,
ur − y

ur − um , um < y ≤ ur,

0, y < ul or y > ur,

νÃF (y) =



um − y
um − ul′ , ul′ ≤ y < um,

0, y = um,
y − um

ur′ − um , um < y ≤ ur′ ,

1, y < ul′ or y > ur′ ,

where ul′ ≤ ul ≤ um ≤ ur ≤ ur′ . The graphical representation of TrFFN is given in Figure 1.

Figure 1. MF and NMF of TFFN.

Definition 2.4. A TFFN ÃF = {(ul, um, ur); (ul′ , um, ur′)} is regarded to be non-negative (ÃF ≥ 0) if
ul′ ≥ 0.

Definition 2.5. A TFFN ÃF = {(ul, um, ur); (ul′ , um, ur′)} is regarded to be non-positive (ÃF ≤ 0) if
ur′ ≤ 0.
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Definition 2.6. A TFFN ÃF = {(ul, um, ur); (ul′ , um, ur′)} is regarded to be unrestricted if ul′ ∈ R.

Definition 2.7. A TFFN ÃF = 0̃ if and only if ul = 0, um = 0, ur = 0, ul′ = 0, ur′ = 0.

Definition 2.8. Two TFFNs ÃF = {(ul, um, ur); (ul′ , um, ur′)}, and B̃F = {(vl, vm, vr); (vl′ , vm, vr′)} are
regarded to be equal if, and only if, ul = vl, um = vm, ur = vr, ul′ = vl′ , ur′ = vr′ .

Definition 2.9. Let ÃF = {(ul, um, ur); (ul′ , um, ur′)}, and B̃F = {(vl, vm, vr); (vl′ , vm, vr′)} be positive
TFFNs. Then,

1) ÃF ⊕ B̃F = {(ul + vl, um + vm, ur + vr); (ul′ + vl′ , um + vm, ur′ + vr′)},
2) ÃF 	 B̃F = {(ul − vr, um − vm, ur − vl); (ul′ − vr′ , um − vm, ur′ − vl′)},
3) ÃF ⊗ B̃F = {(ulvl, umvm, urvr); (ul′vl′ , umvm, ur′vr′)},
4) ÃF � B̃F = {(ul/vl, um/vm, ur/vr); (ul′/vl′ , um/vm, ur′/vr′)}.

Definition 2.10. Let ÃF = {(ul, um, ur); (ul′ , um, ur′)} be a TFFN. Then, its ranking function is defined
as

R(ÃF) =
(ul + 4um + ur) + (ul′ + 4um + ur′)

12
.

Definition 2.11. Let ÃF = {(ul, um, ur); (ul′ , um, ur′)} and B̃F = {(vl, vm, vr); (vl′ , vm, vr′)} be two TFFNs.
Then,

1) ÃF ≤ B̃F if R(ÃF) � R(B̃F),
2) ÃF ≥ B̃F if R(ÃF) � R(B̃F),
3) ÃF ≈ B̃F if R(ÃF) = R(B̃F).

All indexes, parameters, and decision variables used in this manuscript are given in Table 2.

Table 2. Notation List for indices and parameters.

Symbol Definition
j Number of sources (p = 1, 2, 3, . . . , j)
k Number of destinations (q = 1, 2, 3, . . . , k)
h Total number of attributes (a = 1, 2, 3, . . . , h)
c̃a

pq Unit Fermatean fuzzy cost of transportation
from source p to destination q

xpq Fermatean fuzzy amount shipped
from source p to destination q

sp Supply at p
dq Demand at q

3. Mathematical model of FFMOTP

The Fermatean fuzzy MOTP is a subclass of multi-objective LPP in which some of the parameters
are expressed as FFNs. Assume that j sources contain various quantities of a product which must be
delivered to k destinations. For each link (p, q) from source p to destination q, there are h Fermatean
fuzzy attributes c̃a

pq (a = 1, . . . , h) for transportation. The goal is to find a feasible shipping plan from
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sources to destinations in order to optimize the objective functions. Assume sp represents the supply
of a product at the source p, and dq represents the demand for a product at the destination q. Let xpq

represent the amount of product shipped from source p to destination q. Then, the FFMOTP having h
Fermatean fuzzy objectives can be written as the following model:

Optimize Za =

j∑
p=1

k∑
q=1

c̃a
pq × xpq, a = 1, 2, 3, . . . , h,

subject to
k∑

q=1

xpq = sp, p = 1, 2, 3, . . . , j,

j∑
p=1

xpq = dq, q = 1, 2, 3, . . . , k,

xpq ≥ 0, p = 1, 2, 3, . . . , j, q = 1, 2, 3, . . . , k. (3.1)

However, the best possible solution of FFMOTP (3.1) is the ideal solution given as follows:

f̃a = Optimize
j∑

p=1

k∑
q=1

c̃a
pq × xpq, a = 1, 2, 3, . . . , h,

subject to
k∑

q=1

xpq = sp, p = 1, 2, 3, . . . , j,

j∑
p=1

xpq = dq, q = 1, 2, 3, . . . , k,

xpq ≥ 0, p = 1, 2, 3, . . . , j, q = 1, 2, 3, . . . , k. (3.2)

Because the objective functions of the FFMOTP are incompatible, it is impossible to determine the
ideal solution.

3.1. Mathematical model of FFDEA

Data envelopment analysis (DEA) is a mathematical approach for determining the relative
efficiencies of decision making units (DMUs) with many inputs and outputs.

Suppose the efficiencies of n DMUs are to be evaluated. Each DMUq (q = 1, . . . , k) produces s
different Fermatean fuzzy outputs ỹq = (ỹ1q, . . . , ỹsq), using m different Fermatean fuzzy inputs x̃p =

(x̃1p, . . . , x̃mp). The model to evaluate the relative efficiency of DMUr is as follows:

Max φ̃r =

∑s
b=1 ubỹbr∑ j
p=1 vp x̃pr

subject to φ̃q =

∑s
b=1 ubỹbq∑ j
p=1 vp x̃pq

≤ 1̃, q = 1, 2, 3, . . . , k,

ub, vp ≥ 0, b = 1, 2, 3, . . . , s, p = 1, 2, 3, . . . , j, (3.3)
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where the first constraint in this model indicates that relative efficiency should be less than 1. The
DMU with relative efficiency 1 would be the most efficient. Here, 1̃ = {(1, 1, 1); (1, 1, 1)}, and ub (b =

1, 2, 3, . . . , s) and vp (p = 1, 2, 3, . . . , j) are weights assigned to the outputs and inputs, respectively. An
extended arithmetic approach based on Wang et al. [63] has been used in this work to solve the FFDEA
model (3.3). Without loss of generality, all input and output data are assumed to be positive TFFNs
to describe this approach briefly. Assume that the positive TFFNs x̃pq = {(xl

pq, x
m
pq, x

r
pq); (xl′

pq, x
m
pq, x

r′
pq)}

and ỹbq = {(yl
bq, y

m
bq, y

r
bq); (yl′

bq, y
m
bq, y

r′
bq)} denotes the input and output data of DMUq (q = 1, . . . , k),

respectively, for all p = 1, 2, 3, . . . , j and b = 1, 2, 3, . . . , s. Then, using the Fermatean fuzzy arithmetic,
the Fermatean fuzzy efficiency of DMUt can be evaluated as follows:

Max φ̃t ≈ {(φl
t, φ

m
t , φ

r
t ); (φl′

t , φ
m
t , φ

r′
t )}

= {(
∑s

b=1 ubyl
bt∑ j

p=1 vpxr
pt

,

∑s
b=1 ubym

bt∑ j
p=1 vpxm

pt

,

∑s
b=1 ubyr

bt∑ j
p=1 vpxl

pt

); (
∑s

b=1 ubyl′
bt∑ j

p=1 vpxr′
pt

,

∑s
b=1 ubym

bt∑ j
p=1 vpxm

pt

,

∑s
b=1 ubyr′

bt∑ j
p=1 vpxl′

pt

)}

subject to

φ̃q ≈ {(φl
q, φ

m
q , φ

r
q); (φl′

q , φ
m
q , φ

r′
q )}

= {(

∑s
b=1 ubyl

bq∑ j
p=1 vpxr

pq

,

∑s
b=1 ubym

bq∑ j
p=1 vpxm

pq

,

∑s
b=1 ubyr

bq∑ j
p=1 vpxl

pq

); (

∑s
b=1 ubyl′

bq∑ j
p=1 vpxr′

pq

,

∑s
b=1 ubym

bq∑ j
p=1 vpxm

pq

,

∑s
b=1 ubyr′

bq∑ j
p=1 vpxl′

pq

)}

≤ {(1, 1, 1); (1, 1, 1)}, q = 1, . . . , k,
ub, vp ≥ 0, b = 1, 2, 3, . . . , s, p = 1, 2, 3, . . . , j. (3.4)

As φr′
q ≤ 1, φl′

q , φ
l
q, φ

m
q and φr

q will also be less than or equal to one. To find the Fermatean fuzzy
efficiency of DMUt, model (3.4) is transformed into the following five LP models:

Max φl′
t =

∑s
b=1 ubyl′

bt∑ j
p=1 vpxr′

pt

subject to φr′
q =

∑s
b=1 ubyr′

bq∑ j
p=1 vpxl′

pq

≤ 1, q = 1, . . . , k,

ub, vp ≥ 0, b = 1, 2, 3, . . . , s, p = 1, 2, 3, . . . , j. (3.5)

Using the optimal weights of the above model, φl
t is computed as follows:

