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1. Introduction

In ecological mathematics, in order to simulate a variety of different situations (see, e.g., [1, 2]),
many different kinds of predator-prey models [3–6] are studied. In 1975, Beddington-DeAngelis [7,8]
showed that the predator-dependent functional response can provide a better description for predator-
prey models, and introduced the following Beddington-DeAngelis type predator-prey model: dx(t) = x(t)

(
r1 − a11x(t) − a12y(t)

1+mx(t)+ny(t)

)
dt,

dy(t) = y(t)
(
−r2 +

a21 x(t)
1+mx(t)+ny(t)

)
dt,

(1.1)

where x(t) denotes the population densities of prey at time t, and y(t) represents the population densities
of predator at time t. r1 denotes the intrinsic growth rate of the prey, r2 denotes the mortality rate of
the predator, a11 represents the density dependent coefficient of prey, a12 represents the capturing rate
of predator, a21 represents the rate at which nutrients are converted into reproduction of the predator.
In addition, ri, ai j,m, n are all positive constants, i, j = 1, 2.

Species are inevitably disturbed by environmental noise (see, e.g., [9–15]). Therefore, it is of great
significance to study the effect of noise on biological population system. A large number of authors
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have studied stochastic species models with random factors. Du et al. investigated dynamics of a
stochastic Lotka-Volterra model perturbed by white noise [10]. Mao et al. got that even small enough
noise can have an effect for explosion in species dynamics in [12]. From [14], we know that Wang et
al. studied stationary distribution of a stochastic hybrid phytoplankton-zooplankton model with toxin-
producing phytoplankton. Considering the influence of random environment, random disturbances
should be introduced into the model to explore the effects of random disturbances. On the one hand, it
is assumed that the random interference is white noise. Therefore, we obtain the following stochastic
Beddington-DeAngelis type predator-prey model with white noise: dx(t) = x(t)

(
r1 − a11x(t) − a12y(t)

1+mx(t)+ny(t)

)
dt + σ1x(t)dB1(t),

dy(t) = y(t)
(
−r2 − a22y(t) +

a21 x(t)
1+mx(t)+ny(t)

)
dt + σ2y(t)dB2(t),

(1.2)

where σ2
i (i = 1, 2) stands for the intensity of the white noise, {B1(t), B2(t)}t≥0 is a two dimensional

Brownian motion. Throughout this paper, the Brownian motion was defined on a complete probability
space (Ω, {Ft}t≥0, P) with a filtration {Ft}t∈R+

satisfying the usual conditions.
Because growth rates and death rates are especial sensitive to the disturbance of the environment.

It is known that the rates often switch randomly because of changes in the environment. For instance,
temperature or rain falls [16]. A classic example [17] is that some species grow at vastly different rates
during the dry and rainy seasons. It has been suggested [16–19] that these random changes can be
simulated using a continuous time finite state Markov chains. Hence, considering this influence, we
get the following model:

dx(t) =x(t)
[
r1(λ(t)) − a11x(t) −

a12y(t)
1 + mx(t) + ny(t)

]
dt + σ1(λ(t))x(t)dB1(t),

dy(t) =y(t)
[
−r2(λ(t)) − a22y(t) +

a21x(t)
1 + mx(t) + ny(t)

]
dt + σ2(λ(t))y(t)dB2(t),

(1.3)

where λ(t) represents a continuous-time Markov chain with a state space S = {1, 2, 3, · · · , n}.
On the other hand, white noise is not a good description for some sudden environmental

disturbances (such as earthquakes, volcanoes, hurricanes, debris flows, etc.) that are often
encountered during the growth of species. Bao et al. [20, 21] suggested that these phenomena can be
described by Lévy jumps, and they studied the stochastic Lotka-Volterra population systems with
Lévy jumps. In 2015, Zang et al. [22] studied dynamics of a stochastic predator-prey model with
Beddington-DeAngelis functional response and Lévy jumps. To the best of our knowledge, no results
related to Beddington-DeAngelis predator-prey model with regime-switching and Lévy jumps has
been reported. Motivated by this, we will consider the following model:

dx(t) =x(t−)
[
r1(λ(t)) − a11x(t) −

a12y(t)
1 + mx(t) + ny(t)

]
dt + σ1(λ(t))x(t−)dB1(t)

+

∫
Z

x(t−)γ1(λ(t), u)Ñ(dt, du),

dy(t) =y(t−)
[
−r2(λ(t)) − a22y(t) +

a21x(t)
1 + mx(t) + ny(t)

]
dt + σ2(λ(t))y(t−)dB2(t)

+

∫
Z

y(t−)γ2(λ(t), u)Ñ(dt, du),

(1.4)
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where x(t−) and y(t−) are the left limit of x(t) and y(t), respectively. Ñ(dt, du) = N(dt, du)− λ(du)dt, on
a measurable subset Z of (0,+∞) with λ(Z) < +∞, N is a Poisson counting measure with characteristic
measure λ, γi : Z × Ω → R is bounded and continuous with respect to λ, i = 1, 2. Let’s make the
following assumption

1 + γi(u) > 0, u ∈ Z, i = 1, 2. (1.5)

To better simulate the population, a predat-prey model with Bedtington-DeAngelis functional
response is studied in this paper. In our model, predator not only has time to find the prey, but also has
time to deal with the encounter with other predators. We also consider the influence of environmental
factors. The value of this paper is to study the stochastic predator-prey model of
Bedtington-DeAngelis function response which is affected by both regime-switching and Lévy jumps.
Furthermore, we introduce some numerical simulations to illustrate the main results.

2. Dynamical behaviors and properties

For the sake of convenience, we define some notations.

R2
+ = {m ∈ R2 | mi > 0, i = 1, 2},

Φ1(t) =

∫ t

0
σ1(λ(s))dB1(s), Φ2(t) =

∫ t

0

∫
Z

ln(1 + γ1(λ(s), u))Ñ(ds, du),

Φ3(t) =

∫ t

0
σ2(λ(s))dB2(s), Φ4(t) =

∫ t

0

∫
Z

ln(1 + γ2(λ(s), u))Ñ(ds, du),

b1( j) = r1( j) −
1
2
σ2

1( j) −
∫

Z

[
γ1( j, u) − ln(1 + γ1( j, u))

]
λ(du), b̄1 =

∑
j∈ S

π jb1( j),

b2( j) = −r2( j) −
1
2
σ2

2( j) −
∫

Z

[
γ2( j, u) − ln(1 + γ2( j, u))

]
λ(du), b̄2 =

∑
j∈ S

π jb2( j).

Assumption 2.1. For any j ∈ S, assume that there exists a constant G1 > 0 such that∫
Z

{
|γi( j, u)|2 ∨

[
ln(1 + γi( j, u))

]2
}
λ(du) ≤ G1 < +∞, i = 1, 2.

