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1. Introduction

Fractional calculus is a branch of mathematics that contains integrals and derivatives of arbitrary
orders (including rational, real, complex numbers). Nowadays, the main focus of this field has been
changed from pure mathematical formulations to applications on a variety of mathematical models
such as modeling of pantograph systems [1], different kinds of Langevin equations [2, 3], memristor-
based chaotic circuits [4], etc. Indeed, a new approach for modeling physical phenomena within
a simple and effective procedure is used via fractional differential equations (FDEs) with singular
and nonsingular derivatives. Therefore, in recent decades, fractional operators have been appeared
in science, engineering, physics, dynamics, biological models, as well as electrodynamics, and fluid
mechanics. For more details, interested readers are referred to see the heat equation in the context of the
Caputo-Fabrizio derivative [5], fractional graph representation of ethane [6], Hahn-integro-difference
equations [7], investigation of some diseases such as anthrax in animals and mumps via non-singular
derivatives [8,9], fuzzy fractional model of coronavirus [10], fractal-fractional modeling [11], uncertain
fractional modeling [12] and the references therein. The reason beyond the success of fractional
calculus in modeling natural phenomena is that its operators are nonlocal, which strongly makes them
suitable and efficient to describe the long memory or nonlocal effects characterizing most physical
phenomena, where the models of problems with uncertain parameters reflect the actual behavior of the
systems and make the model more realistic. Obtaining an analytical solution for FDEs is more difficult
in most cases. Thus, many researchers have proposed and improved several numerical techniques to
get approximate solutions. In addition, finding approximate asymptotic solutions for these problems
allows researchers in control and similar fields to find stable solutions quickly. In [13], asymptotic
interval approximate solutions for FDEs are discussed with the Atangana-Baleanu derivative. On the
other hand, studying the existence and uniqueness (EUS) of solutions is a hot topic in FDEs. In
the sequel, we present some recent scientific contributions of researchers about EUS to FDEs. For
example, in [14], the authors conducted research regarding the solution set of the following FDE:(

Dλ
t x

)(1)
+ b(γ)x = 0,

under some simple restrictions on the functional coefficient b(γ). Baleanu et al. [15] discussed two
global solutions in relation to an initial value problem (IVP) involving a vast category of FDEs.
Zhao et al. [16] developed an existence theorem of solution for FHDEs (fractional hybrid differential
equations) involving Riemann-Liouville differential under mixed Lipschitz and Caratheodory
conditions. Sitho et al. [17] used fixed point theorems to examine existence results for initial value
problems for HFDEs. Khan et al. [18] investigated the EUS for a coupled system of FDEs with p-
Laplacian operator. In the last few decades, an important class of FDEs has taken great attention in
nonlinear differential equations, known as HDEs. For example, in [19], the authors studied the EUS to
the ordinary HDEs with linear perturbation of the first type given by

D
[ Q(ς)
Z(ς,Q(ς))

]
= Y(ς,Q(ς)), Q(ς0) = Q0 ∈ R, D =

d
dς
,

whereZ ∈ C
(
[ς0, ς0 +b]×R,R−{0}

)
, b ∈ R+, [ς0, ς0 +b] is bounded interval,Z(ς,Q(ς)) is continuous

and Y(ς,Q(ς)) is a Caratheodory class of functions. Dhage et al. [20] studied the EUS of the ordinary
HDEs under the linear perturbation of the second type given by

D
[
Q(ς) −Z(ς,Q(ς))

]
= Y(ς,Q(ς)), Q(ς0) = Q0 ∈ R.
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Some fundamental differential inequalities are used to prove the existence results for extremal
solutions. Herzallah et al. [21] proved the EUS for two first and second types of HFDEs with the
aid of fixed points, given as

Dβ[ Q(ς)
Z(ς,Q(ς))

]
= Y(ς,Q(ς)), Q(ς) = Q0 ∈ R,

Dβ[Q(ς) −Z(ς,Q(ς))
]

= Y(ς,Q(ς)), Q(ς0) = Q0 ∈ R,

whereDβ is the Caputo fractional derivative of order 0 < β < 1 and τ ∈ [0,T ]. For more recent hybrid
models, we refer to [22–25].

Recently, FDEs with p-Laplacian operators have been investigated by many researchers. For
example, Khan et al. [26] established the EUS of a class of nonlinear HFDEs under p-Laplacian
operator by a method based on topological degree, given by

cD
β1
0
[
φp

(c
D

γ1
0
(
f (ς) − ψ2(ς, ν(ς))

))]
= −ψ1(ς, ν(ς)),[

φp
(cD

γ1
0
(
f (ς) − ψ2(ς, ν(ς))

))](i)
ς=0 =

[
φp

(c
D

γ1
0
(
f (ς) − ψ2(ζ, ν(ς))

))]′
ς=λ = 0,

for i ∈ Rm−1
0 − {1},

f (i)(ς)ς=0 = 0, i ∈ Nm−1
2 ,

f (0) =
1

Γ(γ)

∫ b

0
(b − s)γ−1ψ2( f (θ))dθ,

d f (λ)
dγ

=
dψ2( f (λ))

dγ
.

For further information, we refer to read these papers [27]. To the best of the authors’ knowledge, no
publication exists that deals with the EUS and Hyers-Ulam stability (HU-stability) of general HFDEs
under p-Laplacian operators equipped with mixed boundary conditions. Motivated by this reason, our
main goal in this manuscript is to prove the EUS as well as the HU-stability for the following general
system of nonlinear HFDEs under p-Laplacian operator which is formulated as

cD
β1
0
[
φp

(c
D

γ1
0
(
f (ς) − ψ2(ς, ν(ς))

))]
= −ψ1(ς, ν(ς)),

cD
β2
0
[
φp

(c
D

γ2
0
(
ν(ς) − ψ4(ς, f (ς))

))]
= −ψ3(ς, f (ς)),[

φp
(cD

γ1
0
(
f (ς) − ψ2(ς, ν(ς))

))](i)
ς=0 =

[
φp

(c
D

γ1
0
(
f (ς) − ψ2(ς, ν(ς))

))]′
ς=λ = 0,[

φp
(cD

γ2
0
(
v(τ) − ψ4(ς, f (ς))

))](i)
ς=0 =

[
φp

(c
D

γ2
0
(
ν(ς) − ψ4(ς, f (ς))

))]′
ς=λ = 0,

for i ∈ Nm−1
0 − {1},(

ψ2(ς, ν(ς))
)(i)
ς=0 =

(
ψ4(ς, f (ς))

)(i)
ς=0 = 0, i ∈ Nm−1

0 ,

f (i)(ς)ς=0 = f (m−1)(ς)ς=1 = 0, v(i)(ς)ς=0 = v(m−1)(ς)ς=1 = 0, i ∈ Nm−2
1 ,

f (1) −
1

(m − 1)!
f (m−1)(0) = 0, ν(1) −

1
(m − 1)!