Max φl
t =

∑s
b=1 ubyl

bt∑ j
p=1 vpxr

pt

subject to
∑s

b=1 ubyl′
bt∑ j

p=1 vpxr′
pt

= φl′∗
t , φ

r′
q =

∑s
b=1 ubyr′

bq∑ j
p=1 vpxl′

pq

≤ 1, q = 1, . . . , k,

ub, vp ≥ 0, b = 1, 2, 3, . . . , s, p = 1, 2, 3, . . . , j, (3.6)

where φl′∗
t is the optimum value of the model (3.5). Then, using the optimal weights of the models

(3.5) and (3.6), φm
t is determined as follows:

Max φm
t =

∑s
b=1 ubym

bt∑ j
p=1 vpxm

pt
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subject to
∑s

b=1 ubyl′
bt∑ j

p=1 vpxr′
pt

= φl′∗
t ,

∑s
b=1 ubyl

bt∑ j
p=1 vpxr

pt

= φl∗
t ,

φr′
q =

∑s
b=1 ubyr′

bq∑ j
p=1 vpxl′

pq

≤ 1, q = 1, . . . , k,

ub, vp ≥ 0, b = 1, 2, 3, . . . , s, p = 1, 2, 3, . . . , j, (3.7)

where φl′∗
t and φl∗

t are optimum values of the models (3.5) and (3.6), respectively. To determine φr
t ,

optimal weights of the models (3.5)–(3.7) are used as:

Max φr
t =

∑s
b=1 ubyr

bt∑ j
p=1 vpxl

pt

subject to
∑s

b=1 ubyl′
bt∑ j

p=1 vpxr′
pt

= φl′∗
t ,

∑s
b=1 ubyl

bt∑ j
p=1 vpxr

pt

= φl∗
t ,∑s

b=1 ubym
bt∑ j

p=1 vpxm
pt

= φm∗
t , φr′

q =

∑s
b=1 ubyr′

bq∑ j
p=1 vpxl′

pq

≤ 1, q = 1, . . . , k,

ub, vp ≥ 0, b = 1, 2, 3, . . . , s, p = 1, 2, 3, . . . , j, (3.8)

where φl′∗
t , φl∗

t and φm∗
t are optimum values of models (3.5)–(3.7), respectively. Now, using the optimal

weights of the models (3.5)–(3.8), φr′
t is determined as follows:

Max φr′
t =

∑s
b=1 ubyr′

bt∑ j
p=1 vpxl′

pt

subject to
∑s

b=1 ubyl′
bt∑ j

p=1 vpxr′
pt

= φl′∗
t ,

∑s
b=1 ubyl

bt∑ j
p=1 vpxr

pt

= φl∗
t ,∑s

b=1 ubym
bt∑ j

p=1 vpxm
pt

= φm∗
t ,

∑s
b=1 ubyr

bt∑ j
p=1 vpxl

pt

= φr∗
t ,

φr′
q =

∑s
b=1 ubyr′

bq∑ j
p=1 vpxl′

pq

≤ 1, q = 1, . . . , k,

ub, vp ≥ 0, b = 1, 2, 3, . . . , s, p = 1, 2, 3, . . . , j, (3.9)

where φl′∗
t , φl∗

t , φm∗
t and φr∗

t are optimum values of models (3.5)–(3.8), respectively. As a result, φl′∗
t ,

φl∗
t , φm∗

t , φr∗
t and φr′∗

t are determined with the same set of weights.

Theorem 3.1. The Fermatean fuzzy efficiency of DMUt from models (3.5)–(3.9) yields a non-negative
TFFN.

Proof. Suppose (u∗, v∗) = (u∗1, . . . , u
∗
s, v
∗
1, . . . , v

∗
j) is the optimum solution of model (3.9). Then, from

the last constraints of the model, we have (u∗, v∗) ≥ 0. Since, the Fermatean fuzzy input
x̃pq = {(xl

pq, x
m
pq, x

r
pq); (xl′

pq, x
m
pq, x

r′
pq)} and output ỹbq = {(yl

bq, y
m
bq, y

r
bq); (yl′

bq, y
m
bq, y

r′
bq)} are non-negative

TFFNs, we have

0 ≤ xl′
pq ≤ xl

pq ≤ xm
pq ≤ xr

pq ≤ xr′
pq, p = 1, 2, 3, . . . , j,
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0 ≤ xl′
bq ≤ xl

bq ≤ xm
bq ≤ xr

bq ≤ xr′
bq, b = 1, 2, 3, . . . , s.

Therefore,

0 ≤
j∑

p=1

v∗pxl′
pq ≤

j∑
p=1

v∗pxl
pq ≤

j∑
p=1

v∗pxm
pq ≤

j∑
p=1

v∗pxr
pq ≤

j∑
p=1

v∗pxr′
pq,

0 ≤
s∑

b=1

u∗bxl′
bq ≤

s∑
b=1

u∗bxl
bq ≤

s∑
b=1

u∗bxm
bq ≤

s∑
b=1

u∗bxr
bq ≤

s∑
b=1

u∗bxr′
bq.

Consequently,

0 ≤

∑s
b=1 u∗byl′

bq∑ j
p=1 v∗pxr′

pq

≤

∑s
b=1 u∗byl

bq∑ j
p=1 v∗pxr

pq

≤

∑s
b=1 u∗byr

bq∑ j
p=1 v∗pxl

pq

≤

∑s
b=1 u∗byr

bq∑ j
p=1 v∗pxl

pq

≤

∑s
b=1 u∗byr′

bq∑ j
p=1 v∗pxl′

qp

, q = 1, 2, 3, . . . , k.

This shows that {(φl∗
t , φ

m∗
t , φr∗

t ); (φl′∗
t , φ

m∗
t , φr′∗

t )} preserves the form of a non-negative TFFN. �

The models (3.5)–(3.9) can be linearized into models as follows:

Max φl′
t =

s∑
b=1

ubyl′
bt

subject to
j∑

p=1

vpxr′
pt = 1,

s∑
b=1

ubyr′
bq −

j∑
p=1

vpxl′
pq ≤ 0, q = 1, . . . , k,

ub, vp ≥ 0, b = 1, 2, 3, . . . , s, p = 1, 2, 3, . . . , j. (3.10)

Max φl
t =

s∑
b=1

ubyl
bt

subject to
j∑

p=1

vpxr
pt = 1,

s∑
b=1

ubyl′
bt − φ

l′∗
t

j∑
p=1

vpxr′
pt ≤ 0,

s∑
b=1

ubyr′
bq −

j∑
p=1

vpxl′
pq ≤ 0, q = 1, . . . , k,

ub, vp ≥ 0, b = 1, 2, 3, . . . , s, p = 1, 2, 3, . . . , j. (3.11)

Max φm
t =

s∑
b=1

ubym
bt
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subject to
j∑

p=1

vpxm
pt = 1,

s∑
b=1

ubyl′
bt − φ

l′∗
t

j∑
p=1

vpxr′
pt ≤ 0,

s∑
b=1

ubyl
bt − φ

l∗
t

j∑
p=1

vpxr
pt ≤ 0,

s∑
b=1

ubyr′
bq −

j∑
p=1

vpxl′
pq ≤ 0, q = 1, . . . , k,

ub, vp ≥ 0, b = 1, 2, 3, . . . , s, p = 1, 2, 3, . . . , j. (3.12)

Max φr
t =

s∑
b=1

ubyr
bt

subject to
j∑

p=1

vpxl
pt = 1,

s∑
b=1

ubyl′
bt − φ

l′∗
t

j∑
p=1

vpxr′
pt ≤ 0,

s∑
b=1

ubyl
bt − φ

l∗
t

j∑
p=1

vpxr
pt ≤ 0,

s∑
b=1

ubym
bt − φ

m∗
t

j∑
p=1

vpxm
pt ≤ 0,

s∑
b=1

ubyr′
bq −

j∑
p=1

vpxl′
pq ≤ 0, q = 1, . . . , k,

ub, vp ≥ 0, b = 1, 2, 3, . . . , s, p = 1, 2, 3, . . . , j. (3.13)

Max φr′
t =

s∑
b=1

ubyr′
bt

subject to
j∑

p=1

vpxl′
pt = 1,

s∑
b=1

ubyl′
bt − φ

l′∗
t

j∑
p=1

vpxr′
pt ≤ 0,

s∑
b=1

ubyl
bt − φ

l∗
t

j∑
p=1

vpxr
pt ≤ 0,
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s∑
b=1

ubym
bt − φ

m∗
t

j∑
p=1

vpxm
pt ≤ 0,

s∑
b=1

ubyr
bt − φ

r∗
t

j∑
p=1

vpxl
pt ≤ 0,

s∑
b=1

ubyr′
bq −

j∑
p=1

vpxl′
pq ≤ 0, q = 1, . . . , k,

ub, vd ≥ 0, b = 1, 2, 3, . . . , s, d = 1, 2, 3, . . . , r. (3.14)

4. Procedure to solve the FFMOTP

Consider the FFMOTP as given in model (3.1), with h Fermatean fuzzy attributes that need to be
maximized and minimized. Every arc is related with h Fermatean fuzzy attributes. The arc attributes
associated with the Fermatean fuzzy objectives that should be minimized are considered as Fermatean
fuzzy input attributes, while the attributes associated with Fermatean fuzzy objectives that should be
maximized are considered as Fermatean fuzzy output attributes. For every arc (p, q), two FFESs are
calculated as criteria for the relative performance of the single objective transportation from p (p =

1, . . . , j) to q (q = 1, . . . , k). Finally, the average of these FFESs is calculated to get new FFESs of the
arc. Then, the h Fermatean fuzzy attributes related to every arc are transformed into a single Fermatean
fuzzy attribute, and the given FFMOTP is turned into a single objective Fermatean fuzzy transportation
problem (FFTP).