That is to say, the intensity of Lévy noise is not too large.
Assumption 2.2. For any j ∈ S, assume that there exist two constants G2,G3 > 0 such that∫

Z
{(1 + γi( j, u))p − 1 − pγi( j, u)} λ(du) ≤ G2 < +∞,

∫
Z

[
(γi( j, u) − ln(1 + γi( j, u))

]
λ(du) ≤ G3 < +∞, i = 1, 2.

Lemma 2.1. Assumptions 2.1 and 2.2 hold, then the model (1.4) with initial value (x(0), y(0), λ(0))
has a unique positive local solution (x(t), y(t), λ(t)) on t ∈ [0, τe) almost surely(a.s.), where τe is the
explosion time.
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Proof. Consider the following equations:

dϕ(t) =

[
c1(λ(t)) − a11eϕ(t) −

a12eψ(t)

1 + meϕ(t) + neψ(t)

]
dt + σ1(λ(t))dB1(t)

+

∫
Z
γ1(λ(t), u)Ñ(dt, du),

dψ(t) =

[
−c2(λ(t)) − a22eψ(t) +

a21eϕ(t)

1 + meϕ(t) + neψ(t)

]
dt + σ2(λ(t))dB2(t)

+

∫
Z
γ2(λ(t), u)Ñ(dt, du),

(2.1)

with initial value (ϕ(0) = ln x(0), ψ(0) = ln y(0), λ(0)), where

c1(λ(t)) = r1(λ(t)) −
1
2
σ2

1(λ(t)) +

∫
Z

[
ln(1 + γ1(λ(t), u)) − γ1(λ(t), u)

]
du,

c2(λ(t)) = r2(λ(t)) +
1
2
σ2

2(λ(t)) −
∫

Z

[
ln(1 + γ2(λ(t), u)) − γ2(λ(t), u)

]
du.

According to the Lemma 1 of reference [23], we know that the coefficients of model (2.1) are local
Lipschitz continuous, hence there is a unique local solution (ϕ(t), ψ(t), λ(t)) on t ∈ [0, τe). That is
to say, (x(t) = eϕ(t), y(t) = eψ(t), λ(t)) is the unique positive local solution of (1.4) with initial value
(x(0), y(0), λ(0)) by Itô’s formula.
Theorem 2.1. Consider the model (1.4), for given initial value(X(0), λ(0)) ∈ R2

+ × S, where X(0) =

(x(0), y(0)), there is a unique global solution (x(t), y(t), λ(t)) on t ≥ 0, and the solution will remain in
R2

+ with probability 1.
Proof. By Lemma 2.1, we just need to prove τe = +∞. Consider the following equations:

dM1(t) =M1(t−) [r1(λ(t)) − a11M1(t)] dt + σ1(λ(t))M1(t−)dB1(t)

+

∫
Z

M1(t−)γ1(λ(t), u)Ñ(dt, du), M1(0) = x(0).
(2.2)

dM2(t) =M2(t−) [−r2(λ(t)) − a22M2(t)] dt + σ2(λ(t))M2(t−)dB2(t)

+

∫
Z

M2(t−)γ2(λ(t), u)Ñ(dt, du), M2(0) = y(0).
(2.3)

dM3(t) =M3(t−) [−r2(λ(t)) − a22M3(t) + a21M1(t)] dt + σ2(λ(t))M3(t−)dB2(t)

+

∫
Z

M3(t−)γ2(λ(t), u)Ñ(dt, du), M3(0) = y(0).
(2.4)

By the comparison theorem of stochastic equation (see e.g., [24] (Theorem 1 on page 173) or [25]
(Theorem 3.1)), we get

x(t) ≤ M1(t), M2(t) ≤ y(t) ≤ M3(t), t ∈ [0, τe).

According to Lemma 3.1 of reference [26], (2.2)–(2.4) have the following explicit solutions:

M1(t) =
exp

{∫ t

0
(r1(λ(s)) − β1(λ(s)))ds +

∫ t

0
σ1(λ(s))dB1(s) + k1(t)

}
x−1(0) + a11

∫ t

0
exp

{∫ s

0
(r1(λ(τ)) − β1(λ(τ)))dτ +

∫ s

0
σ1(λ(τ))dB1(τ) + k1(s)

}
ds
,
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M2(t) =
exp

{∫ t

0
(−r2(λ(s)) − β2(λ(s)))ds +

∫ t

0
σ2(λ(s))dB2(s) + k2(t)

}
y−1(0) + a22

∫ t

0
exp

{∫ s

0
(−r2(λ(τ)) − β2(λ(τ)))dτ +

∫ s

0
σ2(λ(τ))dB2(τ) + k2(s)

}
ds
,

M3(t) =
exp

{∫ t

0
(−r2(λ(s)) + a21M1(s) − β2(λ(s)))ds +

∫ t

0
σ2(λ(s))dB2(s) + k2(t)

}
y−1(0) + a22

∫ t

0
exp

{∫ s

0
(−r2(λ(τ)) + a21M1(τ) − β2(λ(τ)))dτ +

∫ s

0
σ2(λ(τ))dB2(τ) + k2(s)

}
ds
,

where

βi(λ(t)) =
1
2
σ2

i (λ(t)) +

∫
Z

[
γi(λ(t), u) − ln(1 + γi(λ(t), u))

]
λ(du), i = 1, 2,

ki(t) =

∫ t

0

∫
Z

ln(1 + γi(λ(s), u))Ñ(ds, du), i = 1, 2.

Because M1(t),M2(t) and M3(t) are existent on t ≥ 0, then we obtain τe = +∞.
Lemma 2.2. (Lemma 8 in [27]) Suppose that x(t) ∈ C(Ω × [0,+∞),R+), and limt→+∞

F(t)
t = 0 a.s.

(1) If there exist two constants T > 0 and ρ0 > 0 such that for all t ≥ T ,

ln x(t) ≤ ρt − ρ0

∫ t

0
x(s)ds + F(t),

then  lim supt→+∞ t−1
∫ t

0
x(s)ds ≤ ρ

ρ0
a.s., i f ρ ≥ 0;

limt→+∞ x(t) = 0 a.s., i f ρ < 0.

(2) If there exist three constants T > 0, ρ > 0 and ρ0 > 0 such that for all t ≥ T ,

ln x(t) ≥ ρt − ρ0

∫ t

0
x(s)ds + F(t),

then lim inft→+∞ t−1
∫ t

0
x(s)ds ≥ ρ

ρ0
a.s.

Lemma 2.3. The solution of system (1.4) have the following properties:

lim sup
t→+∞

ln x(t)
t
≤ 0, lim sup

t→+∞

ln y(t)
t
≤ 0, a.s..

