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1. Introduction

The famous Kirchhoff equation [1]

utt −

(
a + b

∫
Ω

u′2dx
)

u′′ = h (t, x)

(a, b > 0) is an extension of the classical D’Alembert’s wave equation for vibrations of elastic strings,
which takes into account the changes in mass density and/or tension force of the string produced by
transverse vibrations. In higher dimensions, the equation reads as follows

utt −

(
a + b

∫
Ω

|∇u|2 dx
)
∆u = h (t, x) .
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One can also consider the parabolic type equation

ut −

(
a + b

∫
Ω

|∇u|2 dx
)
∆u = h (t, x)

which models diffusion processes with a diffusion coefficient globally dependent on gradient.
Several authors (see, e.g., [2–8]) have considered a more general Kirchhoff type equation, by

replacing the integral factor a + b |∇u|2L2 with an expression of the form η (|∇u|L2), where η is an
increasing and nonnegative function.

Kirchhoff type problems are referred to be nonlocal due to the presence of the integral over the
entire Ω, and due to this specificity, some difficulties arise in their investigation.

The study of such equations and systems have been made using variational and topological methods,
as well as upper and lower solution techniques (see, e.g., [9–20] and the references therein).

In this paper, we first study the Dirichlet problem for a stationary integro-differential equation of
Kirchhoff type with a reaction external force term, on a bounded domain Ω ⊂ Rn, −

(
a + b

∫
Ω
|∇u|2 dx

)
∆u = f + g (x, u,∇u) in Ω

u|∂Ω = 0,

and next we focus on the Dirichlet problem for a coupled system of Kirchhoff equations
−

(
a + b |u|2H1

0

)
∆u = f1 + g1 (x, u, v)

−

(
a + b |v|2H1

0

)
∆v = f2 + g2 (x, u, v)

u|∂Ω = v|∂Ω = 0

(1.1)

for which the solution is a Nash type equilibrium.
To our knowledge, Nash equilibria of system (1.1) have not been considered so far, and our objective

is to provide sufficient conditions for such solutions to exist. To this aim we use the approach initiated
in [21] (see also [22–27]). The idea is to put system (1.1) in an operator form, as a fixed point system, N1(u, v) = u

N2(u, v) = v ,
(1.2)

where the operators N1 and N2 admit a variational structure, i.e., there exist (energy) functionals
E1 (u, v) and E2 (u, v) such that system (1.2) is equivalent with E11(u, v) = 0

E22(u, v) = 0 .
(1.3)

where E11 is the partial Fréchet derivative of E1 with respect to the first variable and E22 is the partial
Fréchet derivative of E2 with respect to the second variable. A solution (u∗, v∗) of (1.1) is a Nash
equilibrium if {

E1(u∗, v∗) = inf E1(·, v∗)
E2(u∗, v∗) = inf E2(u∗, ·) .
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The notion of a Nash equilibrium originated in game theory and economics, where a number of players
or traders with their own costing criteria are in competition and each aims to optimize its cost in relation
to the others. When no one can further improve his criterion, it means that the system has reached a
Nash equilibrium state. Such kind of situations also hold for systems modeling real processes from
physics, biology etc., when stationary states are Nash equilibria for the associated energy functionals.

Non-cooperative games in which the players move alternately suggest an iterative method based
on Ekeland’s variational principle for finding and approximating Nash equilibria. The convergence of
the iterative process is established by using unilateral Lipschitz conditions on the reaction terms and
working techniques with inverse-positive matrices.

The outline of this paper is as follows: Section 3 provides a comprehensive picture of the theoretical
aspects of the Kirchhoff solution operator for the Dirichlet problem. Section 4 is dedicated to the
Dirichlet problem for the stationary Kirchhoff equation with a reaction force term; the existence of
solutions is established via Banach contraction principle and Schaefer’s fixed point theorem. Finally
in Section 5 there are provided sufficient conditions for a system of two Kirchhoff equations to admit a
Nash equilibrium.

2. Preliminaries

In this section we collect a number of notions and results that will be used in the following.
First we recall the weak form of Ekeland’s variational principle (see, e.g., [28, Corollary 8.1]).

Theorem 1 (Ekeland). Let (X, d) be a complete metric space and E : X → R a lower semicontinuous
functional bounded from below. For each ε > 0, there is an element x ∈ X such that the following two
properties hold:

E (x) ≤ inf
y∈X

E (y) + ε,

E (x) ≤ E (y) + εd (x, y) for all y ∈ X.

Next we recall Perov’s fixed point theorem (see, e.g., [28, pp 151–154]) for mappings defined on
the Cartesian product of two metric spaces.

Theorem 2 (Perov). Let (Xi, di) , i = 1, 2 be complete metric spaces and Ni : X1 × X2 → Xi be two
mappings for which there exists a square matrix M of size two with nonnegative entries and the spectral
radius ρ (M) < 1 such that the following vector inequality(

d1 (N1 (x, y) ,N1 (u, v))
d2 (N2 (x, y) ,N2 (u, v))

)
≤ M

(
d1 (x, y)
d2 (u, v)

)
holds for all (x, y) , (u, v) ∈ X1 × X2. Then there exists a unique point (x∗, y∗) ∈ X1 × X2 with x∗ =

N1 (x∗, y∗) and y∗ = N2 (x∗, y∗) .Moreover, the point (x∗, y∗) can be obtained by the method of successive
approximations starting from any initial point (x0, y0) , and d1

(
Nk

1 (x0, y0) , x∗
)

d2

(
Nk

2 (x0, y0) , y∗
)  ≤ Mk (I − M)−1

(
d1 (x0,N1 (x0, y0))
d2 (y0,N2 (x0, y0))

)
for every k ∈ N.
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Here I stands for the unit matrix of size two. Note that the property of a square matrix M with
nonnegative entries of having the spectral radius ρ (M) less than 1 is equivalent to each one of the
properties: (a) Mk tends to the zero matrix as k → +∞; (b) The matrix I − M is nonsingular and the
entries of its inverse (I − M)−1 are nonnegative.

For our Kirchhoff system (1.1) both fixed point and critical point formulations ((1.2) and (1.3))
being available, both Perov approach and Ekeland variational approach can be used. The first approach
offers the approximation procedure for the solution given by the method of successive approximations,
while by the second approach, an approximation procedure more appropriate to the concept of Nash
equilibrium can be established.

We conclude this preliminary section by some notations and results related to Laplacian. For details
we refer the reader to the book [29]. We consider the well-known Sobolev space H1

0 (Ω) whose scalar
product and norm are

(u, v)H1
0

=

∫
Ω

∇u · ∇vdx, |u|H1
0

= |∇u|L2 =

(∫
Ω

|∇u|2 dx
)1/2

.