To solve the model (3.1), the steps are as follows:

1) The relative performance of single objective transportation from source p to destination q, i.e.,
Ẽ1∗

pq, is determined for every q = 1, . . . , k. by using the source p as target and altering the
destinations q. This is accomplished by solving the model:

Ẽ(1∗)
pq = Max Ẽ(1)

pq =

∑s
b=1 ubỹb

pq∑r
d=1 vd x̃d

pq

subject to Ẽ(1)
p f =

∑s
b=1 ubỹb

p f∑r
d=1 vd x̃d

p f

≤ 1, f = 1, . . . , k,

ub, vd ≥ 0, b = 1, 2, 3, . . . , s, d = 1, 2, 3, . . . , r. (4.1)

To determine the optimum value of model (4.1), i.e., Ẽ(1∗)
pq = {(E(1∗),l

pq , E(1∗),m
pq , E(1∗),r

pq );
(E(1∗),l′

pq , E(1∗),m
pq , E(1∗),r′

pq )}, each component of Ẽ(1∗)
pq is calculated using the Fermatean fuzzy

arithmetic approach discussed in the previous section. First, E(1∗),l′
pq is determined as follows:

E(1∗),l′
pq = Max

∑s
b=1 ubyb,l′

pq∑r
d=1 vd xd,r′

pq

subject to

∑s
b=1 ubyb,l′

p f∑r
d=1 vd xd,r′

p f

≤ 1, f = 1, . . . , k,
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ub, vd ≥ 0, b = 1, 2, 3, . . . , s, d = 1, 2, 3, . . . , r. (4.2)

Then, using the optimal weights of model (4.2), E(1∗),l
pq is computed as follows:

E(1∗),l
pq = Max

∑s
b=1 ubyb,l

pq∑r
d=1 vd xd,r

pq

subject to
∑s

b=1 ubyb,l′
pq∑r

d=1 vd xd,r′
pq

= E(1∗),l′
pq ,

∑s
b=1 ubyb,l

p f∑r
d=1 vd xd,r

p f

≤ 1, f = 1, . . . , k,

ub, vd ≥ 0, b = 1, 2, 3, . . . , s, d = 1, 2, 3, . . . , r. (4.3)

Using the optimal weights E(1∗),l′
pq and E(1∗),l

pq of the models (4.2) and (4.3), respectively, E(1∗),m
pq is

determined as

E(1∗),m
pq = Max

∑s
b=1 ubyb,m

pq∑r
d=1 vd xd,m

pq

subject to
∑s

b=1 ubyb,l′
pq∑r

d=1 vd xd,r′
pq

= E(1∗),l′
pq ,

∑s
b=1 ubyb,l

pq∑r
d=1 vd xd,r

pq

= E(1∗),l
pq ,∑s

b=1 ubyb,m
p f∑r

d=1 vd xd,m
p f

≤ 1, f = 1, . . . , k,

ub, vd ≥ 0, b = 1, 2, 3, . . . , s, d = 1, 2, 3, . . . , r. (4.4)

Using the optimal weights E(1∗),l′
pq , E(1∗),l

pq and E(1∗),r
pq of models (4.2)–(4.4), E(1∗),r

pq is obtained as

E(1∗),r
pq = Max

∑s
b=1 ubyb,r

pq∑r
d=1 vd xd,l

pq

subject to
∑s

b=1 ubyb,l′
pq∑r

d=1 vd xd,r′
pq

= E(1∗),l′
pq ,

∑s
b=1 ubyb,l

pq∑r
d=1 vd xd,r

pq

= E(1∗),l
pq ,∑s

b=1 ubyb,m
pq∑r

d=1 vd xd,m
pq

= E(1∗),m
pq ,

∑s
b=1 ubyb,r

p f∑r
d=1 vd xd,l

p f

≤ 1, f = 1, . . . , k,

ub, vd ≥ 0, b = 1, 2, 3, . . . , s, d = 1, 2, 3, . . . , r. (4.5)

Finally, by using the optimal weights E(1∗),l′
pq , E(1∗),l

pq , E(1∗),m
pq and E(1∗),r

pq of models (4.2)–(4.5), E(1∗),r′
pq

is calculated as

E(1∗),r′
pq = Max

∑s
b=1 ubỹb,r′

pq∑r
d=1 vd x̃d,l′

pq

subject to
∑s

b=1 ubyb,l′
pq∑r

d=1 vd xd,r′
pq

= E(1∗),l′
pq ,

∑s
b=1 ubyb,l

pq∑r
d=1 vd xd,r

pq

= E(1∗),l
pq ,∑s

b=1 ubyb,m
pq∑r

d=1 vd xd,m
pq

= E(1∗),m
pq ,

∑s
b=1 ubyb,r

pq∑r
d=1 vd xd,l

pq

= E(1∗),r
pq ,
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b=1 ubyb,r′

p f∑r
d=1 vd xd,l′

p f

≤ 1, f = 1, . . . , k,

ub, vd ≥ 0, b = 1, 2, 3, . . . , s, d = 1, 2, 3, . . . , r. (4.6)

The models (4.2)–(4.6) can be linearized into the following models:

E(1∗),l′
pq = Max

s∑
b=1

ubyb,l′
pq

subject to
r∑

d=1

vd xd,r′
pq = 1,

s∑
b=1

ubyb,r′

p f −

r∑
d=1

vd xd,l′

p f ≤ 0, f = 1, . . . , k,

ub, vd ≥ 0, b = 1, 2, 3, . . . , s, d = 1, 2, 3, . . . , r. (4.7)

E(1∗),l
pq = Max

s∑
b=1

ubyb,l
pq

subject to
r∑

d=1

vd xd,r
pq = 1,

s∑
b=1

ubyb,l′
pq − E(1∗),l′

pq

r∑
d=1

vd xd,r′
pq = 0,

s∑
b=1

ubyb,r′

p f −

r∑
d=1

vd xd,l′

p f ≤ 0, f = 1, . . . , k,

ub, vd ≥ 0, b = 1, 2, 3, . . . , s, d = 1, 2, 3, . . . , r. (4.8)

E(1∗),m
pq = Max

s∑
b=1

ubyb,m
pq

subject to
r∑

d=1

vd xd,m
pq = 1,

s∑
b=1

ubyb,l′
pq − E(1∗),l′

pq

r∑
d=1

vd xd,r′
pq = 0,

s∑
b=1

ubyb,l
pq − E(1∗),l

pq

r∑
d=1

vd xd,r
pq = 0,

s∑
b=1

ubyb,r′

p f −

r∑
d=1

vd xd,l′

p f ≤ 0, f = 1, . . . , k,

ub, vd ≥ 0, b = 1, 2, 3, . . . , s, d = 1, 2, 3, . . . , r. (4.9)
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E(1∗),r
pq = Max

s∑
b=1

ubyb,r
pq

subject to
r∑

d=1

vd xd,l
pq = 1,

s∑
b=1

ubyb,l′
pq − E(1∗),l′

pq

r∑
d=1

vd xd,r′
pq = 0,

s∑
b=1

ubyb,l
pq − E(1∗),l

pq

r∑
d=1

vd xd,r
pq = 0,

s∑
b=1

ubyb,m
pq − E(1∗),m

pq

r∑
d=1

vd xd,m
pq = 0,

s∑
b=1

ubyb,r′

p f −

r∑
d=1

vd xd,l′

p f ≤ 0, f = 1, . . . , k,

ub, vd ≥ 0, b = 1, 2, 3, . . . , s, d = 1, 2, 3, . . . , r. (4.10)

E(1∗),r′
pq = Max

s∑
b=1

ubyb,r′
pq

subject to
r∑

d=1

vd xd,l′
pq = 1,

s∑
b=1

ubyb,l′
pq − E(1∗),l′

pq

r∑
d=1

vd xd,r′
pq = 0,

s∑
b=1

ubyb,l
pq − E(1∗),l

pq

r∑
d=1

vd xd,r
pq = 0,

s∑
b=1

ubyb,m
pq − E(1∗),m

pq

r∑
d=1

vd xd,m
pq = 0,

s∑
b=1

ubyb,r
pq − E(1∗),r

pq

r∑
d=1

vd xd,l
pq = 0,

s∑
b=1

ubyb,r′

p f −

r∑
d=1

vd xd,l′

p f ≤ 0, f = 1, . . . , k,

ub, vd ≥ 0, b = 1, 2, 3, . . . , s, d = 1, 2, 3, . . . , r. (4.11)

2) The relative performance of single objective transportation from source p to destination q, i.e.,
Ẽ2∗

pq, is determined for every p = 1, . . . , j by using the destination q as target and altering the
sources p. For this, we solve the model

Ẽ(2∗)
pq = Max Ẽ(2)

pq =

∑s
b=1 ubỹb

pq∑r
d=1 vd x̃d

pq
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subject to Ẽ(2)
f q =

∑s
b=1 ubỹb

f q∑r
d=1 vp x̃d

f q

≤ 1, f = 1, . . . , j,

ub, vd ≥ 0, b = 1, 2, 3, . . . , s, d = 1, 2, 3, . . . , r. (4.12)

To determine the optimum value of the model (4.12), i.e., Ẽ(2∗)
pq = {(E(2∗),l

pq , E(2∗),m
pq , E(2∗),r

pq );
(E(2∗),l′

pq , E(2∗),m
pq , E(2∗),r′

pq )}, each component of Ẽ(1∗)
pq is determined using the Fermatean fuzzy

arithmetic approach discussed in the previous section. First, E(2∗),l′
pq is determined as follows:

E(2∗),l′
pq = Max

∑s
b=1 ubyb,l′

pq∑r
d=1 vd xd,r′

pq

subject to

∑s
b=1 ubỹb,r′

f q∑r
d=1 vd xd,l′

f q

≤ 1, f = 1, . . . , j,

ub, vd ≥ 0, b = 1, 2, 3, . . . , s, d = 1, 2, 3, . . . , r. (4.13)

Then, using the optimal weights of the above model, E(2∗),l
pq is computed as follows:

E(2∗),l
pq = Max

∑s
b=1 ubyb,l

pq∑r
d=1 vd xd,r

pq

subject to
∑s

b=1 ubyb,l′
pq∑r

d=1 vd xd,r′
pq

= E(2∗),l′
pq ,

∑s
b=1 ubyb,r′

f q∑r
d=1 vd xd,l′

f q

≤ 1, f = 1, . . . , j,

ub, vd ≥ 0, b = 1, 2, 3, . . . , s, d = 1, 2, 3, . . . , r. (4.14)

Using the optimal weights of the models (4.13) and (4.14), E(2∗),m
pq is determined as

E(2∗),m
pq = Max

∑s
b=1 ubyb,m

pq∑r
d=1 vd xd,m

pq

subject to
∑s

b=1 ubyb,l′
pq∑r

d=1 vd xd,r′
pq

= E(2∗),l′
pq ,

∑s
b=1 ubyb,l

pq∑r
d=1 vd xd,r

pq

= E(2∗),l
pq ,∑s

b=1 ubyb,r′

f q∑r
d=1 vd xd,l′

f q

≤ 1, f = 1, . . . , j,

ub, vd ≥ 0, b = 1, 2, 3, . . . , s, d = 1, 2, 3, . . . , r. (4.15)

Using the optimal weights of the models (4.13)–(4.15), E(2∗),r
pq is obtained as

E(2∗),r
pq = Max

∑s
b=1 ubyb,r

pq∑r
d=1 vd xd,l

pq

subject to
∑s

b=1 ubyb,l′
pq∑r

d=1 vd xd,r′
pq

= E(2∗),l′
pq ,

∑s
b=1 ubyb,l

pq∑r
d=1 vd xd,r

pq

= E(2∗),l
pq ,
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b=1 ubyb,m

pq∑r
d=1 vd xd,m

pq

= E(2∗),m
pq ,

∑s
b=1 ubyb,r′

f q∑r
d=1 vd xd,l′

f q

≤ 1, f = 1, . . . , j,

ub, vd ≥ 0, b = 1, 2, 3, . . . , s, d = 1, 2, 3, . . . , r. (4.16)

Finally, by using the optimal weights of the models (4.13)–(4.16), E(1∗),r′
pq is calculated as

E(2∗),r′
pq = Max

∑s
b=1 ubyb,r′

pq∑r
d=1 vd xd,l′

pq

subject to
∑s

b=1 ubyb,l′
pq∑r

d=1 vd xd,r′
pq

= E(2∗),l′
pq ,

∑s
b=1 ubyb,l

pq∑r
d=1 vd xd,r

pq

= E(2∗),l
pq ,∑s

b=1 ubyb,m
pq∑r

d=1 vd xd,m
pq

= E(2∗),m
pq ,

∑s
b=1 ubyb,r

pq∑r
d=1 vd xd,l

pq

= E(2∗),r
pq ,∑s

b=1 ubyb,r′

f q∑r
d=1 vd xd,l′

f q

≤ 1, f = 1, . . . , j,

ub, vd ≥ 0, b = 1, 2, 3, . . . , s, d = 1, 2, 3, . . . , r. (4.17)

The models (4.13)–(4.17) can be linearized into the following models:

E(2∗),l′
pq = Max

s∑
b=1

ubyb,l′
pq

subject to
r∑

d=1

vd xd,r′
pq = 1,

s∑
b=1

ubyb,l′

f q −

r∑
d=1

vd xd,r′

f q ≤ 0, f = 1, . . . , j,

ub, vd ≥ 0, b = 1, 2, 3, . . . , s, d = 1, 2, 3, . . . , r. (4.18)

E(2∗),l
pq = Max

s∑
b=1

ubyb,l
pq

subject to
r∑

d=1

vd xd,r
pq = 1,

s∑
b=1

ubyb,l′
pq − E(1∗),l′

pq

r∑
d=1

vd xd,r′
pq = 0,

s∑
b=1

ubyb,r′

f q −

r∑
d=1

vd xd,l′

f q ≤ 0, f = 1, . . . , j,

ub, vd ≥ 0, b = 1, 2, 3, . . . , s, d = 1, 2, 3, . . . , r. (4.19)

E(2∗),m
pq = Max

s∑
b=1

ubyb,m
pq
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subject to
r∑

d=1

vd xd,m
pq = 1,

s∑
b=1

ubyb,l′
pq − E(1∗),l′

pq

r∑
d=1

vd xd,r′
pq = 0,

s∑
b=1

ubyb,l
pq − E(1∗),l

pq

r∑
d=1

vd xd,r
pq = 0,

s∑
b=1

ubyb,r′

f q −

r∑
d=1

vd xd,l′

f q ≤ 0, f = 1, . . . , j,

ub, vd ≥ 0, b = 1, 2, 3, . . . , s, d = 1, 2, 3, . . . , r. (4.20)

E(2∗),r
pq = Max

s∑
b=1

ubyb,r
bq

subject to
r∑

d=1

vd xd,l
pq = 1,

s∑
b=1

ubyb,l′
pq − E(1∗),l′

pq

r∑
d=1

vd xd,r′
pq = 0,

s∑
b=1

ubyb,l
pq − E(1∗),l

pq

r∑
d=1

vd xd,r
pq = 0,

s∑
b=1

ubyb,m
pq − E(1∗),m

pq

r∑
d=1

vd xd,m
pq = 0,

s∑
b=1

ubyb,r′

f q −

r∑
d=1

vd xd,l′

f q ≤ 0, f = 1, . . . , j,

ub, vd ≥ 0, b = 1, 2, 3, . . . , s, d = 1, 2, 3, . . . , r. (4.21)

E(2∗),r′
pq = Max

s∑
b=1

ubyb,r′

bq

subject to
r∑

d=1

vd xd,l′
pq = 1,

s∑
b=1

ubyb,l′
pq − E(1∗),l′

pq

r∑
d=1

vd xd,r′
pq = 0,

s∑
b=1

ubyb,l
pq − E(1∗),l

pq

r∑
d=1

vd xd,r
pq = 0,

s∑
b=1

ubyb,m
pq − E(1∗),m

pq

r∑
d=1

vd xd,m
pq = 0,
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s∑
b=1

ubyb,r
pq − E(1∗),r

pq

r∑
d=1

vd xd,l
pq = 0,

s∑
b=1

ubyb,r′

f q −

r∑
d=1

vd x̃d,l′

f q ≤ 0, f = 1, . . . , j,

ub, vd ≥ 0, b = 1, 2, 3, . . . , s, d = 1, 2, 3, . . . , r. (4.22)

3) Now, the average of Ẽ1∗
pq and Ẽ2∗

pq is determined to get the new FFES Ẽpq for every arc (p, q).

Ẽpq =
Ẽ1∗

pq + Ẽ2∗
pq

2
. (4.23)

At the end, the h Fermatean fuzzy attributes have been turned into a single positive Fermatean
fuzzy attribute Ẽpq, and the fully FFMOTP has been transformed into a single objective FFTP:

E∗ = max
j∑

p=1

k∑
q=1

Ẽpq × xpq

subject to
k∑

q=1

xpq = sp, p = 1, . . . , j,

j∑
p=1

xpq = dq, q = 1, . . . , k,

xpq ≥ 0, p = 1, . . . , j, q = 1, . . . , k. (4.24)

Finally, a transportation plan with the greatest Fermatean fuzzy efficiency will be obtained by
solving the model (4.24).

It should be noticed that model (4.24) has no uncertainty with hesitation regarding the supply and
demand of the product; rather, the only uncertainty with hesitation is related to the exact values of
Ẽpq. These types of problems can be solved using a few practical techniques. One of these is the
ranking function-based technique proposed by Mahmoodirad et al. [64]. To do this, it is sufficient
to apply any random linear ranking function, substituting each Fermatean fuzzy number’s rank with
its corresponding Fermatean fuzzy number in the FFTP under discussion. In this manner, the FFTP
is transformed into a crisp problem that can be quickly solved using the fundamental transportation
methods. Their results are independent of the linear ranking function used. As a consequence, to
obtain the crisp form of Fermatean fuzzy TP model (4.24), the ranking function

R(ÃF) =
(ul + 4um + ur) + (ul′ + 4um + ur′)

12
is used, in which ÃF = {(ul, um, ur); (ul′ , um, ur′)} is a TFFN.

In this way, the FFTP is converted into a crisp TP which can be easily solved by standard transportation
techniques.

Theorem 4.1. The optimum solution of the model (4.24) is an efficient solution of the model (3.1).

Proof. It is important to note that the objective function of the model (4.24) is the model’s (3.1)
weighted sum objective function. Since the optimal solution of the weighted sum problem with

AIMS Mathematics Volume 8, Issue 1, 924–961.