Proof. From system (1.4), we get

dx(t) ≤x(t−)
[
r1(λ(t)) − a11x(t)

]
dt + σ1(λ(t))x(t−)dB1(t)

+

∫
Z

x(t−)γ1(λ(t), u)Ñ(dt, du),

dy(t) ≤y(t−)
[a21

m
− r2(λ(t)) − a22y(t)

]
dt + σ2(λ(t))y(t−)dB2(t)

+

∫
Z

y(t−)γ2(λ(t), u)Ñ(dt, du).
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Set 

dx̄(t) =x̄(t−)
[
r1(λ(t)) − a11 x̄(t)

]
dt + σ1(λ(t))x̄(t−)dB1(t)

+

∫
Z

x̄(t−)γ1(λ(t), u)Ñ(dt, du),

dȳ(t) =ȳ(t−)
[a21

m
− r2(λ(t)) − a22ȳ(t)

]
dt + σ2(λ(t))ȳ(t−)dB2(t)

+

∫
Z

ȳ(t−)γ2(λ(t), u)Ñ(dt, du),

(2.5)

where (x̄(t), ȳ(t), λ(t)) is a solution of model (2.5) with initial value (x(0), y(0), λ(0)). According to the
comparison theorem of stochastic differential equations, it’s easy to figure out x(t) ≤ x̄(t) for t ≥ 0.

By using Lemma 2 of reference [28], one obtain the following results for t ≥ 0:
lim supt→+∞

ln x̄(t)
ln t ≤ 1, lim supt→+∞

ln ȳ(t)
ln t ≤ 1, a.s., therefore, we get lim supt→+∞

ln x(t)
ln t ≤ 1. That is to

say, we have lim supt→+∞
ln x(t)

t = lim supt→+∞
ln x(t)

ln t lim supt→+∞
ln t
t ≤ lim supt→+∞

ln t
t = 0. Similarly, we

have lim supt→+∞
ln y(t)

t ≤ 0.
Definition 2.1. [29] The population x(t) is weakly persistent in the mean if 〈x〉∗ > 0, where 〈x(t)〉 =
1
t

∫ t

0
x(s)ds, (x(t))∗ = lim supt→+∞ x(t).

Theorem 2.2. Assumptions 2.1 and 2.2 hold.
(i)The prey x(t) will go to extinction if b̄1 < 0, i.e., limt→+∞ x(t) = 0 a.s..
(ii)The prey x(t) will be weakly persistent in the mean if b̄1 > 0, i.e., 〈x(t)〉∗ > 0 a.s..
Proof. (i) Applying Itô’s formula to system (1.4), we obtain

d ln x(t) =

[
b1(λ(t)) − a11x(t) −

a12y(t)
1 + mx(t) + ny(t)

]
dt + σ1(λ(t))dB1(t)

+

∫
Z
(1 + γ1(λ(t), u))Ñ(dt, du),

d ln y(t) =

[
b2(λ(t)) − a22y(t) +

a21x(t)
1 + mx(t) + ny(t)

]
dt + σ2(λ(t))dB2(t)

+

∫
Z
(1 + γ2(λ(t), u))Ñ(dt, du),

(2.6)

where
b1(λ(t)) = r1(λ(t)) −

1
2
σ2

1(λ(t)) −
∫

Z

[
γ1(λ(t), u) − ln(1 + γ1(λ(t), u))

]
du,

b2(λ(t)) = −r2(λ(t)) −
1
2
σ2

2(λ(t)) −
∫

Z

[
γ2(λ(t), u) − ln(1 + γ2(λ(t), u))

]
du.

By the ergodicity of the Markov chain, we have

lim
t→+∞

t−1
∫ t

0
bi(λ(s))ds = b̄i, i = 1, 2. (2.7)

Hence we have b̄2 < 0. From the first equation of (2.6), we get

ln x(t) − ln x(0) =

∫ t

0

[
b1(λ(s)) − a11x(s) −

a12y(s)
1 + mx(s) + ny(s)

]
ds +

∫ t

0
σ1(λ(s))dB1(s)

+

∫ t

0

∫
Z

ln(1 + γ1(λ(s), u))Ñ(ds, du).
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so we have
ln x(t) − ln x(0)

t
≤ 〈b1〉 +

Φ1(t)
t

+
Φ2(t)

t
. (2.8)

According to Assumption 2.1 and the strong law of large numbers [30], we can see that

lim
t→+∞

t−1Φi(t) = 0, i = 1, 2, 3, 4, (2.9)

taking superior limit for both sides of (2.8), one obtain lim supt→+∞
ln x(t)

t ≤ b̄1 < 0. Namely,
limt→+∞ x(t) = 0.

(ii) We just need to prove that there is a constant u1 > 0 that makes 〈x(t)〉∗ = u1 > 0 a.s. true
for the solution (x(t), y(t), λ(t)) of system (1.4) that has the initial value (x(0), y(0), λ(0)). If not, for
any ε1 > 0, there exists a solution (x1(t), y1(t), λ(t)) with an initial value (x(0), y(0), λ(0)) such that
P{〈x1(t)〉∗ < ε1} > 0 holds. Suppose ε1 is small enough, and satisfy the following conditions:

b̄1 − a11ε1 > 0, b̄2 + a21ε1 < 0.

According to the second equation of (2.6), we have

ln y1(t) − ln y(0)
t

≤ 〈b2〉 − a22〈y1(t)〉 + a21〈x1(t)〉 +
Φ3(t)

t
+

Φ4(t)
t

, (2.10)

taking superior limit on both sides of (2.10), using virtue of (2.7), (2.9) and (2.10), we have

lim sup
t→+∞

t−1 ln y1(t) ≤ b̄2 + a21ε1 < 0.

So, we obtain
lim

t→+∞
y1(t) = 0. (2.11)

By using the first equation of (2.6), we have

ln x1(t) − ln x(0) =

∫ t

0

[
b1(λ(s)) − a11x1(t) −

a12y1(t)
1 + mx1(t) + ny1(t)

]
ds

+

∫ t

0
σ1(λ(s))dB1(s) +

∫ t

0

∫
Z

ln(1 + γ1(λ(s), u))Ñ(ds, du),

therefore, we obtain

ln x1(t) − ln x(0)
t

≥ 〈b1〉 − a11〈x1(t)〉 − a12〈y1(t)〉 +
Φ1(t)

t
+

Φ2(t)
t

. (2.12)

By the same method, using virtue of (2.7), (2.9), (2.11) and (2.12), one obtain

(t−1 ln x1(t))∗ ≥ b̄1 − a11ε1 > 0.