ν(m−1)(0) = 0,

(1.1)
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where cD
γi
0 , cD

βi
0 , i = 1, 2, are the Caputo fractional derivatives with m − 1 < γi, βi ≤ m, and m is

nonnegative integer number. For k ∈ N4
1, ψk is a continuous function and belongs to L[0, 1], φp(y) =

|y|p−2y is a p-Laplacian operator, where 1
p + 1

q = 1 and φq = φ−1
p .

The structure of this article is organized as follows: We present several fundamental theorems,
definitions, and lemmas in Section 2 to be used in our study. In Section 3, by using the Green functions,
we transform the coupled hybrid BVPs (1.1) into integral equations, Then by defining a set of operators,
the integral equations are converted into a new equivalent fixed point problem. Thereafter, by using
the topological degree method, the main results for existence and uniqueness are proved. In Section 4,
the stability of the proposed system (1.1) is investigated via the Hyers-Ulam criterion. In Section 5, we
give an example to show the validity and efficacy of the results, and finally, the conclusion is presented
in Section 6.

2. Auxiliary results

In this section, we recall some definitions and lemmas.

Definition 2.1. [28] The Caputo fractional derivative of order γ of a real continuous function Q on
[0,∞) is defined by

cD
γ
0Q(ς) =

1
Γ(m − γ)

∫ ς

0
(ς − ϑ)m−1−γQ(m)(ϑ)dϑ, (2.1)

where m − 1 < γ < m, m is an integer number, if the right-hand side integral converges point-wise on
the interval (0,∞).

Definition 2.2. [29] The Riemann-Liouville fractional integral of order γ of a function Q (with above
property) is defined by

I
γ
0Q(ς) =

1
Γ(γ)

∫ ς

0
(ς − ϑ)γ−1Q(ϑ)dϑ. (2.2)

Lemma 2.1. [30] Let γ ∈ (m,m − 1], Q ∈ Cm−1. Then

I
γ
0

c
D

γ
0Q(ς) = Q(ς) + b1 + b2ς + b3ς

2 + . . . + bmς
m−1, (2.3)

for bi ∈ R, i ∈ Nm
1 .

The Banach space I = C
(
(0, 1],R

)
is a family of continuous functions with the functional norm

‖f‖ = sup{|f(ς)| : ς ∈ [0, 1]}. If we consider the product spaceJ = I×I via the norm ‖(f, ν)‖ = ‖f‖+‖ν‖,
then it is also a Banach space. In the following, some basic notations and results linked to the nonlinear
coincidence degree theorem are recalled, which one can find them in [31–33].

Definition 2.3. [34] Let the category of all bounded sets C(J) be denoted by S. Then the mapping
B : S → (0,∞) entitled the Kuratowski measure of non-compactness is defined by

B(E) = inf{r > 0 : There is a finite cover for E of diameter ≤ r}, E ∈ S.

Definition 2.4. A mapping A : J → J is said to be a contraction if there is 1 > ξ > 0 such that for
each pairs of the points (f, ν) and (f∗, ν∗), the distance between the images of these points underA are
closer than the distance between the points. Mathematically, we mean

|A(f, ν) −A(f∗, ν∗)| ≤ ξ|(f, ν) − (f∗, ν∗)|. (2.4)
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Lemma 2.2. [34] For the measure B, we have the following properties:
(1) For the relatively compact set K, B(K) = 0;
(2) B is seminorm, i.e., B(µK) = |µ|B(K), µ ∈ R, and B(K1 + K2) ≤ B(K1) + B(K2);
(3) K1 ⊂ K2 yields B(K1) ≤ B(K2);
(4) B(convK) = B(K);
(5) B(K̄) = B(K).

Definition 2.5. [34] Suppose thatA : S → I is bounded and continuous such that S ⊂ I. ThenA is
an B-Lipschitz, if there is ε ≥ 0 such that

B(A(K)) ≤ ε B(K) for every bounded set K ⊂ S.

In addition,A is called a strict B-contraction under the condition ε < 1.

Definition 2.6. [34] The functionA is B-contraction if

B(A(K)) ≤ B(K) for every bounded set K ⊂ S such that B(K) > 0.

Therefore, B(A(K)) > B(K) yields B(K) = 0.

Note that ε < 1 implies thatA is a strict contraction.
Assume that Ω1 and Ω2 are two bounded sets in I such that 0 ∈ Ω1, Ω1 ⊂ Ω2, and A : I ∩

(Ω2\Ω1)→ I is an operator.

Definition 2.7. [35] An operatorA : I ∩ (Ω2\Ω1)→ I is

• (U1) Uniformly bounded if there is E > 0 such that |A(ς)| ≤ E for all t ∈ I ∩ (Ω2\Ω1);
• (U2) Equicontinuous if for every ε > 0, there is δ(ε) > 0 such that |A(ς1) − A(ς2)| < ε for all
ς1, ς2 ∈ I ∩ (Ω2\Ω1) with |ς1 − ς2| < δ.

Theorem 2.1. [36] Let A : I ∩ (Ω2\Ω1) → I. Then A is compact if and only if it is uniformly
bounded and equicontinuous.

Theorem 2.2. [37] Let I be a Banach space. Then a contraction A : I → I has a unique solution
$ such thatA($) = $ (the Banach contraction principle).

Proposition 2.1. [38]A is B-Lipschitz with constant ε > 0 if and only ifA : S → I is Lipschitz with
constant ε > 0.

Proposition 2.2. [38] The mappingA is B-Lipschiz with constant ε = 0 if and only ifA : S → I is
said to be compact.

Theorem 2.3. [18] LetA : I → I be a B-contraction and

D = {x ∈ I : There exists 0 ≤ δ ≤ 1 such that x = δA(x)}.

If D ⊂ Iis bounded, i.e., there is some r > 0 with D ⊂ xr(0) and

deg(1 − δA, xr(0), 0) = 1, for every 0 ≤ δ ≤ 1,

thenA has at least one fixed point in xr(0).
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Lemma 2.3. [39, 40] Consider the p-Laplacian operator φp. Then
(1) If 1 < p ≤ 2,M1,M2 > 0, and |M1|,M2 ≥ η > o, then

|φp(M1) − φp(M2)| ≤ (p − 1)ηp−2|M1 −M2|.

(2) If p > 2, and |M1|, |M2| ≤ η, then

|φp(M1) − φp(M2)| ≤ (p − 1)ηp−2|M1 −M2|.

3. Results regarding the EUS

In this section, based on the above auxiliary notions, we prove the following results on the EUS of
the considered system (1.1).