943

positive weights is known, it will always be the most efficient solution of the multi-objective LPP
under consideration [65]. Since the values of Ẽpq in (4.23) are considered as the weights of weighted
sum model (3.1), it is enough to prove that Ẽpq ≥ 0. Using Eq (4.23), we show that
Ẽ(1∗)

pq = {(Ẽ(1∗),l
pq , Ẽ(1∗),m

pq , Ẽ(1∗),r
pq ); (Ẽ(1∗),l′

pq , Ẽ(1∗),m
pq , Ẽ(1∗),r′

pq )} > 0, and
Ẽ(2∗)

pq = {(Ẽ(2∗),l
pq , Ẽ(2∗),m

pq , Ẽ(2∗),r
pq ); (Ẽ(2∗),l′

pq , Ẽ(2∗),m
pq , Ẽ(2∗),r′

pq )} > 0. For this, we prove Ẽ(1∗),l′
pq > 0 and

Ẽ(2∗),l′
pq > 0 by using the definition of a positive TFFN. As Ẽ(1∗),l′

pq and Ẽ(2∗),l′
pq are the optimal values of

the classical input-oriented models of DEA, we have 0 < Ẽ(1∗),l′
pq ≤ 1 and 0 < Ẽ(2∗),l′

pq ≤ 1. �

In this section, we explore another popular approach for solving model (4.24) called the fuzzy
programming approach. For this, consider Ẽpq = {(Ẽl

pq, Ẽ
m
pq, Ẽ

r
pq); (Ẽl′

pq, Ẽ
m
pq, Ẽ

r′
pq)}, and the model is

reduced to the multi-objective problem described below:

Min Z1 =

j∑
p=1

k∑
q=1

(Ẽl
pq − Ẽl′

pq)xpq

Min Z2 =

j∑
p=1

k∑
q=1

(Ẽm
pq − Ẽl

pq)xpq

Min Z3 =

j∑
p=1

k∑
q=1

Ẽm
pqxpq

Min Z4 =

j∑
p=1

k∑
q=1

(Ẽr
pq − Ẽm

pq)xpq

Min Z5 =

j∑
p=1

k∑
q=1

(Ẽr′
pq − Ẽr

pq)xpq

subject to constraints of model (4.24). (4.25)

To solve model (4.25), the positive ideal solution (Z⊕) and the negative ideal solution (Z	) are
determined by solving the following LPPs:

Z⊕1 = Min
j∑

p=1

k∑
q=1

(Ẽl
pq − Ẽl′

pq)xpq Z	1 = Max
j∑

p=1

k∑
q=1

(Ẽl
pq − Ẽl′

pq)xpq

subject to constraints of model (4.24). subject to constraints of model (4.24).

Z⊕2 = Min
j∑

p=1

k∑
q=1

(Ẽm
pq − Ẽl

pq)xpq Z	2 = Max
j∑

p=1

k∑
q=1

(Ẽm
pq − Ẽl

pq)xpq

subject to constraints of model (4.24). subject to constraints of model (4.24).

Z⊕3 = Max
j∑

p=1

k∑
q=1

Ẽm
pqxpq Z	3 = Min

j∑
p=1

k∑
q=1

Ẽm
pqxpq

subject to constraints of model (4.24). subject to constraints of model (4.24).

Z⊕4 = Max
j∑

p=1

k∑
q=1

(Ẽr
pq − Ẽm

pq)xpq Z	4 = Min
j∑

p=1

k∑
q=1

(Ẽr
pq − Ẽm

pq)xpq
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subject to constraints of model (4.24). subject to constraints of model (4.24).

Z⊕5 = Max
j∑

p=1

k∑
q=1

(Ẽr′
pq − Ẽr

pq)xpq Z	5 = Min
j∑

p=1

k∑
q=1

(Ẽr′
pq − Ẽr

pq)xpq

subject to constraints of model (4.24). subject to constraints of model (4.24). (4.26)

Then, the linear MFs of Z̃1, Z̃2, Z̃3, Z̃4 and Z̃5 are described as follows:

µZ̃1
= (Z1)


1, Z1 < Z⊕1 ,
Z	1 − Z1

Z	1 − Z⊕1
, Z⊕1 < Z1 < Z	1 ,

0, Z1 > Z	1 ,

(4.27)

µZ̃2
= (Z2)


1, Z2 < Z⊕2 ,
Z	2 − Z2

Z	2 − Z⊕2
, Z⊕2 < Z1 < Z	2 ,

0, Z2 > Z	2 ,

(4.28)

µZ̃3
= (Z3)


1, Z3 > Z⊕3 ,
Z3 − Z	3
Z⊕3 − Z	3

, Z	3 < Z3 < Z⊕3 ,

0, Z3 < Z⊕3 ,

(4.29)

µZ̃4
= (Z4)


1, Z4 > Z⊕4 ,
Z4 − Z	4
Z⊕4 − Z	4

, Z	4 < Z4 < Z⊕4 ,

0, Z4 < Z	4 ,

(4.30)

µZ̃5
(Z5) =


1, Z5 > Z⊕5 ,
Z5 − Z	5
Z⊕5 − Z	5

, Z	5 < Z5 < Z⊕5 ,

0, Z5 < Z	5 .

(4.31)

Finally, using the fuzzy programming approach, the following model is solved:

Max β
subject to µZ̃p

(Zp) ≥ β, p = 1, 2, 3, 4, 5,

constraints of model (4.24). (4.32)

By inserting the MFs of (4.27)–(4.31) into the model (4.32), the following problem is obtained:

Max β
subject to Z1 ≤ Z	1 − (Z	1 − Z⊕1 )β,

Z2 ≤ Z	2 − (Z	2 − Z⊕2 )β,
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Z3 ≥ Z	3 + (Z⊕3 − Z	3 )β,
Z4 ≥ Z	4 + (Z⊕4 − Z	4 )β,
Z5 ≥ Z	5 + (Z⊕5 − Z	5 )β,
constraints of model (4.24). (4.33)

5. Numerical example

Example 5.1. An automobile company has five assembly plants at five different towns A, B, C, D
and E in a city. The company wants to deliver the cars to three markets in three towns J, K and L of
another city to extend its business. The transportation cost, shipment value, and transportation profit
are considered as TFFNs and are given in Table 3. The company wants to reduce transportation costs
and maximize shipment value and transportation profit.

Table 3. Given data of example.
J K L sp

Trans. cost {(680,685,692);(670)685,700} {(361,370,380);(355,370,385)} {(250,257,261);(245,257,270)}
A shipment value {(265,271,279);(259,271,283)} {(423,430,440);(415,430,450)} {(416,423,435);(410,423,440)} 8

Trans. profit {(950,1000,1050);(900,1000,1090)} {(740,760,790);(700,760,800)} {(220,240,270);(200,240,310)}
Trans. cost {(530,535,540);(525,535,545)} {(320,327,335);(315,327,342)} {(271,275,280);(265,275.283)}

B shipment value {(285,292,300);(279,292,310)} {(345,352,360);(335,352,370)} {(657,665,670);(650,665,700)} 6
Trans. profit {(650,690,700);(630,690,740)} {(500,565,590);(485,565,600)} {(730,780,795);(700,780,815)}
Trans. cost {(430,436,445);(420,436,450)} {(308,315,322);(300,315,325)} {(290,296,303);(285,296,310)}

C shipment value {(720,780,800);(710,780,830)} {(290,300,307);(281,300,315)} {(739,780,795);(700,780,815)} 7
Trans. profit {(320,330,350);(300,330,365)} {(1130,1190,1230);(1100,1190,1250)} {(550,590,640);(510,590,670)}
Trans. cost {(380,392,399);(375,392,408)} {(394,400,410);(390,400,415)} {(315,319,325);(310,319,329)}

D shipment value {(631,650,670);(620,650,675)} {(510,520,530);(505,520,540)} {(435,450,465);(420,450,470)} 9
Trans. profit {(465,490,510);(430,490,550)} {(2800,2900,3050);(2730,2900,3110)} {(880,890,930);(850,890,960)}
Trans. cost {(455,475,480);(450,475,490)} {(451,460,469);(445,460,476)} {(335,342,350);(330,342,360)}

E shipment value {(475,485,490);(470,485,505)} {(531,540,550);(525,540,560)} {(590,630,650);(550,630,670)} 12
Trans. profit {(830,880,930);(800,880,950)} {(475,490,520);(450,490,550)} {(1550,1600,1650);(1500,1600,1700)}
dq 15 14 13

By treating the source p as target, the FFESs Ẽ(1∗)
pq can be determined by using the model (4.1). To

determine Ẽ(1∗)
33 the model is as follows:

E1∗
33 = Max

[u1{(290, 300, 307); (281, 300, 315)} + u2{(1130, 1190, 1230); (1100, 1190, 1250)}]
v1{(308, 315, 322); (300, 315, 325)}

subject to
[u1{(720, 780, 800); (710, 780, 830)} + u2{(320, 330, 350); (300, 330, 365)}]

v1{(430, 436, 445); (420, 436, 450)}
≤ 1,

[u1{(290, 300, 307); (281, 300, 315)} + u2{(1130, 1190, 1230); (1100, 1190, 1250)}]
v1{(308, 315, 322); (300, 315, 325)}

≤ 1,

[u1{(739, 780, 795); (700, 780, 815)} + u2{(550, 590, 640); (510, 590, 670)}]
v1{(290, 296, 303); (285, 296, 310)}

≤ 1,

u1, u2, v1 ≥ 0. (5.1)

To solve the above model, five LP models (5.2)–(5.6) should be solved:

E(1∗)l′

33 = Max 281u1 + 1100u2
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subject to 325v1 = 1,
830u1 + 365u2 − 420v1 ≤ 0,
315u1 + 1250u2 − 300v1 ≤ 0,
815u1 + 670u2 − 285v1 ≤ 0,
u1, u2, v1 ≥ 0. (5.2)