Namely, one have P{(t−1 ln x1(t))∗ > 0} > 0, this is a contradiction to Lemma 2.3. So 〈x(t)〉∗ > 0, x(t)
will be weakly persistent in the mean a.s.. Complete the proof.
Theorem 2.3. Assumptions 2.1 and 2.2 hold.
(i) The predator y(t) will go to extinction if a11b̄2 + a21b̄1 < 0, i.e., limt→+∞ y(t) = 0 a.s..
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(ii) The predator y(t) will be weakly persistent in the mean if b̄2+〈
a21 x̄(t)

1+mx̄(t)+nȳ(t)〉
∗ > 0, i.e., 〈y(t)〉∗ > 0 a.s.,

where (x̄, ȳ) is a solution of system (2.5) with initial value (x(0), y(0), λ(0)).
Proof. (i) If b̄1 ≤ 0, from the Theorem 2.2, we can know that limt→∞ x(t) = 0. According to (2.10), we
have

ln y(t) − ln y(0)
t

≤ 〈b2〉 + a21〈x(t)〉 +
Φ3(t)

t
+

Φ4(t)
t

.

So we obtain lim supt→+∞ t−1 ln y(t) ≤ b̄2 < 0, then limt→+∞ y(t) = 0.
If b̄1 > 0, according to the property of limit and (2.9), there exists a T for sufficiently small ε such

that
ln x(t) − ln x(0)

t
≤ b̄1 − a11〈x(t)〉 +

Φ1(t)
t

+
Φ2(t)

t
≤ b̄1 − a11〈x(t)〉 + ε,

on t > T . Using Lemma 2.2 and the arbitrariness of ε, one can obtain 〈x(t)〉∗ ≤ b̄1
a11

. Substituting the
inequality into the second equation of (2.6). By further calculation, we have

lim sup
t→+∞

t−1 ln y(t) ≤ b̄2 + 〈a21x(t)〉∗ ≤ b̄2 + a21
b̄1

a11
< 0.

Namely, we get limt→+∞ y(t) = 0 a.s..
(ii) We just need to prove that there is a constant u2 > 0 that makes 〈y(t)〉∗ = u2 > 0 a.s. true

for the solution (x(t), y(t), λ(t)) of system (1.4) that has the initial value (x(0), y(0), λ(0)). If not, for
any ε2 > 0, there exists a solution (x2(t), y2(t), λ(t)) with an initial value (x(0), y(0), λ(0)) such that
P{〈y2(t)〉∗ < ε2} > 0 holds. Suppose ε2 is small enough, and satisfy the following conditions:

b̄2 + 〈
a21 x̄(t)

1 + mx̄(t) + nȳ(t)
〉∗ − (a22 +

2a12a21

a11
)ε2 > 0.

From the second equation of (2.6), one can get

ln y2(t) − ln y(0)
t

=〈b2〉 + 〈
a21 x̄

1 + mx̄ + nȳ
〉 − 〈a22y2(t)〉 +

Φ3(t)
t

+
Φ4(t)

t

+ 〈
a21x2

1 + mx2 + ny2
−

a21 x̄
1 + mx̄ + nȳ

〉,

(2.13)

where (x̄, ȳ) is a solution of system (2.5), we have x2(t) ≤ x̄(t), y2(t) ≤ ȳ(t), a.s. on t > 0.
Due to

a21x2

1 + mx2 + ny2
−

a21 x̄
1 + mx̄ + nȳ

=
a21nx̄(ȳ − y2) − a21(x̄ − x2) − a21nȳ(x̄ − x2)

[1 + mx2 + ny2][1 + mx̄ + nȳ]

≥
a21nx̄(ȳ − y2)

[1 + mx2 + ny2][1 + mx̄ + nȳ]
− a21(x̄ − x2)

−
a21nȳ(t)(x̄ − x2)

nȳ(t)
≥ − 2a21(x̄ − x2(t)),

thus we have

ln y2(t) − ln y(0)
t

≥〈b2〉 + 〈
a21 x̄

1 + mx̄ + nȳ
〉 − 〈a22y2(t)〉 +

Φ3(t)
t

+
Φ4(t)

t
− 〈2a21(x̄ − x2(t))〉.

(2.14)
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Next, we define the function V1(t) := | ln x̄(t) − ln x2(t)|, by using Itô’s formula, we obtain

dV1(t) =
[
− a11(x̄(t) − x2(t)) +

a12y2(t)
1 + mx2(t) + ny2(t)

]
dt

≤
[
a12y2(t) − a11(x̄(t) − x2(t))

]
dt,

integrating and dividing by t on both sides of the above inequality, one obtain V1(t)−V1(0)
t ≤ a12〈y2(t)〉 −

a11〈x̄(t) − x2(t)〉. Since V1(t)
t ≥ 0, we have a11〈x̄(t) − x2(t)〉 ≤ a12〈y2(t)〉 + V1(0)

t , Note that V1(0) = 0, thus
〈x̄(t) − x2(t)〉 ≤ a12

a11
〈y2(t)〉.

Substituting into (2.14), we get

ln y2(t) − ln y(0)
t

≥ 〈b2〉 + 〈
a21 x̄

1 + mx̄ + nȳ
〉 − 〈a22y2(t)〉 +

Φ3(t)
t

+
Φ4(t)

t
−

2a21a12

a11
〈y2(t)〉.

That is to say, we have(
t−1 ln y2(t)

)∗
≥ b̄2 + 〈

a21 x̄
1 + mx̄ + nȳ

〉∗ − (a22 +
2a21a12

a11
)ε2 > 0,

which contradicts Lemma 2.3, so we get 〈y(t)〉∗ > 0 a.s., i.e., y(t) is weakly persistent in the mean.
Lemma 2.4. ( [31] Theorem 2.3) Let Assumptions 2.1 and 2.2 hold. For any q > 0, t ≥ 0, there exist
constants Ki(q) > 0, i = 1, 2 such that

sup
t∈R+

E|x(t)|q ≤ K1(q), sup
t∈R+

E|y(t)|q ≤ K2(q).

Assumption 2.3. a11 ≥ a12
m
n + 2a21, a22 ≥ a21

n
m + 2a12.

Lemma 2.5. Let X
(
(x0, y0, j), t

)
=

(
x((x0, y0, j), t), y((x0, y0, j), t)

)
is a solution of model (1.4) with

initial data ((x0, y0), j) ∈ D × S, X
(
(x̃0, ỹ0, j̃), t

)
=

(
x((x̃0, ỹ0, j̃), t), y((x̃0, ỹ0, j̃), t)

)
is a solution of

model (1.4) with initial data ((x̃0, ỹ0), j̃) ∈ D × S respectively, where D is an arbitrary compact subset
of R2

+. If Assumptions 2.1–2.3 hold, then

lim
t→+∞

(
E
∣∣∣x((x0, y0, j), t) − x((x̃0, ỹ0, j̃), t)

∣∣∣ + E
∣∣∣y((x0, y0, j), t) − y((x̃0, ỹ0, j̃), t)

∣∣∣) = 0, a.s.