The notation H−1 (Ω) stands for the dual of H1
0 (Ω) and for any f ∈ H−1 (Ω) , u ∈ H1

0 (Ω) , by ( f , u)
we mean the value at u of the continuous linear functional f . One has the continuous embeddings
H1

0 (Ω) ⊂ L2 (Ω) ⊂ H−1 (Ω) and the Poincaré inequalities

|u|L2 ≤
1
√
λ1
|u|H1

0

(
u ∈ H1

0 (Ω)
)
,

|u|H−1 ≤
1
√
λ1
|u|L2

(
u ∈ L2 (Ω)

)
,

where λ1 is the first eigenvalue of the Dirichlet problem for the operator −∆. We use the notation
(−∆)−1 for the inverse of the Laplacian with respect to the homogeneous Dirichlet boundary condition.
More exactly, (−∆)−1 f = u, where u is the unique function in H1

0 (Ω) satisfying (u, v)H1
0

= ( f , v) for all
v ∈ H1

0 (Ω) , i.e., u is the weak solution of the Dirichlet problem −∆u = f in Ω; u = 0 on ∂Ω. Recall
that (−∆)−1 is an isometry between H−1 (Ω) and H1

0 (Ω) .

3. Stationary Kirchhoff equations

3.1. The Kirchhoff solution operator

First we focus on the stationary equation

−

(
a + b

∫
Ω

|∇u|2 dx
)
∆u = h

under the Dirichlet condition u = 0 on ∂Ω.

Theorem 3. (The solution operator) For each h ∈ H−1 (Ω) , the Dirichlet problem has a unique weak
solution u ∈ H1

0 (Ω) , i.e., (
a + b

∫
Ω

|∇u|2 dx
)

(u, v)H1
0

= (h, v) , v ∈ H1
0 (Ω) , (3.1)
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and the solution operator S : H−1 (Ω)→ H1
0 (Ω) , h 7−→ u, is continuous and

|S (h)|H1
0
≤

1
a
|h|H−1 . (3.2)

Proof. (a) Existence: Let h ∈ H−1 (Ω) be fixed and consider the operator S h : H1
0 (Ω)→ H1

0 (Ω) defined
by

S h (v) =
1

a + b |v|2H1
0

(−∆)−1 h.

Clearly, S h is completely continuous. In addition,

|S h (v)|H1
0
≤

1
a
|h|H−1 , v ∈ H1

0 (Ω) . (3.3)

Hence, if we denote B =
{
v ∈ H1

0 (Ω) : |v|H1
0
≤ 1

a |h|H−1

}
, then S h (B) ⊂ B and according to Schauder’s

fixed point theorem, there exists at least one u such that S h (u) = u. Clearly u is a solution of the
Dirichlet problem.

(b) Uniqueness: Assume that u1, u2 are two solutions of (3.1). Then(
a + b |u1|

2
H1

0

)
|u1|

2
H1

0
= (h, u1) ,(

a + b |u2|
2
H1

0

)
(u1, u2)H1

0
= (h, u1) .

It follows that (
a + b |u1|

2
H1

0

)
|u1|

2
H1

0
=

(
a + b |u2|

2
H1

0

)
(u1, u2)H1

0

≤

(
a + b |u2|

2
H1

0

)
|u1|H1

0
|u2|H1

0
.

Hence (
a + b |u1|

2
H1

0

)
|u1|H1

0
≤

(
a + b |u2|

2
H1

0

)
|u2|H1

0
.

The function
(
a + bx2

)
x being strictly increasing on R+, we have that |u1|H1

0
≤ |u2|H1

0
. By symmetry the

converse inequality also holds. Thus |u1|H1
0

= |u2|H1
0
. Now the uniqueness of solution for the Dirichlet

problem related to −∆ yields u1 = u2.

(c) Continuity: Let hk → h in H−1 (Ω) and let uk := S (hk) . Using (3.3) we have that the sequence
(uk) is bounded. Hence, passing if necessary to a subsequence, we may assume that the sequence of
real numbers (|uk|) is convergent. We now prove that the sequence (uk) is Cauchy. From

−∆uk =
1

a + b |uk|
2
H1

0

hk,

we have
−∆

(
uk − up

)
=

1
a + b |uk|

2
H1

0

hk −
1

a + b
∣∣∣up

∣∣∣2
H1

0

hp
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in the weak sense. Consequently

∣∣∣uk − up

∣∣∣2
H1

0
=

 1
a + b |uk|

2
H1

0

hk −
1

a + b
∣∣∣up

∣∣∣2
H1

0

hp, uk − up


=

1
a + b |uk|

2
H1

0

(
hk − hp, uk − up

)

+

 1
a + b |uk|

2
H1

0

−
1

a + b
∣∣∣up

∣∣∣2
H1

0

 (hp, uk − up

)
.

Furthermore∣∣∣uk − up

∣∣∣2
H1

0
≤

1
a

∣∣∣hk − hp

∣∣∣
H−1

∣∣∣uk − up

∣∣∣
H1

0
+

b
a2

∣∣∣∣|uk|
2
H1

0
−

∣∣∣up

∣∣∣2
H1

0

∣∣∣∣ ∣∣∣hp

∣∣∣
H−1

∣∣∣uk − up

∣∣∣
H1

0
,

whence ∣∣∣uk − up

∣∣∣
H1

0
≤

1
a

∣∣∣hk − hp

∣∣∣
H−1 +

b
a2

∣∣∣∣|uk|
2
H1

0
−

∣∣∣up

∣∣∣2
H1

0

∣∣∣∣ ∣∣∣hp

∣∣∣
H−1 .

Since
∣∣∣hp

∣∣∣
H−1 is bounded, (hk) and

(
|uk|

2
H1

0

)
are convergent, one immediately obtain that (uk) is Cauchy.

Hence there is u with uk → u and passing to the limit we see that u = S (h) . Finally the uniqueness of
the solution implies that the whole sequence (uk) converges to S (h) , that is S (hk)→ S (h) . �

Theorem 4. (Monotonicity) If 0 ≤ h1 ≤ h2, then |S (h1)|H1
0
≤ |S (h2)|H1

0
.

Proof. Denote u := S (h1) and v = S (h2) . Since h1, h2 ≥ 0, one has u, v ≥ 0. Then(
1 + |u|2H1

0

)
|u|2H1

0
= (h1, u) ≤ (h2, u) =

(
1 + |v|2H1

0

)
(u, v) ≤

(
1 + |v|2H1

0

)
|u|H1

0
|v|H1

0

which gives (
1 + |u|2H1

0

)
|u|H1

0
≤

(
1 + |v|2H1

0

)
|v|H1

0
,

whence |u|H1
0
≤ |v|H1

0
. �

Theorem 5. (The energy functional) A function u ∈ H1
0 (Ω) is the weak solution of the Dirichlet

problem if and only if it is a critical point of the C1 functional E : H1
0 (Ω)→ R,

E (v) =
1
4

(
2a + b |v|2H1

0

)
|v|2H1

0
− (h, v) . (3.4)

Proof. One has

|v + λw|2H1
0
− |v|2H1

0
= 2λ (v,w)H1

0
+ λ2 |w|2H1

0
,

|v + λw|4H1
0
− |v|4H1

0
=

(
|v + λw|2H1

0
− |v|2H1

0

) (
|v + λw|2H1

0
+ |v|2H1

0

)
=

(
2λ (v,w)H1

0
+ λ2 |w|2H1

0

) (
|v + λw|2H1

0
+ |v|2H1

0

)
.
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Consequently

lim
λ→0

E (v + λw) − E (v)
λ

=

(
a + b |v|2H1

0

)
(v,w)H1

0
− (h,w) .

