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1. Introduction

Mathematical modelling provides a systematic formalism for the understanding of the
corresponding real-world problem. Moreover, adequate mathematical tools for the analysis of the
translated real-world problem are at our disposal. Fixed point theory (FPT), an important branch of
nonlinear functional analysis, is prominent for modelling a variety of real-world problems. It is worth
mentioning that the real-world phenomenon can be translated into well known existential as well as
computational FPP.

The EP theory provides an other systematic formalism for modelling the real-world problems
with possible applications in optimization theory, variational inequality theory and game theory
[7, 10, 13, 17–19, 22, 25, 28, 31, 32]. In 1994, Blum and Oettli [13] proposed the (monotone-) EP in
Hilbert spaces. Since then various classical iterative algorithms are employed to compute the optimal
solution of the (monotone-) EP and the FPP. It is remarked that the convergence characteristic and the
speed of convergence are the principal attributes of an iterative algorithm. All the classical iterative
algorithms from FPT or EP theory have a common shortcoming that the convergence characteristic
occurs with respect to the weak topology. In order to enforce the strong convergence characteristic, one
has to assume stronger assumptions on the domain and/or constraints. Moreover, strong convergence
characteristic of an iterative algorithm is often more desirable than weak convergence characteristic in
an infinite dimensional framework.

The efficiency of an iterative algorithm can be improved by employing the inertial extrapolation
technique [29]. This technique has successfully been combined with the different classical iterative
algorithms; see e.g., [2–6, 8, 9, 14–16, 23, 27]. On the other hand, the parallel architecture of the
algorithm helps to reduce the computational cost.

In 2006, Tada and Takahashi [33] suggested a hybrid framework for the analysis of monotone EP
and FPP in Hilbert spaces. On the other hand, the iterative algorithm proposed in [33] fails for the
case of pseudomonotone EP. In order to address this issue, Anh [1] suggested a hybrid extragradient
method, based on the seminal work of Korpelevich [24], to address the pseudomonotone EP together
with the FPP. Inspired by the work of Anh [1], Hieu et al. [22] suggested a parallel hybrid extragradient
framework to address the pseudomonotone EP together with the FPP associated with nonexpansive
operators.

Inspired and motivated by the ongoing research, it is natural to study the pseudomonotone EP
together with the FPP associated with the class of an η-demimetric operators. We therefore, suggest
some variants of the classical Mann iterative algorithm [26] and the Halpern iterative algorithm [20]
in Hilbert spaces. We formulate these variants endowed with the inertial extrapolation technique and
parallel hybrid architecture for speedy strong convergence results in Hilbert spaces.

The rest of the paper is organized as follows. We present some relevant preliminary concepts and
useful results regarding the pseudomonotone EP and FPP in Section 2. Section 3 comprises strong
convergence results of the proposed variants of the parallel hybrid extragradient algorithm as well
as Halpern iterative algorithm under suitable set of constraints. In Section 4, we provide detailed
numerical results for the demonstration of the main results in Section 3 as well as the viability of the
proposed variants with respect to various real-world applications.
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2. Preliminaries

Throughout this section, the triplet (H , < ·, · >, ‖·‖) denotes the real Hilbert space, the inner product
and the induced norm, respectively. The symbolic representation of the weak and strong convergence
characteristic are ⇀ and →, respectively. Recall that a Hilbert space satisfies the Opial’s condition,
i.e., for a sequence (pk) ⊂ H with pk ⇀ ν then the inequality lim infk→∞ ‖pk − ν‖ < lim infk→∞ ‖pk −µ‖

holds for all µ ∈ H with ν , µ. Moreover,H satisfies the the Kadec-Klee property, i.e., if pk ⇀ ν and
‖pk‖ → ‖ν‖ as k → ∞, then ‖pk − ν‖ → 0 as k → ∞.

For a nonempty closed and convex subset K ⊆ H , the metric projection operator ΠHK : H → K is
defined as ΠHK (µ) = argminν∈K‖µ − ν‖. If T : H → H is an operator then Fix(T ) = {ν ∈ H|ν = Tν}
represents the set of fixed points of the operator T . Recall that the operator T is called η-demimetric
(see [35]) where η ∈ (−∞, 1), if Fix(T ) , ∅ and

〈µ − ν, µ − Tµ〉 ≥
1
2

(1 − η)‖µ − Tµ‖2, ∀ µ ∈ H and ν ∈ Fix(T ).

The above definition is equivalently represented as

‖Tµ − ν‖2 ≤ ‖µ − ν‖2 + η‖µ − Tµ‖2, ∀ µ ∈ H and ν ∈ Fix(T ),

Recall also that a bifunction g : K × K → R ∪ {+∞} is coined as (i) monotone if g(µ, ν) +

g(ν, µ) ≤ 0, for all µ, ν ∈ K; and (ii) strongly pseudomonotone if g(µ, ν) ≥ 0 ⇒ g(ν, µ) ≤
−α‖µ − ν‖2, for all µ, ν ∈ K, where α > 0. It is worth mentioning that the monotonicity of a
bifunction implies the pseudo-monotonicity, but the converse is not true. Recall the EP associated
with the bifunction g is to find µ ∈ K such that g(µ, ν) ≥ 0 for all ν ∈ K. The set of solutions of the
equilibrium problem is denoted by EP(g).