Theorem 3.1. Assume that ψ ∈ C[0, 1] is an integrable real function. Then for β1, γ1 ∈ (0, 1], the
solution of 

cD
β1
0
[
φp

(c
D

γ1
0
(
f (ς) − ψ2(ς, ν(ς))

))]
= −ψ1(ς, ν(ς)),[

φp
(cD

γ1
0
(
f (ς) − ψ2(ς, ν(ς))

))](i)
ς=0 =

[
φp

(c
D

γ1
0
(
f (ς) − ψ2(ς, ν(ς))

))]′
ς=λ = 0,

for i ∈ Nm−1
0 − {1},(

ψ2(ς, ν(ς))
)(i)
ς=0 = 0, i ∈ Nm−1

0 ,

f (i)(ς)ς=0 = f (m−1)(ς)ς=1 = 0, i ∈ Nm−2
1 ,

f (1) −
1

(m − 1)!
f (m−1)(0) = 0,

(3.1)

is

f (ς) = ψ2(ς, ν(ς)) +

∫ 1

0
Gγ1(ς, η)φp

( ∫ 1

0
Gβ1(η, ξ)ψ1(ν(ξ))dξ

)
dη, (3.2)

where Gγ1(ς, η) and Gβ1(η, ς) are Green functions defined by

Gγ1(ς, η) =


(ς − η)γ1−1 − (1 − η)γ1−1

Γ(γ1)
−

ςm−1(1 − η)γ1−m

Γ(γ1 − m + 1)Γ(m)
, 0 ≤ η ≤ ς ≤ 1,

−
(1 − η)γ1−1

Γ(γ1)
−

ςm−1(1 − η)γ1−m

Γ(γ1 − m + 1)Γ(m)
, 0 ≤ ς ≤ η ≤ 1,

(3.3)

and

Gβ1(ς, η) =



−(ς − η)β1−1

Γ(β1)
+
ς(λ − η)β1−2

Γ(β1 − 1)
, 0 ≤ η < ς ≤ λ,

ς(λ − η)β1−2

Γ(β1 − 1)
, 0 ≤ ς < η ≤ λ,

−(ς − η)β1−1

Γ(β1)
, 0 ≤ λ < η ≤ ς.

(3.4)
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Proof. By applying the integral Iβ1
0 on both sides of (3.1) and using Lemma 2.1, we get

φp
(c
D

γ1
0
(
f (ς) − ψ2(ς, ν(ς))

))
= −I

β1
0
(
ψ1(ς, ν(ς))

)
+ c1 + c2ς + . . . + cm−1ς

m−2 + cmς
m−1. (3.5)

By using the conditions
[
φp

(cD
γ1
0
(
f (ς) − ψ2(ς, ν(ς))

))](i)
ς=0 = 0, i = 0, 2, 3, . . . ,m − 1, we get c1 =

c3 = c4 = . . . = cm = 0.
The conditon

[
φp

(c
D

γ1
0
(
f (ς) − ψ2(ς, ν(ς))

))]′
ς=λ = 0, i ∈ Nm−1

0 − {1} gives

c2 =
1

Γ(β1 − 1)

∫ λ

0
(λ − η)β1−2ψ1(η, ν(η))ds. (3.6)

By inserting ci, i ∈ Nm
1 in (3.5), we get

φp
(c
D

γ1
0
(
f (ς) − ψ2(ς, ν(ς))

))
(3.7)

=

∫ ς

0

−(ς − η)β1−1

Γ(β1)
ψ1

(
η, ν(η)

)
dη +

∫ λ

0

ς(λ − η)β1−1

Γ(β1 − 1)
ψ1

(
η, ν(η)

)
dη.

We write (3.7) as

φp
(c
D

γ1
0
(
f (ς) − ψ2(ς, ν(ς))

))
=

∫ 1

0
Gβ1(ς, η)ψ1

(
η, ν(η)

)
dη. (3.8)

By applying φq = φ−1
p on both sides of (3.8), we have

cD
γ1
0
(
f (ς) − ψ2(ς, ν(ς))

)
= φq

[ ∫ 1

0
Gβ1(ς, η)ψ1

(
η, ν(η)

)
dη

]
. (3.9)

By integrating on both sides of (3.9) by employing the operator Iγ1
0 , we obtain

f (ς) = ψ2(ς, ν(ς)) + I
γ1
0
[
φq

( ∫ 1

0
Gβ1(ς, η)ψ1

(
η, ν(η)

)
dη

)]
(3.10)

+k1 + k2ς + . . . + km−1ς
m−2 + kmς

m−1.

By using the condition f (i)(ς)ς=0 = 0, i ∈ Nm−2
1 , we get k2 = k3 = . . . = km−1 = 0.

By inserting the values of ki, i ∈ Nm−1
2 in (3.10), we obtain

f (ς) = ψ2(ς, ν(ς)) + I
γ1
0
[
φq

( ∫ 1

0
Gβ1(ς, η)ψ1

(
η, ν(η)

)
dη

)]
+ k1 + kmς

m−1. (3.11)

Since f (m−1)(ς)ς=1 = 0, hence

km =
−1

Γ(m)
I
γ1−m+1
0

[
φq

( ∫ 1

0
Gβ1(ς, η)ψ1

(
η, ν(η)

)
dη

)]
ς=1. (3.12)

Substituting km in (3.11), we get
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f (ς) = ψ2(ς, ν(ς)) + I
γ1
0
[
φq

( ∫ 1

0
Gβ1(ς, η)ψ1

(
η, ν(η)

)
ds

)]
+ k1 (3.13)

−
ςm−1

Γ(m)
I
γ1−m+1
0

[
φq

( ∫ 1

0
Gβ1(ς, η)ψ1

(
η, ν(η)

)
dη

)]
ς=1.

Also, the last condition f (1) − 1
(m−1)! f (m−1)(0) = 0 gives

k1 =
−1

Γ(m)

∫ 1

0
(1 − η)γ1−1[φq

( ∫ 1

0
Gβ1(ς, η)ψ1

(
η, ν(η)

)
dη

)]
. (3.14)

Substituting k1 in (3.13), we get

f (ς) = ψ2(ς, ν(ς)) +

∫ ς

0

(ς − η)γ1−1

Γ(γ1)
φq

( ∫ 1

0
Gβ1(ξ, η)ψ1

(
η, ν(ξ)

)
dξ

)
dη

−

∫ 1

0

(1 − η)γ1−1

Γ(γ1)
φq

( ∫ 1

0
Gβ1(ξ, η)ψ1

(
η, ν(ξ)

)
dξ

)
dη (3.15)

−

∫ 1

0

ςm−1(1 − η)γ1−m

Γ(m)Γ(γ1 − m + 1)
φq

( ∫ 1

0
Gβ1(ξ, η)ψ1

(
η, ν(ξ)

)
dξ

)
dη.