Hence (
E′ (v) ,w

)
=

(
a + b |v|2H1

0

)
(v,w)H1

0
− (h,w) . (3.5)

�

Theorem 6. Function u ∈ H1
0 (Ω) solves the Dirichlet problem if and only if it minimizes the energy

functional (3.4).

Proof. If u is a minimum point of E, then E′ (u) = 0 and according to (3.5) it solves the problem.
Assume now that u is a solution. Then for every v, by direct computation, we have

E (u + v) = E (u) +

(
a + b |u|2H1

0

)
(u, v)H1

0
− (h, v)

+
a
2
|v|2 +

b
4

(
|v|4 + 2 |u|2 |v|2 + 4 (u, v)2 + 4 |v|2 (u, v)2

)
= E (u) +

a
2
|v|2 +

b
4

(
|v|4 + 2 |u|2 |v|2 + 4 (u, v)2 + 4 |v|2 (u, v)2

)
≥ E (u) +

a
2
|v|2 +

b
4

((
|v|2 + 2 (u, v)

)2
+ 2 |u|2 |v|2

)
> 0

for every v , 0. Hence u is the unique minimum point of E. �

4. Kirchhoff equations with reaction terms

Consider the Dirichlet problem −
(
a + b

∫
Ω
|∇u|2 dx

)
∆u = f + g (x, u,∇u) in Ω

u = 0 on ∂Ω .
(4.1)

Here Ω ⊂ Rn is open bounded, f ∈ H−1 (Ω) , g : Ω×R×Rn → R satisfies the Carathéodory conditions
and g (·, 0, 0) = 0.

We look for weak solutions to (4.1), namely u ∈ H1
0 (Ω) with g (·, u,∇u) ∈ H−1 (Ω) and(

a + b
∫

Ω

|∇u|2 dx
)

(u, v)H1
0

= ( f + g (·, u,∇u) , v) for all v ∈ H1
0 (Ω) .

A function u ∈ H1
0 (Ω) is a weak solution of (4.1) if

u =
1

a + b
∫

Ω
|∇u|2 dx

(−∆)−1 ( f + g (·, u,∇u)) ,

that is u is a fixed point of the operator

A (u) = S ( f + g (·, u,∇u)) .
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4.1. Existence and uniqueness of solution

We apply Banach contraction principle. Assume the Lipschitz condition

(HL)
|g (x, u, v) − g (x, u, v)| ≤ L1 |u − u| + L2 |v − v|

for all u, u ∈ R, v, v ∈ Rn and a.e. x ∈ Ω, where

θ :=
1
a

(
L1

λ1
+

L2
√
λ1

)
< 1. (4.2)

Step 1: Invariance of a ball.
We prove that if L1, L2 are small, then for any large enough number R, one has |A (u)|H1

0
≤ R for all

u ∈ H1
0 (Ω) with |u|H1

0
≤ R. According with (3.2), using (HL) and Poincaré’s inequality, one has

|A (u)|H1
0

= |S ( f + g (·, u,∇u))|H1
0
≤

1
a
| f + g (·, u,∇u)|H−1

≤
1
a

(
| f |H−1 + |g (·, u,∇u)|H−1

)
≤

1
a

(
| f |H−1 +

1
√
λ1
|g (·, u,∇u)|L2

)
≤

1
a

(
| f |H−1 +

1
√
λ1

(L1 |u|L2 + L2 |∇u|L2)
)

≤
1
a
| f |H−1 +

1
a

(
L1

λ1
+

L2
√
λ1

)
|u|H1

0
.

Hence in virtue of (4.2), the invariance condition holds for any number R ≥ | f |H−1 / (a (1 − θ)) .
Step 2: Contraction condition.
Fix any number R as guaranteed at the previous step. Let u, v ∈ H1

0 (Ω) with |u|H1
0
, |v|H1

0
≤ R be

arbitrary and let w = S ( f + g (·, u,∇u)) and z = S ( f + g (·, v,∇v)) . Assume without loss of generality
that |w|H1

0
≥ |z|H1

0
. Then (

a + b |w|2H1
0

)
|w|2H1

0
= ( f + g (., u,∇u) ,w) ,(

a + b |z|2H1
0

)
(w, z)H1

0
= ( f + g (., v,∇v) ,w) ,

whence (
a + b |w|2H1

0

)
|w|2H1

0
−

(
a + b |z|2H1

0

)
(w, z)H1

0
= (g (., u,∇u) − g (., v,∇v) , w) .

For the left side, one has(
a + b |w|2H1

0

)
|w|2H1

0
−

(
a + b |z|2H1

0

)
(w, z)H1

0
≥

(
a + b |w|2H1

0

)
|w|2H1

0
−

(
a + b |z|2H1

0

)
|w|H1

0
|z|H1

0

and for the right side

(g (., u,∇u) − g (., v,∇v) , w) ≤ |g (., u,∇u) − g (., v,∇v)|L2 |w|L2

≤

(
L1

λ1
+

L2
√
λ1

)
|u − v|H1

0
|w|H1

0
.
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Hence (
a + b |w|2H1

0

)
|w|2H1

0
−

(
a + b |z|2H1

0

)
|w|H1

0
|z|H1

0
≤

(
L1

λ1
+

L2
√
λ1

)
|u − v|H1

0
|w|H1

0

and since |w|H1
0
≥ |z|H1

0
,

0 ≤ a
(
|w|H1

0
− |z|H1

0

)
≤

(
a + b |w|2H1

0

)
|w|H1

0
−

(
a + b |z|2H1

0

)
|z|H1

0
≤

(
L1

λ1
+

L2
√
λ1

)
|u − v|H1

0
.

Consequently
0 ≤ |w|H1

0
− |z|H1

0
≤ θ |u − v|H1

0
.

On the other hand, from(
a + b |w|2H1

0

)
(w,w − z)H1

0
= ( f + g (., u,∇u) , w − z) ,(

a + b |z|2H1
0

)
(z,w − z)H1

0
= ( f + g (., v,∇v) , w − z) ,

we deduce that

|w − z|2H1
0

=

 f + g (., u,∇u)
a + b |w|2H1

0

−
f + g (., v,∇v)

a + b |z|2H1
0

, w − z


=

1
a + b |w|2H1

0

(g (., u,∇u) − g (., v,∇v) , w − z)

+

 1
a + b |w|2H1

0

−
1

a + b |z|2H1
0

 ( f + g (., v,∇v) , w − z) .