E(1∗)l
33 = Max 290u1 + 1130u2

subject to 322v1 = 1,
830u1 + 365u2 − 420v1 ≤ 0,
315u1 + 1250u2 − 300v1 ≤ 0,
815u1 + 670u2 − 285v1 ≤ 0,

281u1 + 1100u2 − 325E(1∗)l′

33 v1 = 0,
u1, u2, v1 ≥ 0. (5.3)

E(1∗)m
33 = Max 300u1 + 1190u2

subject to 315v1 = 1,
830u1 + 365u2 − 420v1 ≤ 0,
315u1 + 1250u2 − 300v1 ≤ 0,
815u1 + 670u2 − 285v1 ≤ 0,

281u1 + 1100u2 − 325E(1∗)l′

33 v1 = 0,

290u1 + 1130u2 − 322E(1∗)l
33 v1 = 0,

u1, u2, v1 ≥ 0. (5.4)

E(1∗)r
33 = Max 307u1 + 1230u2

subject to 308v1 = 1,
830u1 + 365u2 − 420v1 ≤ 0,
315u1 + 1250u2 − 300v1 ≤ 0,
815u1 + 670u2 − 285v1 ≤ 0,

281u1 + 1100u2 − 325E(1∗)l′

33 v1 = 0,

290u1 + 1130u2 − 322E(1∗)l
33 v1 = 0,

300u1 + 1190u2 − 315E(1∗)m
33 v1 = 0,

u1, u2, v1 ≥ 0. (5.5)

E(1∗)r′

33 = Max 315u1 + 1250u2

subject to 300v1 = 1,
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830u1 + 365u2 − 420v1 ≤ 0,
315u1 + 1250u2 − 300v1 ≤ 0,
815u1 + 670u2 − 285v1 ≤ 0,

281u1 + 1100u2 − 325E(1∗)l′

33 v1 = 0,

290u1 + 1130u2 − 322E(1∗)l
33 v1 = 0,

300u1 + 1190u2 − 315E(1∗)m
33 v1 = 0,

307u1 + 1230u2 − 308E(1∗)r
33 v1 = 0,

u1, u2, v1 ≥ 0. (5.6)

Similarly, the values of Ẽ(1∗)
pq can be determined for the remaining arcs. The corresponding FFESs

for other arcs are given in Table 4.

Table 4. values of Ẽ1∗
pq.

J K L
A {(0.61,0.65,0.69);(0.57,0.65,0.72)} {(0.87,0.91,0.97);(0.83,0.91,1.00)} {(0.89,0.91,0.97);(0.85,0.91,1.00)}
B {(0.39,0.42,0.43);(0.38,0.42,0.46)} {(0.49,0.56,0.60);(0.46,0.56,0.62)} {(0.89,0.92,0.95);(0.87,0.92,1.00)}
C {(0.57,0.63,0.65);(0.55,0.63,0.69)} {(0.85,0.91,0.96);(0.81,0.91,1.00)} {(0.85,0.92,0.96);(0.79,0.92,1.00)}
D {(0.88,0.91,0.98);(0.84,0.91,1.00)} {(0.89,0.93,0.97);(0.86,0.93,1.00)} {(0.80,0.84,0.88);(0.76,0.84,0.90)}
E {(0.49,0.50,0.53);(0.42,0.50,0.55)} {(0.56,0.58,0.60);(0.54,0.58,0.62)} {(0.86,0.91,0.96);(0.81,0.91,1.00)}

By treating the source q as target, the FFESs Ẽ(2∗)
pq can be determined by using the model (4.12). To

determine Ẽ(2∗)
33 the model is as follows:

E2∗
33 = Max

[u1{(290, 300, 307); (281, 300, 315)} + u2{(1130, 1190, 1230); (1100, 1190, 1250)}]
v1{(308, 315, 322); (300, 315, 325)}

subject to
[u1{(423, 430, 440); (415, 430, 450)} + u2{(740, 760, 790); (700, 760, 800)}]

v1{(361, 370, 380); (355, 370, 385)}
≤ 1,

[u1{(345, 352, 360); (335, 352, 370)} + u2{(500, 565, 590); (485, 565, 600)}]
v1{(320, 327, 335); (315, 327, 342)}

≤ 1,

[u1{(290, 300, 307); (281, 300, 315)} + u2{(1130, 1190, 1230); (1100, 1190, 1250)}]
v1{(308, 315, 322); (300, 315, 325)}

≤ 1,

[u1{(510, 520, 530); (505, 520, 540)} + u2{(2800, 2900, 3050); (2730, 2900, 3110)}]
v1{(394, 400, 410); (390, 400, 415)}

≤ 1,

[u1{(531, 540, 550); (525, 540, 560)} + u2{(475, 490, 520); (450, 490, 550)}]
v1{(451, 460, 469); (445, 460, 476)}

≤ 1,

u1, u2, v1 ≥ 0. (5.7)

To solve the above model, five LP models (5.8)–(5.12) should be solved:

E(2∗)l′

33 = Max 281u1 + 1100u2

subject to 325v1 = 1,
450u1 + 800u2 − 355v1 ≤ 0,
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370u1 + 600u2 − 315v1 ≤ 0,
315u1 + 1250u2 − 300v1 ≤ 0,
540u1 + 3110u2 − 390v1 ≤ 0,
560u1 + 550u2 − 445v1 ≤ 0,
u1, u2, v1 ≥ 0. (5.8)

E(2∗)l
33 = Max 290u1 + 1130u2

subject to 322v1 = 1,
450u1 + 800u2 − 355v1 ≤ 0,
370u1 + 600u2 − 315v1 ≤ 0,
315u1 + 1250u2 − 300v1 ≤ 0,
540u1 + 3110u2 − 390v1 ≤ 0,
560u1 + 550u2 − 445v1 ≤ 0,

281u1 + 1100u2 − 325E(2∗)l′

33 v1 = 0,
u1, u2, v1 ≥ 0. (5.9)

E(2∗)m
12 = Max 430u1 + 760u2

subject to 370v1 = 1,
450u1 + 800u2 − 355v1 ≤ 0,
370u1 + 600u2 − 315v1 ≤ 0,
315u1 + 1250u2 − 300v1 ≤ 0,
540u1 + 3110u2 − 390v1 ≤ 0,
560u1 + 550u2 − 445v1 ≤ 0,

281u1 + 1100u2 − 325E(2∗)l′

33 v1 = 0,

290u1 + 1130u2 − 322E(2∗)l
33 v1 = 0,

u1, u2, v1 ≥ 0. (5.10)

E(2∗)r
12 = Max 440u1 + 790u2

subject to 361v1 = 1,
450u1 + 800u2 − 355v1 ≤ 0,
370u1 + 600u2 − 315v1 ≤ 0,
315u1 + 1250u2 − 300v1 ≤ 0,
540u1 + 3110u2 − 390v1 ≤ 0,
560u1 + 550u2 − 445v1 ≤ 0,

281u1 + 1100u2 − 325E(2∗)l′

33 v1 = 0,
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290u1 + 1130u2 − 322E(2∗)l
33 v1 = 0,

300u1 + 1190u2 − 315E(2∗)m
33 v1 = 0,

u1, u2, v1 ≥ 0. (5.11)

E(2∗)r′

12 = Max 450u1 + 800u2

subject to 355v1 = 1,
450u1 + 800u2 − 355v1 ≤ 0,
370u1 + 600u2 − 315v1 ≤ 0,
315u1 + 1250u2 − 300v1 ≤ 0,
540u1 + 3110u2 − 390v1 ≤ 0,
560u1 + 550u2 − 445v1 ≤ 0,

281u1 + 1100u2 − 325E(2∗)l′

33 v1 = 0,

290u1 + 1130u2 − 322E(2∗)l
33 v1 = 0,

300u1 + 1190u2 − 315E(2∗)m
33 v1 = 0,

307u1 + 1230u2 − 308E(2∗)r
33 v1 = 0,

u1, u2, v1 ≥ 0. (5.12)

Similarly, the values of Ẽ(2∗)
pq can be determined for the remaining arcs. The corresponding FFESs

for other arcs are given in Table 5.

Table 5. values of Ẽ2∗
pq.

J K L
A {(0.65,0.69,0.73);(0.61,0.69,0.77)} {(0.80,0.84,0.88);(0.78,0.84,0.92)} {(0.56,0.58,0.61);(0.53,0.58,0.63)}
B {(0.57,0.61,0.63);(0.55,0.61,0.67)} {(0.74,0.78,0.81);(0.71,0.78,0.85)} {(0.88,0.92,0.94);(0.85,0.92,1.00)}
C {(0.82,0.91,0.94);(0.80,0.91,1.00)} {(0.65,0.69,0.72);(0.62,0.69,0.76)} {(0.85,0.92,0.96);(0.79,0.92,1.00)}
D {(0.86,0.91,0.97);(0.82,0.91,1.00)} {(0.90,0.94,0.97);(0.88,0.94,1.00)} {(0.60,0.63,0.66);(0.57,0.63,0.68)}
E {(0.84,0.89,0.97);(0.80,0.89,1.00)} {(0.82,0.85,0.88);(0.80,0.85,0.91)} {(0.86,0.91,0.96);(0.81,0.91,1.00)}

Now, the average of FFESs Ẽ(1∗)
pq and Ẽ(2∗)

pq is determined to get new FFESs Ẽpq which are given in
Table 6.