By using the Green function, we can write (3.15) as

f (ς) = ψ2(ς, ν(ς)) +

∫ 1

0
Gγ1(ς, η)φq

( ∫ 1

0
Gβ1(ξ, η)ψ1

(
ξ, ν(ξ)

)
dξ

)
dη. (3.16)

This completes the proof. �

By applying Theorem 3.1, the solution of (1.1) is corresponding to the following coupled integral
equations:

f (ς) = ψ2(ς, ν(ς)) +

∫ 1

0
Gγ1(ς, η)φq

( ∫ 1

0
Gβ1(ξ, η)ψ1

(
ξ, ν(ξ)

)
dξ

)
dη, (3.17)

ν(ς) = ψ4(ς, f (ς)) +

∫ 1

0
Gγ2(ς, η)φq

( ∫ 1

0
Gβ2(ξ, η)ψ3

(
ξ, f (ξ)

)
dξ

)
dη, (3.18)

where Gγ2(ς, η) and Gβ2(ς, η) are the following Green functions:

Gγ2(ς, η) =


(ς − η)γ2−1 − (1 − η)γ2−1

Γ(γ2)
−

ςm−1(1 − η)γ2−m

Γ(γ2 − m + 1)Γ(m)
, 0 ≤ η ≤ ς ≤ 1,

−
(1 − η)γ2−1

Γ(γ2)
−

ςm−1(1 − η)γ2−m

Γ(γ2 − m + 1)Γ(m)
, 0 ≤ ς ≤ s ≤ 1,

and

Gβ2(ς, η) =



−(ς − η)β2−1

Γ(β2)
+
ς(λ − η)β2−2

Γ(β2 − 1)
, 0 ≤ η < ς ≤ λ,

ς(λ − η)β2−2

Γ(β2 − 1)
, 0 ≤ ς < η ≤ λ,

−(ς − η)β2−1

Γ(β2)
, 0 ≤ λ < η ≤ ς.
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Now, we define the operators T j : I → I for j ∈ N4
1 as follows:

T1 f (ς) =

∫ 1

0
Gγ1(ς, η)φq

( ∫ 1

0
Gβ1(η, ξ)ψ1(ν(ξ))dξ

)
dη,

T2ν(ς) =

∫ 1

0
Gγ2(ς, η)φq

( ∫ 1

0
Gβ2(η, ξ)ψ3( f (ξ))dξ

)
dη, (3.19)

T3 f (ς) = ψ2(ς, ν(ς)),

T4ν(ς) = ψ4(ς, f (ς)).

Depending on T j, j ∈ N4
1, we define B1( f , ν) = (T1,T2), B2( f , ν) = (T3,T4), and then B( f , ν) =

B2( f , ν) + B1( f , ν). So, by Theorem 3.1, the solutions of (3.17) and (3.18) are equivalent to the
following fixed point problem:

( f , ν) = B( f , ν) = B2( f , ν) +B1( f , ν). (3.20)

In order to prove our next results, we introduce the following assumptions:
(R1) For positive constants a1, a2,Wψ1 ,Wψ3 and d1, d2 ∈ [0, 1], the two functions ψ1, ψ3 satisfy the
following conditions:

|ψ1(x, ν)| ≤ φp(a1|ν|
d1 +Wψ1),

|ψ3(x, f )| ≤ φp(a2| f |d2 +Wψ3).

(R2) For positive constants a3, a4,Wψ2 ,Wψ4 and d1, d2 ∈ [0, 1], the two functions ψ2, ψ4 satisfy the
following conditions:

|ψ2(x, ν)| ≤ a3|ν|
d1 +Wψ2 ,

|ψ4(x, f )| ≤ a4| f |d2 +Wψ4 .

(R3) There are εψ1 and εψ2 such that for each f , ν, x, r ∈ B,

|ψ1(ξ, ν) − ψ1(ξ, r)| ≤ εψ1 |ν − r|,

|ψ3(ξ, f ) − ψ3(ξ, x)| ≤ εψ3 | f − x|.

(R4) There are εψ2 and εψ4 such that for each f , ν, x, r ∈ B,

|ψ2(ξ, ν) − ψ2(ξ, r)| ≤ εψ2 |ν − r|,

|ψ4(ξ, f ) − ψ4(ξ, x)| ≤ εψ4 | f − x|.

Remark 3.1. For the simplicity, we define the following notations:

Y1 =
( 2
Γ(γ1 + 1)

+
1

Γ(m)Γ(γ1 − m + 2)
)( 1

Γ(β1 + 1)
+
λβ1−1

Γ(β1)
)q−1

,

Y2 =
( 2
Γ(γ2 + 1)

+
1

Γ(m)Γ(γ2 − m + 2)
)( 1

Γ(β2 + 1)
+
λβ2−1

Γ(β2)
)q−1

,
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Y∗1 = (a1Y1 + a2Y2), Y∗2 = (a3 + a4),

M1 = Y1Wψ1 +Y2Wψ2 , M2 =Wψ3 +Wψ4 ,

M∗ = M1 +M2.

In addition to that,
K = Y∗1 +Y∗2,

Y3 = (q − 1)ηq−2
1 εψ1

( 2
Γ(γ1 + 1)

+
1

Γ(m)Γ(γ1 − m + 2)
)( 1

Γ(β1 + 1)
+
λβ1−1

Γ(β1)
)
,

Y4 = (q − 1)ηq−2
2 εψ3

( 2
Γ(γ2 + 1)

+
1

Γ(m)Γ(γ2 − m + 2)
)( 1

Γ(β2 + 1)
+
λβ2−1

Γ(β2)
)
,

Z1 = Y3 +Y4, Z2 = εψ2 + εψ4 .

Theorem 3.2. Under the assumptions (R1)–(R4), the operator B : J → J is continuous, and the
growth condition holds under B as follows:

‖B( f , ν)‖ ≤ K‖( f , ν)‖d +M∗, (3.21)

for each ( f , ν) ∈ gr ⊂ J , and ‖( f , ν)‖d = ‖ f ‖d + ‖ν‖d for d = max{d1, d2}, where K andM∗ are defined
in Remark 3.1.