We have

(g (., u,∇u) − g (., v,∇v) , w − z) ≤
(

L1

λ1
+

L2
√
λ1

)
|u − v|H1

0
|w − z|H1

0

and  1
a + b |w|2H1

0

−
1

a + b |z|2H1
0

 ( f + g (., v,∇v) , w − z)

≤ b
(
|w|H1

0
− |z|H1

0

) |w|H1
0

+ |z|H1
0(

a + b |w|2H1
0

) (
a + b |z|2H1

0

) | f + g (., v,∇v)|H−1 |w − z|H1
0
.

Since
|w|H1

0
+ |z|H1

0(
a + b |w|2H1

0

) (
a + b |z|2H1

0

) ≤ 3
√

3
8

1

a
√

ab

and
|g (., v,∇v)|H−1 ≤ aθR,
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we obtain

|w − z|H1
0
≤ θ

1 + θ
3
√

3
8a

√
b
a

(
| f |H−1 + aθR

) |u − v|H1
0
.

Hence if

(HC)

θ

1 + θ
3
√

3
8a

√
b
a

(
| f |H−1 + aθR

) < 1,

then the operator A is a contraction on the ball of H1
0 (Ω) centered at the origin and of radius R. Notice

that condition (HC) is fulfilled for example if θ < 1 (invariance condition for the ball of radius R) and
b is small enough.

Thus Banach’s contraction principle applied to operator A in the ball of radius R yields the following
existence and uniqueness result.

Theorem 7. Assume that conditions (HL) and (HC) hold. Then problem (4.1) has a unique solution u
such that

|u|H1
0
≤ | f |H−1 / (a (1 − θ)) .

Example 8. Consider the Dirichlet problem, −
(
4 +

∫
B
|∇u|2dx

)
∆u = 2

|x| + λ1 u +
√
λ1 sin |∇u| on B

u|∂B = 0 ,
(4.3)

where Ω = B and B is the open ball centered at the origin of Rn and of radius ρ whose measure
equals 1. Here

a = 4, b = 1, f (x) =
2
|x|

and g(x, u, v) = λ1 u +
√
λ1 sin |v| ,

for u ∈ R and v∈ Rn. Note that f ∈ H−1(B) with | f |H−1 = 1. Indeed, the function u0(x) = |x| − 1 is the
weak solution of Dirichlet problem −∆u = f in B, u|∂B = 0 and consequently

| f |H−1 = |u0|H1
0

= |∇u0|L2 =

∣∣∣∣∣ x
|x|

∣∣∣∣∣
L2

= 1.

Clearly, g is a Carathéodory function, g(·, 0, 0) = 0 and satisfies condition (HL) with L1 = λ1 and
L2 =

√
λ1 and θ = 2/a = 1/2.

For R = | f |H−1 / (a (1 − θ)) = 1 / 2, the condition (HC) is fulfilled, since

θ

1 + θ
3
√

3
8a

√
b
a

(
| f |H−1 + aθR

) =
1
2

1 +
3
√

3
64

 < 1.

Therefore, the problem (4.3) has a unique solution u ∈ H1
0(B) with |u|H1

0
≤ 1/2.
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4.2. Existence via Schaefer’s fixed point theorem

Step 1: Complete continuity of the operator A : H1
0 (Ω)→ H1

0 (Ω) .
Recall that (−∆)−1 : H−1 (Ω) → H1

0 (Ω) is an isometry between H−1 (Ω) and H1
0 (Ω) . This implies

that the operator A is completely continuous if the operator

u 7→ B (u) := g (·, u,∇u)

is well-defined and completely continuous from H1
0 (Ω) to H−1 (Ω) .

Assume that n ≥ 3. Then the embedding H1
0 (Ω) ⊂ Lp (Ω) is continuous for 1 ≤ p ≤ 2∗ =

2n/ (n − 2) , and compact for 1 ≤ p < 2∗, and consequently the embedding Lq (Ω) ⊂ H−1 (Ω) holds and
is compact for q > (2∗)′ = 2n/ (n + 2) .

We would like to represent B as a composition of three operators: B = JNP, where

P : H1
0 (Ω)→ L2∗ (Ω) × L2 (Ω;Rn) , P (u) = (u,∇u) ,

N : L2∗ (Ω) × L2 (Ω;Rn)→ Lq (Ω) , N (w1,w2) = g (·,w1,w2) ,
J : Lq (Ω)→ H−1 (Ω) , J (v) = v.

Clearly, since the embedding H1
0 (Ω) ⊂ L2∗ (Ω) is continuous, P is a bounded linear operator. Also, if

q > (2∗)′ , then J is completely continuous. It remains to clarify the case of Nemytskii’s operator N.
It suffices that N is well-defined, continuous and bounded (maps bounded sets into bounded sets). To
this aim, recall the main result about Nemytskii’s operator (see, e.g., [29, Section 9.1]). According to
this result, we need a growth condition on g, namely

|g (x,w1,w2)| ≤ c1 |w1|
2∗
q + c2 |w2|

2
q + h (x) (w1 ∈ R, w2 ∈ R

n, a.a. x ∈ Ω)

where c1, c2 ∈ R+ are constants and h ∈ Lq (Ω) . Notice that instead of the exponents 2∗/q, 2/q one may
have smaller exponents, let they be α and β, hence a growth condition like

|g (x,w1,w2)| ≤ c1 |w1|
α + c2 |w2|

β + h (x) (4.4)

with 1 ≤ α ≤ 2∗
q , 1 ≤ β ≤ 2

q . These give some conditions on q :

q ≤
2∗

α
, q ≤

2
β
.

Thus we can take

q = min
{

2∗

α
,

2
β

}
.

Finally, the condition q > (2∗)′ holds if

α <
2∗

(2∗)′
, β <

2
(2∗)′

.

Note that
2∗

(2∗)′
=

n + 2
n − 2

,
2

(2∗)′
=

n + 2
n

.
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Therefore, the operator N is as desired provided that g satisfies the growth condition (4.4) for

1 ≤ α <
n + 2
n − 2

, 1 ≤ β <
n + 2

n

and h ∈ L2 (Ω)
Step 2: A priori boundedness of solutions.
Let u ∈ H1

0 (Ω) be any solution of the equation λA (u) = u for some λ ∈ (0, 1) . Then u is a weak
solution of the problem −

(
a + b

λ2

∫
Ω
|∇u|2 dx

)
∆u = λ f + λg (x, u,∇u) in Ω

u = 0 on ∂Ω.

Hence (
a +

b
λ2

∫
Ω

|∇u|2 dx
)

(u, v)H1
0

= (λ f + λg (·, u,∇u) , v) , v ∈ H1
0 (Ω) .

Letting v = u gives (
a +

b
λ2 |u|

2
H1

0

)
|u|2H1

0
= λ ( f , u) + λ (g (·, u,∇u) , u) .

Since g (·, u,∇u) ∈ Lq (Ω) , one has (g (·, u,∇u) , u) =
∫

Ω
ug (x, u,∇u) . Assume that g satisfies the sign

condition
ug (x, u, v) ≤ 0 for all u ∈ R, v ∈ Rn, a.a. x ∈ Ω. (4.5)

Then (g (·, u,∇u) , u) ≤ 0 and so(
a +

b
λ2 |u|

2
H1

0

)
|u|2H1

0
≤ λ ( f , u) ≤ | f |H−1 |u|H1

0
.