Table 6. values of Ẽpq.
J K L

A {(0.63,0.67,0.71);(0.59,0.67,0.75)} {(0.84,0.88,0.93);(0.81,0.88,0.96)} {(0.73,0.75,0.79);(0.69,0.75,0.82)}
B {(0.48,0.52,0.53);(0.47,0.52,0.57)} {(0.62,0.67,0.71);(0.59,0.67,0.74)} {(0.89,0.92,0.95);(0.86,0.92,1.00)}
C {(0.70,0.77,0.80);(0.68,0.77,0.85)} {(0.75,0.80,0.84);(0.72,0.80,0.88)} {(0.85,0.92,0.96);(0.79,0.92,1.00)}
D {(0.87,0.91,0.98);(0.83,0.91,1.00)} {(0.90,0.94,0.97);(0.87,0.94,1.00)} {(0.70,0.74,0.77);(0.67,0.74,0.79)}
E {(0.67,0.70,0.75);(0.61,0.70,0.78)} {(0.69,0.72,0.74);(0.67,0.72,0.77)} {(0.86,0.91,0.96);(0.81,0.91,1.00)}

To find the solution of the model (3.1), the following single objective FFTP is solved:

Max
5∑

p=1

3∑
q=1

Ẽpqxpq
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subject to
3∑

q=1

x1q = 8,
3∑

q=1

x2q = 6,
3∑

q=1

x3q = 7,
3∑

q=1

x4q = 9,

3∑
q=1

x5q = 12,
5∑

p=1

xp1 = 15,
5∑

p=1

xp2 = 14,
5∑

p=1

xp3 = 13,

xpq ≥ 0, for all p, q. (5.13)

To solve the above model, we apply the ranking function

R(ÃF) =
(ul + 4um + ur) + (ul′ + 4um + ur′)

12
, where ÃF = {(ul, um, ur); (ul′ , um, ur′)} is a TFFN.

Therefore, each FFES is replaced with its corresponding rank. The related results are given in Table 7.

Table 7. Crisp values of FFESs.

R(ÃF) =
(ul + 4um + ur) + (ul′ + 4um + ur′)

12
0.67 0.88 0.75
0.52 0.67 0.92
0.77 0.80 0.91
0.91 0.94 0.74
0.70 0.72 0.91

Max 0.67x11 + 0.88x12 + 0.75x13 + 0.52x21 + 0.67x22 + 0.92x23 + 0.77x31 + 0.80x32

+ 0.91x33 + 0.91x41 + 0.94x42 + 0.74x43 + 0.70x51 + 0.72x52 + 0.91x53

subject to
3∑

q=1

x1q = 8,
3∑

q=1

x2q = 6,
3∑

q=1

x3q = 7,
3∑

q=1

x4q = 9,

3∑
q=1

x5q = 12,
5∑

p=1

xp1 = 15,
5∑

p=1

xp2 = 14,
5∑

p=1

xp3 = 13,

xpq ≥ 0, for all p, q. (5.14)

Finally, at the end, by solving the model (5.14), a Fermatean fuzzy transportation plan with the
maximum Fermatean fuzzy efficiency is determined as follows:

x12 = 8, x23 = 6, x31 = 7, x41 = 3 x42 = 6, x51 = 5, x53 = 7.

The Fermatean fuzzy values of objective functions of transportation cost, shipment value and
transportation profit are {(15648, 16007, 16342); (15395, 16007, 16612)}, {(23824, 24795, 25330);
(23280, 24795, 26090)} and {(45735, 47540, 49570); (44070, 47540, 50805)}, respectively. The MFs
and NMFs of transportation cost, shipment value and transportation profit are represented in
Figures 2– 4, respectively.
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Figure 2. MF and NMF of transportation cost.

Figure 3. MF and NMF of shipping value.

Figure 4. MF and NMF of transportation profit.

5.1. Comparative analysis

Now, if we solve the single objective FFTP (5.13) in Example 5.1 based on a fuzzy programming
approach [65], we have the following.

Z1 = Min0.04x11 + 0.03x12 + 0.04x13 + 0.01x21 + 0.03x22 + 0.03x23 + 0.02x31 + 0.03x32
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+ 0.06x33 + 0.04x41 + 0.03x42 + 0.03x43 + 0.06x51 + 0.02x52 + 0.05x53

Z2 = Min0.04x11 + 0.04x12 + 0.02x13 + 0.04x21 + 0.05x22 + 0.03x23 + 0.07x31 + 0.05x32

+ 0.07x33 + 0.04x41 + 0.04x42 + 0.04x43 + 0.03x51 + 0.03x52 + 0.05x53

Z3 = Max0.67x11 + 0.88x12 + 0.75x13 + 0.52x21 + 0.67x22 + 0.92x23 + 0.77x31 + 0.80x32

+ 0.92x33 + 0.91x41 + 0.94x42 + 0.74x43 + 0.70x51 + 0.72x52 + 0.91x53 (5.15)
Z4 = Max0.04x11 + 0.05x12 + 0.02x13 + 0.01x21 + 0.04x22 + 0.03x23 + 0.03x31 + 0.04x32

+ 0.04x33 + 0.07x41 + 0.03x42 + 0.03x43 + 0.05x51 + 0.02x52 + 0.05x53

Z5 = Max0.04x11 + 0.03x12 + 0.03x13 + 0.04x21 + 0.03x22 + 0.05x23 + 0.05x31 + 0.04x32

+ 0.04x33 + 0.02x41 + 0.03x42 + 0.02x43 + 0.03x51 + 0.03x52 + 0.04x53

subject to constraints of model (5.13).

Then, the positive ideal solution (Z⊕) and negative ideal solution (Z	) are as follows:

Z⊕1 = 1.01, Z	1 = 1.92,
Z⊕2 = 1.42, Z	2 = 2.07,

Z⊕3 = 36.19, Z	3 = 29.55,
Z⊕4 = 2.15, Z	4 = 0.98,
Z⊕5 = 1.67, Z	5 = 1.24.

Now, the following model is solved to obtain the solution of model (5.13):

Max β

subject to Z1 + 0.91β ≤ 1.92,
Z2 + 0.65β ≤ 2.07,
Z3 − 6.64β ≥ 29.55,
Z4 − 1.17β ≥ 0.98,
Z5 − 0.43β ≥ 1.24,
constraints of model (5.13). (5.16)

Therefore, the solution to the above model is x11 = 3.85, x12 = 1.80, x13 = 2.35, x23 = 6, x31 =

3.51, x32 = 3.49, x41 = 7.63, x42 = 1.37, x52 = 7.35, x53 = 4.65.
The objective values of shipping cost, shipping value and transportation profit are

{(16379.14, 16699, 17009.81); (16108.06, 16699, 17290.29)},
{(22400.5, 23157.11, 23691.59); (21919.46, 23157.11, 24268.32)} and
{(33030.27, 34520.65, 35948.25); (31584.7, 34520.65, 37297.18)}. Note that by solving the single
objective FFTP using the Mahmoodirad et al. [64] approach, the following solution is obtained:
x12 = 8, x23 = 6, x31 = 1, x32 = 6, x41 = 9, x51 = 5, x53 = 7.

According to this solution, the Fermatean fuzzy shipping cost, Fermatean fuzzy shipment value
and Fermatean fuzzy profit are {(14832,15233,15538);(14585,15233,15820)},
{(21970,22695,23212);(21396,22695,23810)} and {(36585,38240,39610);(35070,38240,40755)},
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respectively. It is noted that the Fermatean fuzzy shipment value and profit obtained from the
proposed approach are greater than those obtained from the Mahmoodriad et al. [64] approach.
Therefore, the proposed approach is preferable by considering Fermatean fuzzy shipment value and
profit.

Further, the suggested FFDEA technique for solving model (3.1) is now compared to an expanded
version of the goal programming (GP) technique [54]. GP is a typical method for reducing a TP with
several objective functions to a single objective function. The concept of GP is to reduce the distance
between objective functions and an aspiration level vector either calculated by the decision maker or
thet equals f̃ = ( f̃ ∗1 , f̃ ∗2 , . . . , f̃ ∗h ), where

f̃ ∗a =Optimize
j∑

p=1

k∑
q=1

c̃a
pq x̃pq

subject to
k∑

q=1

x̃pq = s̃p, p = 1, . . . , j,

j∑
p=1

x̃pq = d̃q, q = 1, . . . , k,

x̃pq ≥ 0̃, p = 1, . . . , j, q = 1, . . . , k. (5.17)

Assume that, ñd = {(nl
d, n

m
d , n

r
d); (nl′

d , n
m
d , n

r′
d )} and p̃d = {(pl

d, pm
d , pr

d); (pl′
d , pm

d , pr′
d )} are the under

deviations and over deviations of the objectives f̃a = Optimize
∑ j

p=1

∑k
q=1 c̃a

pq x̃pq from their aspiration
values f̃ ∗a , respectively. Let f̃a =

∑ j
p=1

∑k
q=1 c̃a

pq x̃pq (a = 1, . . . , g) and f̃a =
∑ j

p=1

∑k
q=1 c̃a

pq x̃pq (a =

g + 1, . . . , g + s) be those objective functions of model (3.1) that should be minimized and maximized,
respectively. In this way, the model (3.1) is transformed by GP into a minimization problem of the
deviational parameters which minimizes the sum of deviational parameters as follows:

min
g∑

a=1

p̃a +

g+s∑
g+1

ña

subject to
j∑

p=1

k∑
q=1

c̃a
pq x̃pq ≤ p̃a + f̃ ∗a , a = 1, . . . , g,

j∑
p=1

k∑
q=1

c̃a
pq x̃pq + ña ≥ f̃ ∗a , a = g + 1, . . . , g + s,

p̃a ≥ 0̃, a = 1, . . . , g,
ña ≥ 0̃, a = g + 1, . . . , g + s,

k∑
q=1

x̃pq = sp, p = 1, . . . , j,

j∑
p=1

x̃pq = dq, q = 1, . . . , k,

x̃pq ≥ 0̃, p = 1, . . . , j, q = 1, . . . , k. (5.18)
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For solving the model (5.18), assume

ña ={(nl
a, n

m
a , n

r
a); (nl′

a , n
m
a , n

r′
a )},

p̃a ={(pl
a, pm

a , pr
a); (pl′

a , pm
a , pr′

a )},

c̃a
pq ={(ca,l

pq, c
a,m
pq , c

a,r
pq); (ca,l′

pq , c
a,m
pq , c

a,r′
pq )} and

f̃ ∗a ={( f l∗
a , f m∗

a , f r∗
a ); ( f l′∗

a , f m∗
a , f r′∗

a )}.