Assumption 2.1. [12, 13] Let g : K × K → R ∪ {+∞} be a bifunction satisfying the following
assumptions:
(A1) g is pseudomonotone, i.e., g(µ, ν) ≥ 0⇒ g(µ, ν) ≤ 0, for all µ, ν ∈ K;
(A2) g is Lipschitz-type continuous, i.e., there exist two nonnegative constants d1, d2 such that

g(µ, ν) + g(ν, ξ) ≥ g(µ, ξ) − d1‖µ − ν‖
2 − d2‖ν − ξ‖

2, for all µ, ν, ξ ∈ K;

(A3) g is weakly continuous on K ×K imply that, if µ, ν ∈ K and (pk), (qk) are two sequences in K such
that pk ⇀ µ and qk ⇀ ν respectively, then f (pk, qk)→ f (µ, ν);
(A4) For each fixed µ ∈ K, g(µ, ·) is convex and subdifferentiable on K.

In view of the Assumption 2.1, EP(g) associated with the bifunction g is weakly closed and convex.
Let gi : K ×K → R∪ {+∞} be a finite family of bifunctions satisfying Assumption 2.1. Then for all

i ∈ {1, 2, · · · ,M}, we can compute the same Lipschitz coefficients (d1, d2) for the family of bifunctions
gi by employing the condition (A2) as

gi(µ, ξ) − gi(µ, ν) − gi(ν, ξ) ≤ d1,i‖µ − ν‖
2 + d2,i‖ν − ξ‖

2 ≤ d1‖µ − ν‖
2 + d2‖ν − ξ‖

2,

where d1 = max1≤i≤M{d1,i} and d2 = max1≤i≤M{d2,i}. Therefore, gi(µ, ν) + gi(ν, ξ) ≥ gi(µ, ξ) − d1‖µ −

ν‖2 − d2‖ν − ξ‖
2. In addition, we assume T j : H → H to be a finite family of η-demimetric operators

such that Γ :=
(⋂M

i=1 EP(gi)
)
∩

(⋂N
j=1 Fix(T j)

)
, ∅. Then we are interested in the following problem:

p̂ ∈ Γ. (2.1)
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Lemma 2.2. [11] Let µ, ν ∈ H and β ∈ R then

(1) ‖µ + ν‖2 ≤ ‖µ‖2 + 2〈ν, µ + ν〉;

(2) ‖µ − ν‖2 = ‖µ‖2 − ‖ν‖2 − 2〈µ − ν, ν〉;

(3) ‖βµ + (1 − β)ν‖2 = β‖µ‖2 + (1 − β)‖ν‖2 − β(1 − β)‖µ − ν‖2.

Lemma 2.3. [35] Let T : K → H be an η-demimetric operator defined on a nonempty, closed and
convex subset K of a Hilbert spaceH with η ∈ (−∞, 1). Then Fix(T ) is closed and convex.

Lemma 2.4. [36] Let T : K → H be an η-demimetric operator defined on a nonempty, closed and
convex subset K of a Hilbert space H with η ∈ (−∞, 1). Then the operator L = (1 − γ)Id + γT is
quasi-nonexpansive provided that Fix(T ) , ∅ and 0 < γ < 1 − η.

Lemma 2.5. [11] Let T : K → K be a nonexpansive operator defined on a nonempty closed convex
subset K of a real Hilbert spaceH and let (pk) be a sequence in K. If pk ⇀ x and if (Id − T )pk → 0,
then x ∈ Fix(T ).

Lemma 2.6. [37] Let h : K → R be a convex and subdifferentiable function on nonempty closed and
convex subset K of a real Hilbert space H . Then, p∗ solves the min{h(q) : q ∈ K}, if and only if
0 ∈ ∂h(p∗)+NK(p∗), where ∂h(·) denotes the subdifferential of h and NK( p̄) is the normal cone of K at p̄.

3. Algorithm and convergence analysis

Our main iterative algorithm of this section has the following architecture:

Algorithm 1 Parallel Hybrid Inertial Extragradient Algorithm (Alg.1)
Initialization: Choose arbitrarily, p0, p1 ∈ H , K ⊆ H and C1 = H . Set k ≥ 1, {α1, · · · , αN} ⊂ (0, 1)
such that

∑N
j=1 α j = 1, 0 < µ < min( 1

2d1
, 1

2d2
), ξk ⊂ [0, 1) and γk ∈ (0,∞).