Thus

a |u|H1
0
≤

(
a +

b
λ2 |u|

2
H1

0

)
|u|H1

0
≤ | f |H−1 ,

that is the solutions are bounded independently of λ, namely |u|H1
0
≤ | f |H−1 /a.

Therefore, based on Schaefer’s fixed point theorem, we have the following existence result.

Theorem 9. Assume that g satisfies the growth condition (4.4) for some numbers 1 ≤ α <

(n + 2) / (n − 2) , 1 ≤ β < (n + 2) /n and function h ∈ L2 (Ω) . Also assume that g has the sign
property (4.5). Then problem (4.1) has at least one weak solution u ∈ H1

0 (Ω) with |u|H1
0
≤ | f |H−1 /a.

Example 10. Consider the Dirichlet problem, −
(
1 +

∫
B
|∇u|2dx

)
∆u = 2

|x| −
u3

u2+1 −
u

u2+1 |∇u| on B

u|∂B = 0 ,
(4.6)

where B is as in Example 8. We apply Theorem 9. Here

f (x) =
2
|x|
, g(·, u, v) = −

u3

u2 + 1
−

u
u2 + 1

|v |
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for u ∈ R and v ∈ Rn. Similarly to Example 8, one has f ∈ H−1(Ω) and | f |H−1 = 1. Moreover, g satisfies
the growth condition (4.4) with α = β = 1 and the sign condition (4.5) since

|g(x, u, v)| ≤ |u| +
1
2
|v|

and

u g(x, u, v) = −
u4

u2 + 1
−

u2

u2 + 1
| v | ≤ 0,

for all u ∈ R and v ∈ Rn. Consequently, problem (4.6) has at least one weak solution in H1
0(B) with

|u|H1
0
≤ 1.

5. Nash equilibrium for Kirchhoff systems

In this section our focus is on system (1.1), where we look for a solution which is a Nash
equilibrium.

5.1. Global Nash equilibrium

We start by an existence and uniqueness result in the whole space H1
0(Ω) × H1

0(Ω).
Each equation of system (1.1) has a variational structure given respectively by the energy functionals

E1, E2 : H1
0(Ω) × H1

0(Ω)→ R,

E1 (u, v) =
1
4

(
2a + b |u|2H1

0

)
|u|2H1

0
− ( f1, u) −

∫
Ω

G1 (x, u (x) , v (x)) dx,

E2 (u, v) =
1
4

(
2a + b |v|2H1

0

)
|v|2H1

0
− ( f2, v) −

∫
Ω

G2 (x, u (x) , v (x)) dx,

where G1 (x, u, v) =
∫ u

0
g1 (x, s, v) ds and G2 (x, u, v) =

∫ v

0
g2 (x, u, s) ds. Using (3.5), we easily see that

E11 (u, v) =

(
a + b |u|2H1

0

)
u − (−∆)−1 ( f1 + g1 (·, u, v)) ,

E22 (u, v) =

(
a + b |v|2H1

0

)
v − (−∆)−1 ( f2 + g2 (·, u, v)) ,

for every u, v ∈ H1
0(Ω).

Before stating the main result of this section we introduce the following notion: A function H :
Ω × R→ R is said to be of coercive-type if the functional φ : H1

0 (Ω)→ R,

φ (v) =
1
4

(
2a + b |v|2H1

0

)
|v|2H1

0
− ( f2, v) −

∫
Ω

H (x, v) dx (5.1)

is coercive, i.e., φ (v)→ +∞ as |v|H1
0
→ +∞.

We have the following result on the existence of a Nash equilibrium under unilateral Lipschitz
(monotonicity type) conditions.

Theorem 11. Assume that for i = 1, 2, fi ∈ H−1 (Ω) , gi : Ω × R2 → R is a Carathéodory function and
gi (·, 0, 0) = 0. In addition assume that the following conditions are satisfied:
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(h1) There exist constants ai j ∈ R+ (i, j = 1, 2) such that

aii < λ1a, i = 1, 2,

a12a21 < (λ1 a − a11)(λ1 a − a22) (5.2)

and

(g1 (x, u, v) − g1 (x, u, v)) (u − u) ≤ a11 |u − u|2 + a12 |u − u| |v − v| , (5.3)
(g2 (x, u, v) − g2 (x, u, v)) (v − v) ≤ a21 |u − u| |v − v| + a22 |v − v|2

for all u, v, u, v ∈ R and a.e. x ∈ Ω.

(h2) There exist two functions H1, H2 : Ω × R→ R of coercive-type such that

H1 (x, v) ≤ G2 (x, u, v) ≤ H2 (x, v)

for all u, v ∈ R, a.e. x ∈ Ω.

Then system (1.1) has a unique solution which is a Nash equilibrium for the pair of functionals
(E1, E2).

Proof. The proof follows the idea from [22]. For a clear comprehending, we structure our proof in six
steps.

Step 1: The functionals E1(·, v) and E2(u, ·) are bounded from below. First let us remark that
from (5.3), for every u, v ∈ R, there exist θ ∈ (0, 1) such that

G1 (x, u, v) =

∫ u

0
g1 (x, s, v) ds = ug1 (x, θu, v)

=
1
θ

g1 (x, θu, v) θu ≤
1
θ

(
a11 |θu|2 + a12 |θu| |v|

)
= a11θu2 + a12 |u| |v| ≤ a11u2 + a12 |u| |v| .

Similarly
G2 (x, u, v) ≤ a21 |u| |v| + a22v2.

Now let v ∈ H1
0 (Ω) be fixed. For any u ∈ H1

0 (Ω) , one has

E1 (u, v) =
1
4

(
2a + b |u|2H1

0

)
|u|2H1

0
− ( f1, u) −

∫
Ω

G1 (x, u (x) , v (x)) dx

≥
1
4

(
2a + b |u|2H1

0

)
|u|2H1

0
− | f1|H−1 |u|H1

0
−

(
a11 |u|2L2 + a12 |u|L2 |v|L2

)
≥

1
4

(
2a + b |u|2H1

0

)
|u|2H1

0
− a11

1
λ1
|u|2H1

0
− a12

1
λ1
|u|H1

0
|v|H1

0
− | f1|H−1 |u|H1

0

≥
b
4
|u|4H1

0
+

(
a
2
−

a11

λ1

)
|u|2H1

0
−

(
| f1|H−1 +

a12

λ1
|v|H1

0

)
|u|H1

0
,

which is bounded from below since the coefficient of the term of forth degree of the quartic expression
in |u|H1

0
is positive. Similarly the functional E2 (u, ·) is bounded from below for each u.
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Step 2: Construction of an approximation sequence (uk, vk).
Now, similarly to [21], starting with an arbitrary v0 and using Ekeland’s variational principle, we

recursively construct a sequence (uk, vk) ∈ H1
0(Ω) × H1

0(Ω) such that

E1(uk, vk−1) ≤ inf
H1

0 (Ω)
E1(·, vk−1) +

1
k
, E2(uk, vk) ≤ inf

H1
0 (Ω)

E2(uk, ·) +
1
k
,

|E11(uk, vk−1)|H1
0
≤

1
k
, |E22(uk, vk)|H1

0
≤

1
k
. (5.4)

Step 3: Boundedness of the sequence (vk) .
Let φ1, φ2 be the functionals of type (5.1) with φ replaced by φ1 and φ2, respectively. As coercive

functionals they are bounded from below.
Obviously, for every u, v, one has

φ1 (v) ≥ E2 (u, v) ≥ φ2 (v) .