Proof. We consider a bounded set gr = {( f , ν) ∈ J : ‖( f , ν)‖ ≤ r} along with the sequence ( fn, νn)
tending to ( f , ν) in gr. To prove ‖B( fn, νn) − B( f , ν)‖ → 0, as n → ∞, we first show the continuity of
B1. So, we estimate

|T1 fn(ς) − T1 f (ς)|

=
∣∣∣∣ ∫ 1

0
Gγ1(ς, η)φq

( ∫ 1

0
Gβ1(η, ξ)ψ1(νn(ξ))dξ

)
dη −

∫ 1

0
Gγ1(ς, η)φq

( ∫ 1

0
Gβ1(η, ξ)ψ1(ν(ξ))dξ

)
dη

∣∣∣∣
=

∣∣∣∣ ∫ 1

0
Gγ1(ς, η)

[
φq

( ∫ 1

0
Gβ1(η, ξ)ψ1(νn(ξ))dξ

)
dη − φq

( ∫ 1

0
Gβ1(η, ξ)ψ1(ν(ξ))dξ

]
dη

∣∣∣∣
≤

∫ 1

0
|Gγ1(ς, η)|

∣∣∣φq
( ∫ 1

0
Gβ1(η, ξ)ψ1(νn(ξ))dξ

)
dη − φq

( ∫ 1

0
Gβ1(η, ξ)ψ1(ν(ξ))dξ

∣∣∣dη
≤ (q − 1)ηq−2

1

∫ 1

0
|Gγ1(ς, η)|

∫ 1

0
|Gβ1(η, ξ)||νn(ξ) − ν(ξ)|dξdη

≤ (q − 1)ηq−2
1 εψ1 |νn(ξ) − ν(ξ)|

∫ 1

0
|Gγ1(ς, η)|

∫ 1

0
|Gβ1(η, ξ)|dξdη.

This implies

|T1 fn(ς) − T1 f (ς)| ≤ (q − 1)ηq−2
1 εψ1 |νn(ξ) − ν(ξ)|

∫ 1

0
|Gγ1(ς, η)|

∫ 1

0
|Gβ1(η, ξ)|dξds. (3.22)

For T2νn and T2ν, we use the same steps to get

|T2νn(ς) − T2ν(ς)| ≤ (q − 1)ηq−2
2 εψ3 | fn(ξ) − f (ξ)|

∫ 1

0
|Gγ2(ς, η)|

∫ 1

0
|Gβ2(s, ξ)|dξdη. (3.23)
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Since f and ν are continuous, therefore |νn(ξ) − ν(ξ)| → 0, and | fn(ξ) − f (ξ)| → 0 as n → ∞. By
using (3.22) and (3.23), we conclude that |T1 fn(ς) − T1 f (ς)| → 0 and |T2νn(ς) − T2ν(ς)| → 0 as
n → ∞. This implies that T1 and T2 are continuous. The continuity of T1 and T2 leads to that of
B1 = (T1,T2).

Secondly, to show the continuity of B2, we consider

|T3 fn(ς) − T3 f (ς)| = |ψ2(ς, νn(ς)) − ψ2(ς, ν(ς))|
≤ εψ2 |νn(ς) − ν(ς)|, (3.24)

and

|T4νn(ς) − T4ν(ς)| = |ψ4(ς, fn(ς)) − ψ4(ς, f (ς))|
≤ εψ4 | fn(ς) − f (ς)|. (3.25)

Since f and ν are continuous, therefore, |νn(ξ) − ν(ξ)| → 0 and | fn(ξ) − f (ξ)| → 0 as n → ∞. By
using (3.24) and (3.25), we conclude that |T3 fn(ς) − T3 f (ς)| → 0 and |T4νn(ς) − T4ν(ς)| → 0 as
n → ∞. This gives that T3 and T4 are continuous. The continuity of T3 and T4 gives that of the
operator B2 = (T3,T4). Consequently, B( f , ν) = (B1( f , ν),B2( f , ν)) is continuous.

In order to prove the inequality (3.21), we use T1, T2 and the assumption (R1) as follows:

|T1 f (ς)| =
∣∣∣ ∫ 1

0
Gγ1(ς, η)φq

( ∫ 1

0
Gβ1(η, ξ)ψ1(ν(ξ))dξ

)
dη

∣∣∣
≤

∫ 1

0
|Gγ1(ς, η)|φq

( ∫ 1

0
|Gβ1(η, ξ)||ψ1(ν(ξ))|dξ

)
dη

≤

∫ 1

0
|Gγ1(ς, η)|φq

( ∫ 1

0
|Gβ1(η, ξ)|φp(a1|ν|

d1 +Wψ1)dξ
)
dη

=

∫ 1

0

[
|Gγ1(ς, η)|φq

( ∫ 1

0
|Gβ1(η, ξ)|dξ

)]
dη(a1|ν|

d1 +Wψ1)

≤

∫ 1

0

[
|Gγ1(ς, η)|φq

( 1
Γ(β1 + 1)

+
λβ1−1

Γ(β1)
)]

dη(a1|ν|
d1 +Wψ1)

=

∫ 1

0

[
|Gγ1(ς, η)|

( 1
Γ(β1 + 1)

+
λβ1−1

Γ(β1)
)q−1]dη(a1|ν|

d1 +Wψ1)

≤
( 2
Γ(γ1 + 1)

+
1

Γ(m)Γ(γ1 − m + 2)
)( 1

Γ(β1 + 1)
+
λβ1−1

Γ(β1)
)q−1(a1|ν|

d1 +Wψ1).

This leads to
|T1 f (ς)| ≤ Y1(a1|ν|

d1 +Wψ1). (3.26)

For T2, by using the same steps, we obtain the following inequality:

|T2ν(ς)| ≤ Y2(a2| f |d2 +Wψ3). (3.27)

By (3.26) and (3.27), we have

AIMS Mathematics Volume 7, Issue 8, 14187–14207.



14198

|B1( f (ς), ν(ς))| = |T1 f (ς) + T2ν(ς)| ≤ |T1 f (ς)| + |T2ν(ς)|

≤ Y1(a1|ν|
d1 +Wψ1) +Y2(a2| f |d2 +Wψ3)

≤ a1Y1|ν|
d1 + a1Y1| f |d2 + a2Y2|ν|

d1

+a2Y2| f |d2 +Y1Wψ1 +Y2Wψ3

≤ (a1Y1 + a2Y2)‖( f , ν)‖d +B1.

This implies
|B1( f (ς), ν(ς))| ≤ Y∗1‖( f , ν)‖d +B1. (3.28)

Next, by using T3 and T4 and the assumption (R2), we get

|T3 f (ς)| = |ψ2(ς, ν(ς))| ≤ a3|ν|
d1 +Wψ2 , (3.29)

|T4ν(ς)| = |ψ4(ς, f (ς))| ≤ a4| f |d1 +Wψ4 . (3.30)

By (3.29) and (3.30), we have

|B2( f (ς), ν(ς))| = |T3 f (ς) + T4ν(ς)| ≤ |T3 f (ς)| + |T4v(ς)|

= |ψ2(ς, ν(ς))| + |ψ4(ς, f (ς))|

≤ a3|ν|
d1 +Wψ2 + a4| f |d2 +Wψ4

≤ a3|ν|
d1 + a3| f |d2 + a4|ν|

d1 + a4| f |d2 +Wψ2 +Wψ4

≤ (a3 + a4)‖( f , ν)‖d +Wψ2 +Wψ4 .