Proof. For the sake of convenience, we define the following notations:

x = x((x0, y0, j), t), x̃ = x((x̃0, ỹ0, j̃), t), y = y((x0, y0, j), t), ỹ = y((x̃0, ỹ0, j̃), t).

Define V2(t) =
∣∣∣ ln x − ln x̃

∣∣∣ +
∣∣∣ ln y − ln ỹ

∣∣∣, then we have

d+V2(t) =sgn
(
x − x̃

)
d
(

ln x − ln x̃
)

+ sgn
(
y − ỹ

)
d
(

ln y − ln ỹ
)

=sgn
(
x − x̃

){
− a11(x − x̃) − a12

(y − ỹ) + mx̃(y − ỹ) − mỹ(x − x̃)
[1 + mx + ny][1 + mx̃ + nỹ]

}
dt

+ sgn
(
y − ỹ

){
− a22(y − ỹ) + a21

(x − x̃) + nỹ(x − x̃) − nx̃(y − ỹ)
[1 + mx + ny][1 + mx̃ + nỹ]

}
dt

≤
{
− a11|x − x̃| + 2a12|y − ỹ| + a12

m
n
|x − x̃|

}
dt

+
{
− a22|y − ỹ| + 2a21|x − x̃| + a21

n
m
|y − ỹ|

}
dt

≤
{
− (a11 − a12

m
n
− 2a21)|x − x̃| − (a22 − 2a12 − a21

n
m

)|y − ỹ|
}
dt,
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therefore, we get

EV2(t) ≤ V2(0) − (a11 − a12
m
n
− 2a21)

∫ t

0
E|x − x̃|ds − (a22 − 2a12 − a21

n
m

)
∫ t

0
E|y − ỹ|ds.

Note that EV2(t) ≥ 0, so we have

(a11 − a12
m
n
− 2a21)

∫ t

0
E|x − x̃|ds + (a22 − 2a12 − a21

n
m

)
∫ t

0
E|y − ỹ|ds ≤ V2(0) < +∞.

Hence E|x − x̃| ∈ L1[0,+∞), E|y − ỹ| ∈ L1[0,+∞). By Barbǎ lat’s conclusions (see, e.g., [32]), now
we just proof that E(x(t)) and E(y(t)) are uniformly continuous with respect to t. As a matter of fact,
thanks to system (1.4), one get

E(x(t)) = x(0) +

∫ t

0

[
E(r1(λ(s))x(s)) − E(a11x2(s)) − E(

a12x(s)y(s)
1 + mx(s) + ny(s)

)
]
ds,

E(y(t)) = y(0) +

∫ t

0

[
E(−r2(λ(s))y(s)) − E(a22y2(s)) + E(

a21x(s)y(s)
1 + mx(s) + ny(s)

)
]
ds.

So, E(x(t)) and E(y(t)) are continuously differentiable. In addition, according to above formulas and
Lemma 2.4, we have

dE(x(t))
dt

≤ E(x(t))ru
1 ≤ K1ru

1,
dE(y(t))

dt
≤ E(y(t))

a21

m
≤ K2

a21

m
,

where K1 > 0, K2 > 0 are two constants, ru
1 = maxi∈S r1(i). Namely, E(x(t)) and E(y(t)) are uniformly

continuous.
Theorem 2.4. Suppose that Assumptions 2.1–2.3 hold, if b̄1 > 0, b̄2 + 〈

a21 x̄(t)
1+mx̄(t)+nȳ(t)〉

∗ > 0, then system
(1.4) has a unique stationary measure η(· × ·) which is ergodic.

To prove this theorem we need to introduce more notations. Let B(R2
+ × S) represent all the

probability measures defined on R2
+ × S. For any two measures p1, p2 ∈ B, define the metric dH as

follows

dH(p1, p2) = sup
h∈H

∣∣∣∣∣ n∑
i=1

∫
R2

+

h(x, i)p1(dx, i) −
n∑

i=1

∫
R2

+

h(x, i)p2(dx, i)
∣∣∣∣∣,

where
H =

{
h : R2

+ × S→ R
∣∣∣∣∣∣∣∣h(x, i) − h(y, j)

∣∣∣ ≤ ∣∣∣x − y
∣∣∣ +

∣∣∣i − j
∣∣∣, ∣∣∣h(·, ·)

∣∣∣ ≤ 1
}
.

Let us now present the following lemmas.
Lemma 2.6. For every q > 0 and any compact subset D of R2

+, sup(X(0), j)∈D×S E
[
sup0≤s≤t

∣∣∣XX(0), j(s)
∣∣∣q] <

+∞, ∀t ≥ 0, where XX(0), j = (xX(0), j, yX(0), j).
Proof. From (1.4), we have

x(t) =x(0) +

∫ t

0

[
x(s)r1(λ(s)) − a11x2(s) −

a12x(s)y(s)
1 + mx(s) + ny(s)

]
ds +

∫ t

0
σ1(λ(s))x(s)dB1(s)

+

∫ t

0

∫
Z

x(s)γ1(λ(s), u)Ñ(ds, du),
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y(t) =y(0) +

∫ t

0

[
− y(s)r2(λ(s)) − a22y2(s) +

a21x(s)y(s)
1 + mx(s) + ny(s)

]
ds +

∫ t

0
σ2(λ(s))y(s)dB2(s)

+

∫ t

0

∫
Z

y(s)γ2(λ(s), u)Ñ(ds, du).

According to the Hölder inequality and the moment inequality of stochastic integrals, exists k = 1, 2, ···,
such that

E
[

sup
(k−1)ξ≤s≤kξ

|x(s)|q
]

≤4q−1
∣∣∣∣∣x((k − 1)ξ)

∣∣∣∣∣q + 4q−1E( sup
(k−1)ξ≤s≤kξ

∣∣∣∣∣ ∫ kξ

(k−1)ξ

[
x(s)r1(λ(s)) − a11x2(s)

−
a12x(s)y(s)

1 + mx(s) + ny(s)

]
ds

∣∣∣∣∣q) + 4q−1E( sup
(k−1)ξ≤s≤kξ

∣∣∣∣∣ ∫ kξ

(k−1)ξ
σ1(λ(s))x(s)dB1(s)

∣∣∣∣∣q)

+ 4q−1E( sup
(k−1)ξ≤s≤kξ

∣∣∣∣∣ ∫ kξ

(k−1)ξ

∫
Z

x(s)γ1(λ(s), u)Ñ(ds, du)
∣∣∣∣∣q).