The coerciveness of φ2 implies that there is R > 0 with

φ2 (v) ≥ inf
H1

0 (Ω)
φ1 + 1, |v|H1

0
> R.

Since infH1
0 (Ω) φ1 ≥ infH1

0 (Ω) E2 (u, ·) for all u, we obtain

E2 (u, v) ≥ inf
H1

0 (Ω)
E2 (u, ·) + 1 for all u, v ∈ H1

0 (Ω) , |v|H1
0
> R. (5.5)

Since for k ≥ 2,

E2(uk, vk) ≤ inf
H1

0 (Ω)
E2(uk, ·) +

1
k
< inf

H1
0 (Ω)

E2(uk, ·) + 1,

in view of (5.5) we must have |vk|H1
0
≤ R, that is the boundedness of the sequence (vk) .

Step 4: Convergence of the sequences (uk) and (vk) .
For every u, u, v, v ∈ H1

0(Ω), we have

(E11(u, v) − E11(u, v), u − u)H1
0

=

(
(a + b|u|2H1

0
)u − (a + b|u|2H1

0
)u, u − u

)
H1

0

− (g1 (·, u, v) − g1 (·, u, v) , u − u)L2

= a|u − u|2H1
0

+ b
(
|u|2H1

0
u − |u|2H1

0
u, u − u

)
H1

0

− (g1 (·, u, v) − g1 (·, u, v) , u − u)L2 .

Since (
|u|2H1

0
u − |u|2H1

0
u, u − u

)
H1

0

= |u|4H1
0

+ |u|4H1
0
−

(
|u|2H1

0
+ |u|2H1

0

)
(u, u)H1

0

≥ |u|4H1
0

+ |u|4H1
0
−

(
|u|2H1

0
+ |u|2H1

0

)
|u|H1

0
|u|H1

0

=

(
|u|2H1

0
+ |u|2H1

0
+ |u|H1

0
|u|H1

0

) (
|u|H1

0
− |u|H1

0

)2
≥ 0
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we obtain

(E11(u, v) − E11(u, v), u − u)H1
0
≥ a|u − u|2H1

0
− (g1 (·, u, v) − g1 (·, u, v) , u − u)L2

≥ a|u − u|2H1
0
− a11|u − u|2L2 − a12|u − u|L2 |v − v|L2

≥

(
a −

a11

λ1

)
|u − u|2H1

0
−

a12

λ1
|u − u|H1

0
|v − v|H1

0
. (5.6)

Similarly

(E22(u, v) − E22(u, v), v − v)H1
0
≥

(
a −

a22

λ1

)
|v − v|2H1

0
−

a21

λ1
|u − u|H1

0
|v − v|H1

0
. (5.7)

On the other hand, from (5.4) we obtain(
E11(uk+p, vk+p−1) − E11(uk, vk−1), uk+p − uk

)
H1

0
≤

(
1

k + p
+

1
k

)
|uk+p − uk|H1

0
,

(
E22(uk+p, vk+p) − E11(uk, vk), vk+p − vk

)
H1

0
≤

(
1

k + p
+

1
k

)
|vk+p − vk|H1

0
.

Consequently, if we denote mii = a − aii
λ1

(i = 1, 2) , m12 = a12
λ1

and m21 = a21
λ1
, then

m11|uk+p − uk|H1
0
− m12|vk+p−1 − vk−1|H1

0
≤

2
k
, − m21|uk+p − uk|H1

0
+ m22|vk+p − vk|H1

0
≤

2
k
. (5.8)

Under the notations xk,p := |uk+p − uk|H1
0

and yk,p = |vk+p − vk|H1
0
, relations (5.8) can be put under the

matrix form

M′

[
xk,p

yk,p

]
≤

2
k

[
1
1

]
− (M − M′)

[
xk−1,p

yk−1,p

]
,

where

M =

[
m11 −m12

−m21 m22

]
, M′ =

[
m11 0
−m21 m22

]
.

Since M′ is invertible and its inverse

M′−1 =

[ 1
m11

0
m21

m11m22

1
m22

]
is nonnegative, we obtain[

xk,p

yk,p

]
≤ M′−1 2

k

[
1
1

]
− M′−1

[
0 −m12

0 0

] [
xk−1,p

yk−1,p

]
=

 2
k

1
m11

2
k

(
m21

m11m22
+ 1

m22

) +

[ m12
m11

yk−1,p
m21m12
m11m22

yn−1,p

]
and therefore

xk,p ≤
2

km11
+

m12

m11
yk−1,p, (5.9)

yk,p ≤
2
k

(
m12

m11m22
+

1
m22

)
+

m12m21

m11m22
yk−1,p
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From (5.2) one has α := m12m21
m11m22

< 1 and hence

yk,p ≤ α yk−1,p +
2
k

(
m12

m11m22
+

1
m22

)
.

Now we use the following lemma provided in [21].

Lemma 12. Let (yk,p), (zk,p) be two sequences of real numbers depending on a parameter p, such that(
yk,p

)
is bounded uniformly with respect to p

and
0 ≤ yk,p ≤ α yk−1,p + zk,p for some α ∈ (0, 1).

If zk,p → 0 as k → +∞ uniformly with respect to p, then yk,p → 0 as k → +∞ uniformly with respect
to p.

According to this result, since (vk) is bounded and then
(
yk,p

)
is bounded uniformly with respect to

p, we conclude that yk,p → 0 as k → +∞ uniformly with respect to p. It follows that (vk) is a Cauchy
sequence. Next, the inequality (5.9) implies that (uk) is also a Cauchy sequence. Denote by u∗, v∗ their
limits.

Step 5: Transition to the limit.
If we pass to the limit in (5.4) we obtain

E1(u∗, v∗) = inf
H1

0 (Ω)
E1(·, v∗), E2(u∗, v∗) = inf

H1
0 (Ω)

E2(u∗, ·), E11(u∗, v∗) = E22(u∗, v∗) = 0,

i.e., (u∗, v∗) is a solution of (1.1) and also is a Nash equilibrium for the pair of functional (E1, E2).
Step 6: Uniqueness.
Assume there are two different solutions of the system (1.1), denoted with (u, v) and (u, v). Then

E11(u, v) = 0 , E22(u, v) = 0,
E11(u, v) = 0 , E22(u, v) = 0.