Thus,
|B2( f (ς), ν(ς))| ≤ Y∗2‖( f , ν)‖d +B2. (3.31)

With the aid of (3.28) and (3.31), we get

|B( f (ς), ν(ς))| ≤ |B1( f (ς), ν(ς))| + |B2( f (ς), ν(ς))|

≤ Y∗1‖( f , ν)‖d +B1 +Y∗2‖( f , ν)‖d +B2

= (Y∗1 +Y∗2)‖( f , ν)‖d +B1 +B2.

This gives us the following inequality:

|B( f (ς), ν(ς))| ≤ K‖( f , ν)‖d +B∗.

The proof is completed. �

Theorem 3.3. With assumption (R1), the operator B1 : J → J is compact. Moreover, B1 is B-
Lipschitz with constant zero.
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Proof. Based on Theorem 3.2, we conclude that the operator B1 : J → J is bounded. Next, with the
help of the assumption (R1) and by choosing ς1, ς2 ∈ [0, 1] arbitrarily, we have

|T1 f (ς1) − T1 f (ς2)| =
∣∣∣ ∫ 1

0

(
Gγ1(ς1, η) − Gγ1(ς2, η)

)
φq

( ∫ 1

0
Gβ1(ξ, η)ψ1

(
ξ, ν(ξ)

)
dξ

)
dη

∣∣∣
≤

∫ 1

0
|Gγ1(ς1, η) − Gγ1(ς2, η)|φq

( ∫ 1

0
|Gβ1(ξ, η)||ψ1

(
ξ, ν(ξ)

)
dξ|

)
dη

≤

∫ 1

0
|Gγ1(ς1, η) − Gγ1(ς2, η)|φq

( ∫ 1

0
|Gβ1(ξ, η)|φp(a1|ν|

d1 +Wψ1dξ)
)
dη

= (a1|ν|
d1 +Wψ1)

∫ 1

0
|Gγ1(ς1, η) − Gγ1(ς2, η)|φq

( ∫ 1

0
|Gβ1(ξ, η)|dξ

)
dη

≤ (a1|ν|
d1 +Wψ1)

( 1
Γ(β1 + 1)

+
λβ1−1

Γ(β1)
)q−1

∫ 1

0
|Gγ1(ς1, η) − Gγ1(ς2, η)|dη

= (a1|ν|
d1 +Wψ1)

( 1
Γ(β1 + 1)

+
λβ1−1

Γ(β1)
)q−1

.
[ |ςγ1

1 − ς
γ1
2 |

Γ(γ1 + 1)
−

|ςm−1
1 − ςm−1

2 |

Γ(m)Γ(γ1 − m + 2)
]
.

This implies

|T1 f (ς1) − T1 f (ς2)| ≤(a1|ν|
d1 +Wψ1)

( 1
Γ(β1 + 1)

+
λβ1−1

Γ(β1)
)q−1

×
[ |ςγ1

1 − ς
γ1
2 |

Γ(γ1 + 1)
−

|ςm−1
1 − ςm−1

2 |

Γ(m)Γ(γ1 − m + 2)
]
. (3.32)

Using the same steps with T2ν, we get

|T2ν(ς1) − T2ν(ς2)| ≤(a2| f |d2 +Wψ2)
( 1
Γ(β2 + 1)

+
λβ2−1

Γ(β2)
)q−1

×
[ |ςγ2

1 − ς
γ2
2 |

Γ(γ2 + 1)
−

|ςm−1
1 − ςm−1

2 |

Γ(m)Γ(γ2 − m + 2)
]
. (3.33)

By using (3.32) and (3.33), we have

|B1( f , ν)(ς1) −B1( f , ν)(ς2)|

≤ |T1 f (ς1) − T1 f (ς2)| + |T2ν(ς1) − T2ν(ς2)|

≤ (a1|ν|
d1 +Wψ1)

( 1
Γ(β1 + 1)

+
λβ1−1

Γ(β1)
)q−1
×

[ |ςγ1
1 − ς

γ1
2 |

Γ(γ1 + 1)
−

|ςm−1
1 − ςm−1

2 |

Γ(m)Γ(γ1 − m + 2)
]

+(a2| f |d2 +Wψ2)
( 1
Γ(β2 + 1)

+
λβ2−1

Γ(β2)
)q−1
×

[ |ςγ2
1 − ς

γ2
2 |

Γ(γ2 + 1)
−

|ςm−1
1 − ςm−1

2 |

Γ(m)Γ(γ2 − m + 2)
]
. (3.34)

As ς1 → ς2, the right-hand side of (3.34) tends to zero. Thus, B1 = T1 f (ς) + T2ν(ς) is an
equicontinuous operator on J . By Theorem 2.1, the operator B1(J) is compact. Therefore, B1 is
B-Lipschitz with constant zero (by Proposition 2.2). �
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Theorem 3.4. Under the assumptions (R1) and (R3), and with the condition K = (Y∗1 +Y∗2) < 1, the
system of coupled p-Laplacian HFDEs (1.1) has a solution, and the set of solution is bounded in J .

Proof. In order to prove the existence of the solution to our problem (1.1), Theorem 2.3 is used. Let

X = {( f , ν) ∈ J : ∃σ ∈ [0, 1], s.t. ( f , ν) = σB( f , ν)}. (3.35)

We consider a contrary procedure to demonstrate that X is bounded. For some ( f , ν) ∈ J , we have
‖( f , ν)‖ = S→ ∞. From Theorem 3.2, we estimate

‖( f , ν)‖ = ‖σB( f , ν)‖ ≤ ‖B( f , ν)‖ (3.36)

≤ K‖( f , ν)‖d +M∗.

Since ‖( f , ν)‖ = S, then (3.36) implies

‖( f , ν)‖ ≤ K‖( f , ν)‖d +M∗. (3.37)

Divide both sides of (3.37) by ‖( f , ν)‖. Thus,

1 ≤
K

‖( f , ν)‖1−d +
M∗

‖( f , ν)‖
.

Therefore,

1 ≤
K

S1−d +
M∗

S
→ 0 as S→ ∞.

This leads to that 1 ≤ 0 as S → ∞, but this is a contradiction of our assumption. Ultimately ‖( f , ν)‖ <
∞, and hence X is bounded set and by Theorem 2.3, B involves at least one fixed point which is the
solution to supposed system of coupled p-Laplacian HFDEs (1.1), and the set of such solutions is
bounded in J . �

Theorem 3.5. Let assumptions (R3) and (R4) to be held. Then the system of coupled p-Laplacian
HFDEs (1.1) has a unique solution if ∆ = Z1 +Z2 < 1.