(2.15)

By Lemma 2.4, exist a positive constant K(q) such that E
∣∣∣x(t)

∣∣∣q ≤ K(q), t ∈ [0,+∞). Thus we can
obtain that

E( sup
(k−1)ξ≤s≤kξ

∣∣∣∣∣ ∫ kξ

(k−1)ξ

[
x(s)r1(λ(s)) − a11x2(s) −

a12x(s)y(s)
1 + mx(s) + ny(s)

]
ds

∣∣∣∣∣q)

≤ E
[
ξq sup

(k−1)ξ≤s≤kξ

(
|x(s)|q

∣∣∣r1(λ(s)) − a11x(s) −
a12y(s)

1 + mx(s) + ny(s)

∣∣∣q)]
≤ ξq ·

1
2

E(|x(s)|2q) +
1
2
ξqE

(
sup

(k−1)ξ≤s≤kξ

∣∣∣r1(λ(s)) − a11x(s) −
a12y(s)

1 + mx(s) + ny(s)

∣∣∣2q
)

≤
1
2
ξqE(|x(s)|2q) +

1
2
ξq · 32q−1[(ru

1)2q + a2q
11E( sup

(k−1)ξ≤s≤kξ
|x(s)|2q) + (

a12

n
)2q]

:= M1(q)ξq.

(2.16)

In view of the Burkholder-Davis-Gundy inequality (see Theorem 1.7.3 of reference [33]), we have

E
(

sup
(k−1)ξ≤s≤kξ

∣∣∣∣∣ ∫ kξ

(k−1)ξ
σ1(λ(s))x(s)dB1(s)

∣∣∣∣∣q)
≤ CqE

[ ∫ kξ

(k−1)ξ
|x(s)σ1(λ(s))|2ds

] q
2

≤ Cqξ
q
2 (σu

1)qE
(

sup
(k−1)ξ≤s≤kξ

∣∣∣x(s)
∣∣∣q) := M2(q)ξ

q
2 ,

(2.17)

where σu
1 = maxi∈S σ1(i). Make use of Assumption 2.1 and Kunita’s first inequality (see
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Theorem 4.4.23 in reference [34]), one obtain

E( sup
(k−1)ξ≤s≤kξ

∣∣∣∣∣ ∫ kξ

(k−1)ξ

∫
Z

x(s)γ1(λ(s), u)Ñ(ds, du)
∣∣∣∣∣q)

≤Dq

{
E
[ ∫ kξ

(k−1)ξ

∫
Z

∣∣∣x(s)γ1(λ(s), u)
∣∣∣2λ(du)ds

] q
2

+ E
∫ kξ

(k−1)ξ

∫
Z

∣∣∣x(s)γ1(λ(s), u)
∣∣∣qλ(du)ds

]}
≤Dqξ

q
2 G

q
2
1 K(q) + DqξG

q
2
1 K(q).

(2.18)

According to (2.15)–(2.18), we have

sup
(X(0), j)∈D×S

E
[

sup
0≤s≤t

∣∣∣xX(0), j(s)
∣∣∣q] < +∞, ∀s ∈ [0, t], ∀t ≥ 0.

Similarly, we obtain

sup
(X(0), j)∈D×S

E
[

sup
0≤s≤t

∣∣∣yX(0), j(s)
∣∣∣q] < +∞, ∀s ∈ [0, t], ∀t ≥ 0.

Therefore, we have

sup
(X(0), j)∈D×S

E
[

sup
0≤s≤t

∣∣∣XX(0), j(s)
∣∣∣q] < +∞, ∀s ∈ [0, t], ∀t ≥ 0.

Lemma 2.7. Assumption 2.1–2.3 hold, then for any compact subset D of R2
+, we have

lim
t→+∞

dH
(
p(t, X(0), i, · × ·), p(t, X̃(0), j, · × ·)

)
= 0 (2.19)

uniformly in X(0), X̃(0) ∈ D and i, j ∈ S.
Proof. The proof is similar to Lemma 5.6 of reference [13]. By using Lemmas 2.5 and 2.6, the proof
is easy to prove, hence it is omitted.
Lemma 2.8. Assumption 2.1–2.3 hold. Then for any (X(0), i) ∈ R2

+ × S, {p(t, X(0), i, · × ·)|t ≥ 0} is
Cauchy in the space B(R2

+ × S) with metric dH.
Proof. Fix any (X(0), i) ∈ R2

+ × S, we just need to proof that for any ε3 > 0, there is a T > 0 such that

dH(p(t + s, X(0), i, · × ·), p(t, X(0), i, · × ·)) ≤ ε3,∀t ≥ T, s > 0.

This is equivalent to

sup
h∈H

∣∣∣Eh(XX(0),i(t + s), λi(t + s)) − Eh(XX(0),i(t), λi(t))
∣∣∣ ≤ ε3,∀t ≥ T, s > 0. (2.20)

For any h ∈ H and t, s > 0, we have∣∣∣Eh(XX(0),i(t + s), λi(t + s)) − Eh(XX(0),i(t), λi(t))
∣∣∣

=
∣∣∣E[

E(h(XX(0),i(t + s), λi(t + s))|Fs)
]
− Eh(XX(0),i(t), λi(t))

∣∣∣
=
∣∣∣ n∑

l=1

∫
R2

+

Eh(Xz0,l(t), λl(t))p(s, X(0), i, dz0 × {l}) − Eh(XX(0),i(t), λi(t))
∣∣∣

≤

n∑
l=1

∫
R2

+

∣∣∣Eh(Xz0,l(t), λl(t)) − Eh(XX(0),i(t), λi(t))
∣∣∣p(s, X(0), i, dz0 × {l})

≤2p(s, X(0), i, D̄C
R × S) +

n∑
l=1

∫
D̄R

∣∣∣Eh(Xz0,l(t), λl(t)) − Eh(XX(0),i(t), λi(t))
∣∣∣

× p(s, X(0), i, dz0 × {l}),

(2.21)
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where D̄R = {X ∈ R2
+

∣∣∣|X| ≤ R}, D̄C
R = R2

+ − D̄R. According to the well-known Chebyshev inequality,
the family of transition probabilities {p(t, X(0), i, dz0 × {l}|t ≥ 0)} is tight. That is to say, for any ε > 0
there is a compact subset D = D(ε, X(0), i) of R2

+ such that p(t, X(0), i,D × S) ≥ 1 − ε, ∀t ≥ 0, there is
a positive number R sufficiently large for

p(s, X(0), i, D̄C
R × S) <

ε3

4
, ∀s ≥ 0. (2.22)

Notes that by Lemma 2.7, there is a T > 0 such that

sup
h∈H

∣∣∣Eh(Xz0,l(t), λl(t)) − Eh(XX0,i(t), λi(t))
∣∣∣ < ε3

2
, ∀t ≥ T, (z0, l) ∈ D̄R × S. (2.23)

Substituting (2.22) and (2.23) into (2.21), we get∣∣∣Eh(XX(0),i(t + s), λi(t + s)) − Eh(XX(0),i(t), λi(t))
∣∣∣ < ε3, ∀t ≥ T, s > 0.