On the other hand, from (5.6) and (5.7), we have

0 ≥ m11|u − u|2H1
0
− m12|u − u|H1

0
|v − v|H1

0
,

0 ≥ m22|v − v|2H1
0
− m21|u − u|H1

0
|v − v|H1

0
.

(5.10)

If u = u or v = v then in each case |u − u| = 0 or |v − v| = 0, concluding that u = u and v = v. In what
follows we will work under assumption that u , u and v , v. From (5.10) we obtain

|u − u|H1
0
≤

m12

m11
|v − v|H1

0
,

|v − v|H1
0
≤

m21

m22
|u − u|H1

0
,

whence
|v − v|H1

0
≤

m12m21

m11m22
|v − v|H1

0
.
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Since from (5.2) one has m12m21
m11m22

< 1, we conclude that

|v − v|H1
0
< v − v|H1

0
,

which is impossible. Hence u = u and v = v.
�

Remark 13 (Classical Lipschitz conditions). Obviously the unilateral Lipschitz conditions (5.3) are
satisfied if g1, g2 fulfill the classical Lipschitz conditions

|g1 (x, u, v) − g1 (x, u, v)| ≤ a11 |u − u| + a12| |v − v| ,

|g2 (x, u, v) − g2 (x, u, v)| ≤ a21 |u − u| + a22 |v − v| ,

for all u, v, u, v ∈ R and a.e. x ∈ Ω. In this particular case considered in [21] (see also [27]), the
required conditions on the coefficients ai j make possible to derive the existence and uniqueness of the
solution of system (1.2) directly from Perov’s fixed point theorem. We note that unilateral Lipschitz
conditions for Nash equilibria of systems have been used for the first time in paper [22].

Example 14. Consider the Dirichlet problem for the system of Kirchhoff type
−

(
1 +

∫ 1

0
|u′|2

)
u′′ = u − sin v

−

(
1 +

∫ 1

0
|v′|2

)
v′′ = v + sin u

u(0) = v(0) = u(1) = v(1) = 0.

on (0, 1) (5.11)

We apply Theorem 11, where

Ω = (0, 1) , a = b = 1 , g1(x, u, v) = u − sin v , g2(x, u, v) = sin u + v.

Note that condition (5.3) holds with ai j = 1 (i, j = 1, 2) . The first eigenvalue of the Dirichlet problem
−u′′ = λu on (0, 1), u(0) = u(1) = 0 is equal to π2 (see, e.g., [28, p. 72]), whence relation (5.2) is valid
since 1 < π2 and 1 <

(
π2 − 1

)2
. In order to check (h2) we compute

G2(x, u, v) =

∫ v

0
(s + sin u)ds =

1
2

v2 + v sin u.

Consider the coercive-type functions H1(x, v) = 1
2v2 − |v| and H2(x, v) = 1

2v2 + |v|. Clearly

H1(x, v) ≤ G2(x, u, v) ≤ H2(x, v).

Therefore, the Dirichlet problem (5.11) has a unique solution (u∗, v∗) ∈ H1
0(0, 1) × H1

0(0, 1) which is a
Nash equilibrium for the corresponding energy functionals.
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5.2. Local Nash equilibrium

Let R1,R2 > 0 and denote by BR1 , BR2 two closed balls of H1
0(Ω), of center the origin and radius

R1 and R2, respectively. Now, our interest is focused on an existence and uniqueness result of the
system (1.1) on BR1 × BR2 .

Here an additional ingredient is given by the Leray-Schauder boundary conditions

E11(u, v) + µ u , 0 for all (u, v) ∈ BR1 × BR2 with |u|H1
0

= R1 and all µ > 0, (5.12)
E22(u, v) + γ v , 0 for all (u, v) ∈ BR1 × BR2 with |v|H1

0
= R2 and all γ > 0.

Theorem 15. Assume that for i = 1, 2, fi ∈ H−1 (Ω) , gi : Ω × R2 → R is a Carathéodory function,
gi (·, 0, 0) = 0, and that condition (h1) holds. In addition assume that

(h2’)

a11

λ1
R1 +

a12

λ1
R2 + | f1|H−1 ≤ aR1 + bR3

1,

a21

λ1
R1 +

a22

λ1
R2 + | f2|H−1 ≤ aR2 + bR3

2.

Then system (1.1) has in BR1 × BR2 a unique solution which is a Nash equilibrium in BR1 × BR2 for
the pair of functionals (E1, E2).

Proof. Step 1: As at Step 1 from the proof of Theorem 11, the functionals E1 and E2 are bounded from
below on BR1 × BR2 .

Step 2: E1 and E2 satisfy the Leray-Schauder boundary conditions (5.12).
Assume that there exist (u, v) ∈ BR1 × BR2 with |u|H1

0
= R1 and µ > 0 such that

E11(u, v) + µ u = 0.

Then (
a + b|u|2H1

0

)
|u|2H1

0
+ µ |u|2H1

0
−

(
(∆)−1 ( f1 + g1(·, u, v)) , u

)
H1

0
= 0,

which gives (
a + bR2

1

)
R2

1 + µR2
1 =

(
(∆)−1 ( f1 + g1(·, u, v)) , u

)
H1

0

= ( f1 + g1(·, u, v) , u)L2

≤ R1 | f1|H−1 + a11|u|2L2 + a12|u|L2 |v|L2

≤ R1 | f1|H−1 +
a11

λ1
R2

1 +
a12

λ1
R1 R2,

whence (
a + bR2

1

)
R1 + µR1 ≤ | f1|H−1 +

a11

λ1
R1 +

a12

λ1
R2,

which contradicts the first relation in (h2’). An analog reasoning applies for E2.

Step 3: Construction of an approximation sequence.
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As in the proof of Lemma 2.1 in [24], starting from an arbitrarily initial point v0 ∈ BR2 and applying
recursively Ekeland’s variational principle, we obtain a sequence (uk, vk) ∈ BR1 × BR2 such that

E1(uk, vk−1) ≤ inf
BR1

E1(·, vk−1) +
1
k
, E2(uk, vk) ≤ inf

BR2

E2(uk, ·) +
1
k
,

|E11(uk, vk−1) + µkuk|H1
0
≤

1
k
, |E22(uk, vk) + γkvk|H1

0
≤

1
k
,

where

µk =

− 1
R2

1
(E11(uk, vk−1) , uk)H1

0
, if |uk|H1

0
= R1 and (E11(uk, vk−1) , uk)H1

0
< 0

0, otherwise

and

γk =

− 1
R2

2
(E22(uk, vk) , vk)H1

0
, if |vk|H1

0
= R2 and (E22(uk, vk) , vk)H1

0
< 0

0, otherwise.

Step 4: Convergence to zero of the sequences (µk) and (γk) .
Assume the contrary. Then, passing eventually to subsequences, we may assume that µk → µ > 0

or γk → γ > 0. Using the expressions of E11 and E22 and denoting

αk := E11(uk, vk−1) + µkuk, βk := E22(uk, vk) + γkvk, (5.13)

we have

uk = S ( f1 + g1 (·, uk, vk−1)) +
µk

a + b |uk|
2
H1

0

, (5.14)

vk = S ( f2 + g2 (·, uk, vk)) +
γk

a + b |vk|
2
H1

0

.