Proof. Firstly, by using T1, T2 and assumptions (R3), (R4), we have

|T1 f (ς) − T1 f ∗(ς)|

=
∣∣∣ ∫ 1

0
Gγ1(ς, η)

[
φq

( ∫ 1

0
Gβ1(ξ, η)ψ1

(
ξ, ν(ξ)

)
dξ

)
− φq

( ∫ 1

0
Gβ1(ξ, η)ψ1

(
ξ, ν∗(ξ)

)
dξ

)]
dη

∣∣∣
≤

∫ 1

0
|Gγ1(ς, η)|

∣∣∣φq
( ∫ 1

0
Gβ1(ξ, η)ψ1

(
ξ, ν(ξ)

)
dξ

)
− φq

( ∫ 1

0
Gβ1(ξ, η)ψ1

(
ξ, ν∗(ξ)

)
dξ

)∣∣∣dη
≤ (q − 1)ηq−2

1

∫ 1

0
|Gγ1(ς, η)|

∫ 1

0
|Gβ1(ξ, η)||ψ1

(
ξ, ν(ξ)

)
− ψ1

(
ξ, ν∗(ξ)

)
|dξdη

≤ (q − 1)ηq−2
1 εψ1 |ν(ξ) − ν

∗(ξ)|
∫ 1

0
|Gγ1(ς, η)|

∫ 1

0
|Gβ1(ξ, η)|dξdη

≤ (q − 1)ηq−2
1 εψ1

( 2
Γ(γ1 + 1)

+
1

Γ(m)Γ(γ1 − m + 2)
)
×

( 1
Γ(β1 + 1)

+
λβ1−1

Γ(β1)
)
|ν(ξ) − v∗(ξ)|.
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This implies
|T1 f (ς) − T1 f ∗(ς)| ≤ Y3|ν(ξ) − ν∗(ξ)|. (3.38)

Using the same steps with T2, we get

|T2ν(ς) − T2ν
∗(ς)| ≤ Y4| f (ξ) − f ∗(ξ)|. (3.39)

By (3.38) and (3.39), we get

|B1( f , ν) −B1( f ∗, ν∗)| ≤ |T1 f (ς) − T1 f ∗(ς)| + |T2ν(ς) − T2ν
∗(ς)|

≤ Y3|ν(ξ) − ν∗(ξ)| +Y4| f (ξ) − f ∗(ξ)|

≤ Y3|ν(ξ) − v∗(ξ)| +Y3| f (ξ) − f ∗(ξ)|

+Y4| f (ξ) − f ∗(ξ)| +Y4|ν(ξ) − v∗(ξ)|

≤ (Y3 +Y4)‖( f , ν)(ξ) − ( f ∗, ν∗)(ξ)‖.

This leads to
|B1( f , ν) −B1( f ∗, ν∗)| ≤ Z1‖( f , ν)(ξ) − ( f ∗, ν∗)(ξ)‖. (3.40)

Secondly, using T3, T4 and assumptions (R3), (R4), we get

|T3 f (ς) − T3 f ∗(ς)| = |ψ2(ς, ν(ς)) − ψ2(ς, ν∗(ς))| ≤ εψ2 |ν(ξ) − ν
∗(ξ)|, (3.41)

|T4ν(ς) − T4ν
∗(ς)| = |ψ4(ς, f (ς)) − ψ4(ς, f ∗(ς))| ≤ εψ4 | f (ξ) − f ∗(ξ)|. (3.42)

By (3.41) and (3.42), we have

|B2( f , ν) −B2( f ∗, ν∗)| ≤ |T3 f (ς) − T3 f ∗(ς)| + |T4ν(ς) − T4ν
∗(ς)|

≤ εψ2 |ν(ξ) − ν
∗(ξ)| + εψ4 | f (ξ) − f ∗(ξ)|

≤ εψ2 |ν(ξ) − ν
∗(ξ)| + εψ2 | f (ξ) − f ∗(ξ)|

+εψ4 | f (ξ) − f ∗(ξ)| + εψ4 |ν(ξ) − ν
∗(ξ)|

≤ (εψ2 + εψ4)‖( f , ν)(ξ) − ( f ∗, ν∗)(ξ)‖.

This implies
|B2( f , ν) −B2( f ∗, ν∗)| ≤ Z2‖( f , ν)(ξ) − ( f ∗, ν∗)(ξ)‖. (3.43)

By using (3.40) and (3.43), we obtain

|B( f , ν) −B( f ∗, ν∗)| ≤ |B1( f , ν) −B1( f ∗, ν∗)| + |B2( f , ν) −B2( f ∗, ν∗)|

≤ Z1‖( f , ν)(ξ) − ( f ∗, ν∗)(ξ)‖ +Z2‖( f , ν)(ξ) − ( f ∗, ν∗)(ξ)‖.

Thus,
|B( f , ν) −B( f ∗, ν∗)| ≤ ∆‖( f , ν)(ξ) − ( f ∗, ν∗)(ξ)‖. (3.44)

By using the Banach’s theorem (Theorem 2.2), and by considering ∆ = Z1 + Z2 < 1, the
inequality (3.44) implies that the contraction B has a unique fixed point. It means that the system
of coupled p-Laplacian HFDEs (1.1) has a unique solution. �
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4. Hyers-Ulam Stability

In this part, we try to investigate HU-stability for the system of coupled p-Laplacian HFDEs (1.1).
We refer that stability can also be studied with Lyapunov’s direct method, which is considered as an
approach for analyzing a stable system without solving the FDEs explicitly, see [41]. We present the
following definition of HU-stability in the light of the definition offered in [42–44].

Definition 4.1. A system of coupled Hammerstein-type integral equations (3.17) and (3.18) is HU-
stable if there are M f ,Mν > 0 such that for each µ1, µ2 > 0, and ( f , ν) ∈ J satisfying the following
conditions:

If ∣∣∣ f (ς) − ψ2(ς, ν(ς)) −
∫ 1

0
Gγ1(ς, η)φq

( ∫ 1

0
Gβ1(η, ξ)ψ1(ν(ξ))dξ

)
dη

∣∣∣ ≤ µ1, (4.1)

∣∣∣ν(ς) − ψ4(ς, f (ς)) −
∫ 1

0
Gγ2(ς, η)φq

( ∫ 1

0
Gβ2(η, ξ)ψ3( f (ξ))dξ

)
dη

∣∣∣ ≤ µ2, (4.2)

then, there exists a pair, say ( f̄ (ς), ν̄(ς)) ∈ J satisfying

f̄ (ς) = ψ2(ς, ν̄(ς)) +

∫ 1

0
Gγ1(ς, η)φq

( ∫ 1

0
Gβ1(η, ξ)ψ1(ν̄(ξ))dξ

)
dη, (4.3)

ν̄(ς) = ψ4(ς, f̄ (ς)) +

∫ 1

0
Gγ2(ς, η)φq

( ∫ 1

0
Gβ2(η, ξ)ψ3( f̄ (ξ))dξ

)
dη, (4.4)

such that | f (ς) − f̄ (ς)| ≤ M fµ2, and |ν(ς) − ν̄(ς)| ≤ Mνµ1.