Because h is arbitrary, the inequality (2.20) must hold.
Proof of Theorem 2.4. First, we prove that there is a probability measure η(· × ·) ∈ B such that for any
(X(0), j) ∈ R2

+ × S, the transition probability p(t, X(0), j, · × ·) of X((X(0), j), t) converges weakly to
η(· × ·). Based on proposition 2.5 in reference [35], the weak convergence of probability measures is a
metric concept, namely, p(t, X(0), j, · × ·) converges weakly to η(· × ·)⇔ there is a metric d such that
limt→+∞ d(p(t, X(0), j, · × ·), η(· × ·)) = 0. Hence, we just need to show that for any (X(0), i) ∈ R2

+ × S,

lim
t→+∞

d(p(t, X(0), j, · × ·), η(· × ·)) = 0.

By using Lemma 2.8, {p(t, 0, 1, · × ·)|t ≥ 0} is Cauchy in the space B(R2
+×S) with metric dH. Therefore,

there is a unique η(· × ·) ∈ B such that

lim
t→+∞

dH(p(t, 0, 1, · × ·), η(· × ·)) = 0.

By Lemma 2.7, we get

lim
t→+∞

dH(p(t, X(0), j, · × ·), η(· × ·))

≤ lim
t→∞

[
dH(p(t, 0, 1, · × ·), η(· × ·)) + dH(p(t, X(0), j, · × ·), p(t, 0, 1, · × ·))

]
= 0.

Namely, the distribution of (X(t), λ(t)) converges weakly to η. Due to the Kolmogorov-Chapman
equation, we know that η is invariant. Applying the Corollary 3.43 in reference [36], we obtain that η
is strong mixing. Therefore, η is ergodic by Theorem 3.2.6 and (3.3.2) in reference [36].
Corollary 2.1. Consider model (1.4), Assumptions 2.1–2.3 hold, then
(i)if b̄1 > 0, b̄2 + 〈

a21 x̄(t)
1+mx̄(t)+nȳ(t)〉

∗ > 0, then model (1.4) has a unique stationary distribution η(· × ·).
(ii)if b̄1 > 0, a11b̄2 + a21b̄1 < 0, then x(t) has a unique ergodic stationary distribution, y(t) goes to
extinction.
(iii)if b̄1 < 0, a11b̄2 + a21b̄1 < 0, then both x(t) and y(t) will go to extinction.
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3. Numerical simulations

In this section, we will validate our theoretical results with the help of numerical simulation
examples taking parameters. Our results show that the existence of stationary distribution has close
relations with random disturbances. Let’s consider the model (1.4) with S = {1, 2} to make it easier to
understand. Therefore, according to the law of the Markov chain, system (1.4) can be regarded as a
hybrid system which switches between the following two subsystems:



dx(t) =x(t−)
[
r1(1) − a11x(t) −

a12y(t)
1 + mx(t) + ny(t)

]
dt + σ1(1)x(t−)dB1(t)

+

∫
Z

x(t−)γ1(1, u)Ñ(dt, du),

dy(t) =y(t−)
[
−r2(1) − a22y(t) +

a21x(t)
1 + mx(t) + ny(t)

]
dt + σ2(1)y(t−)dB2(t)

+

∫
Z

y(t−)γ2(1, u)Ñ(dt, du).

(3.1)



dx(t) =x(t−)
[
r1(2) − a11x(t) −

a12y(t)
1 + mx(t) + ny(t)

]
dt + σ1(2)x(t−)dB1(t)

+

∫
Z

x(t−)γ1(2, u)Ñ(dt, du),

dy(t) =y(t−)
[
−r2(2) − a22y(t) +

a21x(t)
1 + mx(t) + ny(t)

]
dt + σ2(2)y(t−)dB2(t)

+

∫
Z

y(t−)γ2(2, u)Ñ(dt, du).

(3.2)

(i) Firstly, let us consider the effects about the distribution of Markov chain. We know the following
facts: if the above two subsystems have a stationary distributions, then the hybrid system (1.4) still
has a stationary distribution due to regime switching; if one of the two subsystems has a stationary
distribution and the other does not, then the hybrid system (1.4) may have a stationary distribution, or
not. To see the above more clearly, let’s use several simulations to illustrate the impacts. Here, we only
present the second case by letting the distribution of the Markov chain change(i.e., let π change).

Example 1. Choose a11 = 0.75, a12 = 0.25, a21 = 0.15, a22 = 0.95, Z = (0,+∞), m = 0.15, n =

0.2, λ(Z) = 1. We have a11 − a12
m
n − 2a21 = 0.26 ≥ 0, a22 − a21

n
m − 2a12 = 0.25 ≥ 0.

In regime 1, choose r1(1) = 0.08, r2(1) = 0.20, σ1(1) = 0.53, γ1(1) = 0.15, σ2(1) = 0.59, γ2(1) =

0.10 , thus b1(1) = −0.07 < 0, b2(1) = −0.38 < 0, a11b2(1) + a21b1(1) = −0.30 < 0. Therefore,
according to Corollary 2.1, in subsystem (3.1), prey x(t) and predator y(t) go to extinction, see Figure 1.

In regime 2, choose r1(2) = 0.45, r2(2) = 0.01, σ1(2) = 0.08, γ1(2) = 0.09, σ2(2) = 0.11, γ2(2) =

0.11, therefore b1(2) = 0.44 > 0, b2(2) = −0.02 < 0, a11b2(1) + a21b1(1) = 0.05 > 0, but b̄2 +

〈
a21 x̄(t)

1+mx̄(t)+nȳ(t)〉
∗ > 0 is difficult to verify. In subsystem (3.2), Figure 2 illustrates the situation that the

model (1.4) has a unique stationary distribution η(· × ·).
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Figure 1. (a) is the solution of the system (1.4) and show that prey and predator go to
extinction.
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Figure 2. (a) is the solution of the system (1.4) and (b) is the distributions of x(t) and y(t).