The sequences (uk) , (vk) being bounded and the operators S ( f1 + g1 (·, u, v)) , S ( f2 + g2 (·, u, v)) being
compact, we have that the two sequences from the right-hand sides in (5.14) are compact; thus (uk)
and (vk) have convergent subsequences

(
uk j

)
,
(
vk j

)
. The same reasoning applied to the second formula

in (5.14) with k j − 1 instead of k allows us, passing again to subsequence, to assume that the sequences(
uk j

)
,
(
vk j

)
and

(
vk j−1

)
are convergent. Let u, v, v be their limits. If we take the limit in (5.13)

E11 (u, v) + µu = 0, E22 (u, v) + γv = 0,

where |u|H1
0

= R1 if µ > 0 and |v|H1
0

= R2 if γ > 0. In each case, one of the two Leray-Schauder
conditions (5.12) is contradicted. Therefore µk → 0 and γk → 0 as k → +∞.

Step 5: Estimations for (uk) and (vk).
We can proceed similarly to Theorem 11, Step 4, to obtain inequalities (5.6) and (5.7). Under

the notations from Step 4 in the proof of the previous theorem, and the additional notations ck,p =∣∣∣µk+p − µk

∣∣∣, dk,p =
∣∣∣γk+p − γk

∣∣∣ , we arrive to the matrix inequality

M′
k

[
xk,p

yk,p

]
≤

2
k

[
1
1

]
− (Mk − M′

k)
[
xk−1,p

yk−1,p

]
+

[
ck,pR1

dk,pR2

]
,
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where now

Mk =

[
m11 + µk −m12

−m21 m22 + µk

]
, M′

k =

[
m11 + µk 0
−m21 m22 + µk

]
.

Since for any k ∈ N, M′
k is invertible and

M′
k
−1 =

 1
m11+µk

0
m21

(m11+µk)(m22+γk)
1

m22+γk


we obtain [

xk,p

yk,p

]
≤

2
k

M′−1
k

[
1
1

]
− M′−1

k

[
0 −m12

0 0

] [
xk−1,p

yk−1,p

]
+ M′−1

k

[
ck,pR1

dk,pR2

]
.

Thus

xk,p ≤
2

k(m11 + µk)
+

m12

m11 + µk
yk−1,p + ck,pR1

1
m11 + µk

≤
2

km11
+

m12

m11
yk−1,p + ck,pR1

1
m11

,

yk,p ≤
2
k

(
1

m22 + γk

)
+

1
(m11 + µk)(m22 + γk)

[
2
k

m12 + m12m21yk−1,p + m21ck,pR1

]
+

1
m22 + γk

dk,pR2

≤
2
k

(
m12

m11m22
+

1
m22

)
+

m12m21

m11m12
yk−1,p +

m21

m11m22
ck,pR1 +

1
m22

dk,pR2.

Hence

yk,p ≤ αyk−1,p +
2
k

(
m12

m11m22
+

1
m22

)
+

m21

m11m22
ck,pR1 +

1
m22

dk,pR2 ,

where α := m12m21
m11

< 1 and ck,p, dk,p converge to zero uniformly with respect to p. Now the conclusion
follows as in the proof of Theorem 11 with the limits u∗ and v∗ of the sequences (uk) and (vk) satisfying

E11(u∗, v∗) = 0, E22(u∗, v∗) = 0

and
E1(u∗, v∗) = inf

BR1

E1(·, v∗), E22(u∗, v∗) = inf
BR2

E2(u∗, ·).

Step 6: Uniqueness.
Similar to the proof in Theorem 11. �

Example 16. Consider the Dirichlet problem for the system of Kirchhoff type
−

(
2 +

∫ 1

0
|u′|2

)
u′′ = −u3 + u − sin v + π2 sin(πx)

−

(
2 +

∫ 1

0
|v′|2

)
v′′ = −v3 + v + sin u

u(0) = v(0) = u(1) = v(1) = 0.

on (0, 1) (5.15)
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For R1 = R2 = 1, we apply Theorem 15, where

Ω = (0, 1), a = 2, b = 1, f1(x) = π2 sin(πx), f2 ≡ 0,

g1(x, u, v) = −u3 + u − sin v, g2(x, u, v) = −v3 + v + sin u.

Since (
−u3 + u3

)
(u − u) = − (u − u)2

(
u2 + uu + u2

)
≤ 0,

one has

(g1 (x, u, v) − g1 (x, u, v)) (u − u) ≤ (u − sin v − u + sin v) (u − u)

≤ |u − u|2 + |u − u| |v − v| .

Similarly
(g2 (x, u, v) − g2 (x, u, v)) (v − v) ≤ |u − u| |v − v| + |v − v|2 .

Hence, condition (5.3) holds with ai j = 1 for i, j = 1, 2. In addition, since λ1 = π2, condition (5.2)
also holds. Thus assumption (h1) is satisfied. Next we check condition (h2’). We have | f2|H−1 = 0
and that the function u0 (x) = sin (πx) is the solution of the Dirichlet problem −u′′ = f1 in (0, 1) ,
u (0) = u (1) = 0. Then

| f1|H−1 = |u0|H1
0

=
∣∣∣u′0∣∣∣L2 =

(∫ 1

0
π2 cos2 (πx)

) 1
2

=
π
√

2
.

Now, condition (h2’) is verified since both 2
/
π2 + π

/√
2 and 2

/
π2 are less than 3.

Therefore, the Dirichlet problem (5.15) has a unique solution

(u∗, v∗) ∈
{
u ∈ H1

0(0, 1) : |u|H1
0
≤ 1

}
×

{
v ∈ H1

0(0, 1) : |v|H1
0
≤ 1

}
,

which is a Nash equilibrium for the corresponding energy functionals.

6. Conclusions

In this paper, we have studied the existence, uniqueness, localization and variational properties of
solutions for some equations and systems of Kirchhoff type. First we have defined the solution operator
associated to nonhomogeneous equations subjected to the Dirichlet boundary condition and we have
made the connexion with the corresponding energy functional. Next, we have considered equations
with a reaction term and using Banach contraction principle and Schaefer’s fixed point theorem we
have established sufficient conditions so that a solution exist and be localized in some bounded sets.
For a system of two Kirchhoff equations, under appropriate conditions, we have proved the existence
of a unique solution which appears as a Nash equilibrium for the associated energy functionals. Both
global Nash equilibrium, in the whole space, and local Nash equilibrium, in balls, have been obtained
by using an iterative procedure simulating a noncooperative game and based on Ekeland’s variational
principle.
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solving new computational solutions of the modified Zakharov-Kuznetsov equation
arising in electrical engineering, J. Appl. Comput. Mech., 7 (2021), 715–726.
https://dx.doi.org/10.22055/jacm.2020.35571.2687
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