In this way, model (5.18) is transformed into the following model using Definitions 2.8 and 2.9:

min
g∑

a=1

(pl′
a + pl

a + pm
a + pr

a + pr′
a ) +

g+s∑
g+1

(nl′
a + nl

a + nm
a + nr

a + nr′
a )

subject to
j∑

p=1

k∑
q=1

ca,l′
pq xl′

pq ≤ pl′
a + f l′∗

a , a = 1, . . . , g,

j∑
p=1

k∑
q=1

ca,l
pqxl

pq ≤ pl
a + f l∗

a , a = 1, . . . , g,

j∑
p=1

k∑
q=1

ca,m
pq xm

pq ≤ pm
a + f m∗

a , a = 1, . . . , g,

j∑
p=1

k∑
q=1

ca,r
pq xr

pq ≤ pr
a + f r∗

a , a = 1, . . . , g,

j∑
p=1

k∑
q=1

ca,r′
pq xr′

pq ≤ pr′
a + f r′∗

a , a = 1, . . . , g,

j∑
p=1

k∑
q=1

ca,l′

i j xpq + nl′
a ≥ f l′∗

a , a = g + 1, . . . , g + s,

j∑
p=1

k∑
q=1

ca,l
pqxpq + nl

a ≥ f l∗
a , a = g + 1, . . . , g + s,

j∑
p=1

k∑
q=1

ca,m
pq xpq + nm

a ≥ f m∗
a , a = g + 1, . . . , g + s,

j∑
p=1

k∑
q=1

ca,r
pq xpq + nr

a ≥ f r∗
a , a = g + 1, . . . , g + s,

j∑
p=1

k∑
q=1

ca,r′
pq xpq + nr′

a ≥ f r′∗
a , a = g + 1, . . . , g + s,

pl′
a ≥ 0, a = 1, . . . , g,

nl′
a ≥ 0, a = g + 1, . . . , g + s,

constraints of model (4.24). (5.19)
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The model (5.19) is a LPP that can be solved using the simplex method. For solving this example
using the GP technique, the Fermatean fuzzy values of the objective functions of transportation cost,
shipment value, and transportation profit are {(16445, 17205, 17665); (16055, 17205, 18135)},
{(21122, 21975, 22660); (20880, 21975, 23110)}, {(42355, 43205, 43925); (41846, 43205, 44435)}.
Now, the solutions obtained by different approaches are given in Table 8.

Table 8. Comparison of solutions.
Approach Transportation cost Shipment value Transportation profit

Proposed approach {(15648, 16007, 16342); (15395, 16007, 16612)} {(23824, 24795, 25330); (23280, 24795, 26090)} {(45735, 47540, 49570); (44070, 47540, 50805)}

Fuzzy programming [65] {(16379.14, 16699, 17009.81); (16108.06, 16699, 17290.29)} {(22400.5, 23157.11, 23691.59); (21919.46, 23157.11, 24268.32)} {(33030.27, 34520.65, 35948.25); (31584.7, 34520.65, 37297.18)}

Goal programming [54] {(16445, 17205, 17665); (16055, 17205, 18135)} {(21122, 21975, 22660); (20880, 21975, 23110)} {(42355, 43205, 43925); (41846, 43205, 44435)}

As can be seen from Table 8, the Fermatean fuzzy transport cost determined using the proposed
method is smaller than that obtained from the fuzzy programming and objective programming methods.
Furthermore, the Fermatean fuzzy shipping value and Fermatean fuzzy profit determined using this
method are larger than the values obtained from the fuzzy programming and objective programming
methods. Therefore, the proposed method is more suitable for finding solutions for FFMOTP.

5.2. Advantages and limitations of the proposed problem

In general, the presented approach has many significant advantages over the fuzzy programming
technique:

• The classical LP problem (4.33) used to solve FFTP (4.24) is not a transportation type problem.
However, the LP problem resulting from the proposed method to solve FFTP (4.24) is a classical
TP.
• The proposed approach provides an optimum solution for the FFTP (4.24) with integer values, but

the fuzzy programming technique yields a Fermatean fuzzy optimal solution having non-integer
values in the Fermatean fuzzy quantities of some goods to be moved from sources to endpoints
that have no physical significance.
• The classical LP problem (4.33) used to solve FFTP (4.24) by applying the fuzzy programming

technique has more variables and constraints as compared to the problem resulting from the
proposed approach. Therefore, from a computational perspective, taking into account the
number of variables and constraints, using the proposed method to solve FFTP (4.24) is highly
effective in contrast to the fuzzy programming technique.
• Using the FFDEA method presented in this work, the FFMOTP (3.1) is transformed into a single

objective FFTP without changing the structure of the TP. However, utilizing other techniques like
goal programming and fuzzy approaches will increase the number of constraints for the problem
by introducing new ones. As a result, if the problem seeks an integer optimal solution, the FFDEA
method can be utilized by simply finding an optimal solution to the TP achieved by neglecting the
integrality limitations, but the goal programming and fuzzy programming techniques are unable
to obtain integer solutions without adding the integrality limitations.
• Our proposed method has some limitations also.

(i) Our proposed method cannot be applied to unbalanced FFMOTP to obtain the Fermatean
fuzzy optimal solution.
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(ii) As long as the problem posed is nonlinear, our proposed method cannot be applied.
(iii) Our proposed method cannot be applied when all objective functions are minimized.

5.3. Managerial insights and results discussion

The proposed work can be broadly applied to numerous supply chain management and logistics
operations. The proposed model can help organizations develop forward-looking network designs and
consider sustainability impacts. The proposed method is very useful for dealing with indecisive
uncertainty when the fuzzy variables are not sufficient to specify certain parameters in any logical
process. Considering the uncertainty of transportation cost, shipment value, and transportation profit,
DM will be able to operate the logistics system by transporting the right amount of product to the
right demand centre at no additional cost. Therefore, the model constructs objective functions related
to total transportation cost, shipment value, and transportation profit, which will help the organization
stay in the global market by getting more transportation profit and shipment value and less
transportation cost. Furthermore, the results obtained using our proposed method are inherently
Fermatean fuzzy, i.e., they are normal forms of TFFNs. The results obtained using our proposed
method are compared with existing methods with the help of a single real-world example. The
transportation cost, shipment value, and transportation profit obtained using our proposed method are
{(15648, 16007, 16342); (15395, 16007, 16612)}, {(23824, 24795, 25330); (23280, 24795, 26090)} and
{(45735, 47540, 49570); (44070, 47540, 50805)}. In addition, from the membership function of
Fermatean fuzzy transportation cost {(15648, 16007, 16342); (15395, 16007, 16612)}, it is shown that
degree of acceptance of transportation cost for DM increases when transportation cost increases from
15648 to 16007 and decreases when the transportation cost increases from 16007 to 16342, and the
decision maker is completely satisfied when the transportation cost is 16007. However, the decision
maker is fully unsatisfied, or the transportation cost is rejected when it lies beyond the interval
(15648, 16342). Furthermore, the non-membership function shows that the degree of rejection
decreases when the transportation cost increases from 15395 to 16007, and it increases when the
transportation cost increases from 16007 to 16612. When it exceeds (16007, 16612), the
transportation cost is completely rejected. Membership and non-membership functions for shipment
value and transportation profit are represented in a similar fashion.

6. Conclusions

The TP is a form of LPP that is used to optimize resource allocation; it is a very important tool for
managers and supply chain engineers to employ for cost optimization. The basic idea of TP is to
determine the minimum total transportation cost for transporting a product from multiple sources to
multiple destinations. We have formulated the MOTP in a Fermatean fuzzy environment. Next, we
have developed an approach for solving the FFMOTP based on FFDEA, which is motivated
by [62]. In this approach, every arc has been considered a DMU in the FFMOTP. Furthermore, those
objective functions that should be maximized have been used to define the outputs of DMU, while
those that should be minimized have been used to define the inputs of DMU. As a consequence, two
different FFESs have been obtained for every arc by solving the FFDEA models. Then, by averaging
these FFESs, unique FFESs for each arc have been determined. In this way, the FFMOTP has been
transformed into a single objective FFTP. Finally, the FFTP has been converted into a classical TP by
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using the ranking function of the TFFN. A numerical example has been provided to illustrate the
proposed method. The advantage of the proposed method is that it provides better results than the
existing methods [64, 65]. In the future, we want to extend this work to the fractional TP and
multi-objective fractional TP in the Fermatean fuzzy environment. Furthermore, we would like to
point out that the proposed method cannot be used to determine the Fermatean fuzzy optimal solution
of the MOTP when the parameters are generalized TFFNs. Therefore, further research to extend the
proposed method to address these shortcomings is an interesting avenue for future research. We will
report significant results from these ongoing projects in the near future.
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