Theorem 4.1. With the assumptions (R3) and (R4), the solution of the system of coupled p-Laplacian
HFDEs (1.1) is HU-stable.

Proof. By Theorem 3.5 and Definition 4.1, let ( f (ς), ν(ς)) satisfies the system of coupled integral
equations (3.17) and (3.18). Let the pair ( f̄ (ς), ν̄(ς))be any other approximation satisfying (4.3)
and (4.4). In this case, we estimate

| f (ς) − f̄ (ς)|

=
∣∣∣ψ2(ς, ν(ς)) − ψ2(ς, ν̄(ς)) +

∫ 1

0
Gγ1(ς, η)

[
φq

( ∫ 1

0
Gβ1(ξ, η)ψ1

(
ξ, ν(ξ)

)
dξ

)
−φq

( ∫ 1

0
Gβ1(ξ, η)ψ1

(
ξ, ν̄(ξ)

)
dξ

)]
dη

∣∣∣
≤

∣∣∣ψ2(ς, ν(ς)) − ψ2(ς, ν̄(ς))
∣∣∣ +

∫
0
|Gγ1(ς, η)|

∣∣∣φq
( ∫ 1

0
Gβ1(ξ, η)ψ1

(
ξ, ν(ξ)

)
dξ

)
−φq

( ∫ 1

0
Gβ1(ξ, η)ψ1

(
ξ, ν̄(ξ)

)
dξ

)∣∣∣dη
≤ εψ2 |ν(ς) − ν̄(ς)| + (q − 1)ηq−2

1 ×

∫ 1

0
|Gγ1(ς, η)|

∫ 1

0
|Gβ1(ξ, η)||ψ1

(
ξ, ν(ξ)

)
− ψ1

(
ξ, ν̄(ξ)

)
|dξdη
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≤ εψ2 |ν(ς) − ν̄(ς)| + (q − 1)ηq−2
1 εψ1 |ν(ξ) − ν̄(ξ)|

∫ 1

0
|Gγ1(ς, η)|

∫ 1

0
|Gβ1(ξ, η)|dξdη

≤
[
εψ2 + (q − 1)ηq−2

1 εψ1

( 2
Γ(γ1 + 1)

+
1

Γ(m)Γ(γ1 − m + 2)
)
×

( 1
Γ(β1 + 1)

+
λβ1−1

Γ(β1)
)]
|ν(ς) − ν̄(ς)|.

This implies
| f (ς) − f̄ (ς)| ≤ (εψ2 +Y3)µ2. (4.5)

Using the same processes with ν(ς) and ν̄(ς), we get

|ν(ς) − ν̄(ς)| ≤ (εψ4 +Y4)µ1. (4.6)

Therefore, with the aid of (4.5), (4.6) and assuming M f = (εψ2 + Y3), Mν = (εψ4 + Y4), the coupled
system (3.17), (3.18) is HU-stable. According to that, the system of coupled p-Laplacian HFDEs (1.1)
is HU-stable. �

5. Example

An applied example of our system of coupled p-Laplacian HFDEs (1.1) will be addressed in this
section to examine our results.

Example 5.1. The following example is provided to highlight our theoretical results for higher-order
HFDE system with p-Laplacian operator when m = 3 given by

cD
9
4
0
[
φ4

(c
D

5
2
0
(
f (ς) − ψ2(ς, ν(ς))

))]
= −ψ1(ς, ν(ς)),

cD
11
4

0
[
φ4

(c
D

8
3
0
(
ν(ς) − ψ4(ς, f (ς))

))]
= −ψ3(ς, f (ς)),[

φ4
(cD

5
2
0
(
f (ς) − ψ2(ς, ν(ς))

))](i)
ς=0 =

[
φ4

(c
D

5
2
0
(
f (ς) − ψ2(ς, ν(ς))

))]′
ς=0.5 = 0,[

φ4
(cD

8
3
0
(
v(ς) − ψ4(ς, f (ς))

))](i)
ς=0 =

[
φ4

(c
D

8
3
0
(
ν(ς) − ψ4(ς, f (ς))

))]′
ς=0.5 = 0,

i ∈ Nm−1
0 − {1},(

ψ2(ς, ν(ς))
)(i)
ς=0 =

(
ψ4(ς, f (ς))

)(i)
ς=0 = 0, i ∈ N2

0,

f (1)(ς)ς=0 = f (2)(ς)ς=1 = 0, ν(1)(ς)ς=0 = ν(2)(ς)ς=1 = 0,

f (1) − 1
(m−1)! f (2)(0) = 0, ν(1) − 1

(2)!ν
(2)(0) = 0,

(5.1)

where ν ∈ [0, 1], a1 = a2 = d1 = d2 = 0.3, p = 4, q = 4
3 , λ = 0.5, γ1 = 5

2 , γ2 = 8
3 , β1 = 9

4 , β2 = 11
4 , η1 =

η2 = 1, ψ1 = 5
16ς+sin(ν(ς)), ψ2 =

√
ς(17

26 +5 cos(ν(ς))), ψ3 = 4
13ς

2 +cos( f (ς)), ψ4 = ς
1
3 ( 5

16ς+sin( f (ς))),
εψ1 = εψ3 = 3

8 , and εψ2 = εψ4 = 1
8 . By simple calculations, we get Y3 = 0.111259, Y4 = 0.0540563.

So, Z1 = 0.1653153, Z2 = 0.25. Then, we have ∆ = Z1 +Z2 = 0.4153153 < 1. By Theorem 3.5,
we deduce that the higher-order HFDE system with p-Laplacian operator (5.1) has a unique solution.
With similar fashion, the satisfication of the conditions of Theorem 4.1 can be easily established and
according to that fact, the system of coupled p-Laplacian HFDEs (5.1) is HU-stable.

AIMS Mathematics Volume 7, Issue 8, 14187–14207.



14204

6. Conclusions

As a result of the Banach contraction principle, Arzela-Ascoli’s theorem, and nonlinear functional
analysis, our work has provided suitable conditions for the existence and uniqueness of solution to the
higher-order nonlinear boundary value problem of HFDEs which is more general and complex than
many nonlinear problems in the literature. Moreover, the existence and uniqueness results were proved
by using the topological degree method. The stability of the proposed system has been studied in
the sense of Hyers-Ulam criterion. To validate our results, we provided an illustrative example. We
also suggest for the researchers that the problem (1.1) has the potential to be studied for further aims,
including multiplicity results and generalizing it with nonsingular operators.
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