And then we’re going to choose different π.
Case (a): We choose π = (0.05 0.95). Therefore b̄1 = 0.05 × (−0.07) + 0.95 × 0.44 = 0.41 > 0;

b̄2 = 0.05×(−0.38)+0.95×(−0.02) = −0.04 < 0, a11b̄2+a21b̄1 = 0.75×(−0.04)+0.15×0.41 = 0.03 > 0,
but b̄2 + 〈

a21 x̄(t)
1+mx̄(t)+nȳ(t)〉

∗ > 0 is difficult to verify. Figure 3 illustrates that the model (1.4) has a unique
stationary distribution η(· × ·).

Case (b): We choose π = (0.3 0.7). Therefore b̄1 = 0.3 × (−0.07) + 0.7 × 0.44 = 0.29 > 0; b̄2 =

0.3×(−0.38)+0.7×(−0.02) = −0.13 < 0, and a11b̄2 +a21b̄1 = 0.75×(−0.13)+0.15×0.29 = −0.05 < 0.
Thus according to Corollary 2.1, the prey x(t) has a unique ergodic stationary distribution, y(t) goes to
extinction, see Figure 4.

Case (c): We choose π = (0.9 0.1). Therefore b̄1 = 0.9 × (−0.07) + 0.1 × 0.44 = −0.02 < 0;
b̄2 = 0.9× (−0.38) + 0.1× (−0.02) = −0.34 < 0, and a11b̄2 + a21b̄1 = 0.75× (−0.34) + 0.15× (−0.02) =

−0.26 < 0. Therefore, according to Corollary 2.1, prey x(t) and predator y(t) go to extinction, see
Figure 5.
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Figure 3. (a) is the solution of the system (1.4) and (b) is the distributions of x(t) and y(t).
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Figure 4. (a) is the solution of the system (1.4) and (b) is the distributions of x(t).
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Figure 5. (a) is the solution of the system (1.4) and show that prey and predator go to
extinction.

From the above examples, we can know the following facts: one subsystem has a stationary
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distribution while the other doesn’t have, different things can happen when we choose different π.
When π = (0.9 0.1), both prey x(t) and predator y(t) go to extinction; when π = (0.3 0.7), the prey x(t)
has a unique ergodic stationary distribution, y(t) goes to extinction; when π = (0.05 0.95), the
model (1.4) has a unique ergodic stationary distribution.

(ii) Next, we consider the effect of white noise on the population. For convenience, we will consider
only subsystem (3.1). One can easily calculate the following facts

∂b1(1)
∂σ2

1(1)
< 0,

∂b2(1)
∂σ2

2(1)
< 0.

In short, subsystem (3.1) has a stationary distribution if for someσ2
1(1) andσ2

2(1), then the stationary
distribution could disappear with the increase of σ2

1(1) or σ2
2(1). To see this more clearly, let’s look at

the following example.
Example 2. Consider the subsystem (3.1), the values of σ1(1) and σ2(1) are given in the table below,
and the values of other parameters are the same with Example 1.

Table 1. The values with σi(1) (i=1,2).

σ1(1) σ2(1) b1 b2 a11b2 + a21b1

0.04 0.02 0.07 -0.20 -0.14
0.43 0.23 -0.02 -0.23 -0.18
0.58 0.28 -0.10 -0.24 -0.20
0.84 0.59 -0.28 -0.38 -0.33

Therefore, in subsystem (3.1), according to Corollary 2.1, the prey x(t) has a unique ergodic
stationary distribution with σ1(1) = 0.04, x(t) is extinct at all other values. y(t) goes to extinction due
to a11b2 + a21b1 < 0, see Figure 6. We know that when σ1(1) and σ2(1) increase, the stationary
distribution of prey x(t) could disappear, and the greater the intensity of random perturbation, the
faster the species dies out.
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Figure 6. (a) is the solution x(t) of the system (1.4) and (b) is the solution y(t) of the
system (1.4).
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(iii) Finally, consider the Lévy jumps. To keep things simple, we let γi(u) = εi(i = 1, 2). We have

b̄1 =
∑
j∈ S

π j(r1( j) −
1
2
σ2

1( j)) − (ε1 − ln(1 + ε1)), b̄2 =
∑
j∈ S

π j(−r2( j) −
1
2
σ2

2( j)) − (ε2 − ln(1 + ε2)),

we know that εi− ln(1+εi) ≥ 0, εi ≥ −1, i = 1, 2. Therefore, the effect of εi on the population is similar
to that of σ2

i , so it is omitted here.

After the above numerical simulation, there are similar examples in reality. In [37], the authors show
that global warming has a profound bottom-up impact upon marine top-predators. Marine pollution via
heavy metals, organochlorides, oil products and plastics is a recurrent threat to seabirds on a worldwide
scale. All threats mentioned above cause substantial disturbance to seabird populations. Most seabirds
feed on fish, and fish stocks are overexploited by industrial fishing, which can lead to large numbers of
seabirds going hungry, all threats that cause significant disruption to bird populations. In [37], lesser
sandeels Ammodytes marinus, which used to be the food-base of a vast seabird community around
the British Isles, have been depleted due to the combined effects of overfishing and climate change.
Seabirds, in particular kittiwakes Rissa tridactyla, now feed increasingly on snake pipefish. We know
that not all seabirds are geographically malleable [38]. Seabirds may face extinction as some endemic
diseases are trapped in restricted areas due to the effects of climate change. This is most likely the case
for the Galápagos penguin Spheniscus mendiculus [39] and marblefinch bracketail fern [40]. Above
examples show that under the influence of environmental disturbance caused by climate warming and
Marine pollution, on the one hand, the population will die out under some certain conditions; on the
other hand, under some certain conditions, the predator changes its foraging ecology so that it can
survive, which indicates that the predator and the new prey will not die out.

4. Conclusions

For the predator-prey model with Beddington-DeAngelis functional response, it has important
theoretical and practical significance in real life, and has received extensive attention. However, a
stochastic hybrid predator-prey model with Beddington-DeAngelis functional response and Lévy
jumps has not been developed. In our work, our method easy to understand, but the sufficient
conditions that make the conclusion hold may be a little strict, and the weakening of the conditions
needs further study. Our main result is Theorem 2.4, which establishes sufficient conditions for the
existence and uniqueness of an ergodic stationary distribution. Corollary 2.1 indicates that the
existence of stationary distribution and extinction of model (1.4) depends on the signs of b̄1,
a11b̄2 + a21b̄1 and b̄2 + 〈

a21 x̄(t)
1+mx̄(t)+nȳ(t)〉

∗. Our results show that the existence of stationary distribution has
close relations with the disturbance of environment.

There are still some interesting questions that deserve further consideration. For example, maybe
one can give the threshold between the weak persistence in the mean and extinction for predator in
future, further weakening the conditions in Theorem 2.4. Another interesting question is to consider
what happens if other parameters are perturbed by noises. It is also interesting to consider other
population systems, such as, food chain models, competition model and so on.
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