Iterative Steps: Given pk ∈ H , calculate ek, v̄k and wk as follows:
Step 1. Compute

ek = pk + ξk(pk − pk−1);
ui,k = arg min{µgi(ek, ν) + 1

2‖ek − ν‖
2 : ν ∈ K}, i = 1, 2, · · · ,M;

vi,k = arg min{µgi(ui,k, ν) + 1
2‖ek − ν‖

2 : ν ∈ K}, i = 1, 2, · · · ,M;
ik = arg max{‖vi,k − pk‖ : i = 1, 2, · · · ,M}, v̄k = vik ,k;
wk =

∑N
j=1 α j((1 − γk)Id + γkT j)v̄k;

If wk = v̄k = ek = pk then terminate and pk solves the problem 2.1. Else
Step 2. Compute

Ck+1 = {z ∈ Ck : ‖wk − z‖2 ≤ ‖pk − z‖2 + ξ2
k‖pk − pk−1‖

2 + 2ξk〈pk − z, pk − pk−1〉},

pk+1 = ΠHCk+1
p1, ∀ k ≥ 1.

Set k =: k + 1 and return to Step 1.

Theorem 3.1. Let the following conditions:
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(C1)
∑∞

k=1 ξk‖pk − pk−1‖ < ∞;
(C2) 0 < a∗ ≤ γk ≤ min{1 − η1, · · · , 1 − ηN},

hold. Then Algorithm 1 solves the problem 2.1.

The following result is crucial for the strong convergence result of the Algorithm 1.

Lemma 3.2. [1, 30] Suppose that ν∗ ∈ EP(gi), and pk, ek, ui,k, vi,k, i ∈ {1, 2, · · · ,M} are defined in
Step 1 of the Algorithm 1. Then we have

‖vi,k − ν∗‖
2 ≤ ‖ek − ν∗‖

2 − (1 − 2µd1)‖ui,k − ek‖
2 − (1 − 2µd2)‖ui,k − vi,k‖

2.

Proof of Theorem 3.1.
Step 1. The Algorithm 1 is stable.
Observe the following representation of the set Ck+1:

Ck+1 = {z ∈ Ck : 〈wk − pk, z〉 ≤
1
2

(‖wk‖
2 − ‖pk‖

2 + ξ2
k‖pk − pk−1‖

2 + 2ξk〈pk − z, pk − pk−1〉)}.

This infers that Ck+1 is closed and convex for all k ≥ 1. It is well-known that EP(gi) and Fix(T j) (from
the Assumption 2.1 and Lemma 2.3, respectively) are closed and convex. Hence Γ is nonempty, closed
and convex. For any p∗ ∈ Γ, it follows from Algorithm 1 that

‖ek − p∗‖2 = ‖pk − p∗ + ξk(pk − pk−1)‖2

≤ ‖pk − p∗‖2 + ξ2
k‖pk − pk−1‖

2 + 2ξk〈pk − p∗, pk − pk−1〉. (3.1)

From (3.1) and recalling Lemma 2.4, we obtain

‖wk − p∗‖ =
∥∥∥∥ N∑

j=1

α j((1 − γk)Id + γkT j)v̄k − p∗
∥∥∥∥ ≤ N∑

j=1

α j‖((1 − γk)Id + γkT j)v̄k − p∗‖

≤

N∑
j=1

α j‖v̄k − p∗‖ = ‖v̄k − p∗‖.

Now recalling Lemma 3.2, the above estimate implies that

‖wk − p∗‖2 ≤ ‖v̄k − p∗‖2

≤ ‖pk − p∗‖2 + ξ2
k‖pk − pk−1‖

2 + 2ξk〈pk − p∗, pk − pk−1〉. (3.2)

The above estimate (3.2) infers that Γ ⊂ Ck+1. It is now clear from these facts that the Algorithm 1 is
well-defined.
Step 2. The limit limk→∞ ‖pk − p1‖ exists.
From pk+1 = ΠHCk+1

p1, we have 〈pk+1 − p1, pk+1 − ν〉 ≤ 0 for each ν ∈ Ck+1. In particular, we have
〈pk+1 − p1, pk+1 − p∗〉 ≤ 0 for each p∗ ∈ Γ. This proves that the sequence (‖pk − p1‖) is bounded.
However, from pk = Π

H1
Ck

p1 and pk+1 = Π
H1
Ck+1

p1 ∈ Ck+1, we have that

‖pk − p1‖ ≤ ‖pk+1 − p1‖.

This infers that (‖pk − p1‖) is nondecreasing and hence

lim
k→∞
‖pk − p1‖ exists. (3.3)
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Step 3. p̃∗ ∈ Γ.

Compute

‖pk+1 − pk‖
2 = ‖pk+1 − p1 + p1 − pk‖

2

= ‖pk+1 − p1‖
2 + ‖pk − p1‖

2
− 2 〈pk − p1, pk+1 − p1〉

= ‖pk+1 − p1‖
2 + ‖pk − p1‖

2
− 2 〈pk − p1, pk+1 − pk + pk − p1〉

= ‖pk+1 − p1‖
2
− ‖pk − p1‖

2
− 2 〈pk − p1, pk+1 − pk〉

≤ ‖pk+1 − p1‖
2
− ‖pk − p1‖

2 .

Utilizing (3.3), the above estimate infers that

lim
k→∞
‖pk+1 − pk‖ = 0. (3.4)

Recalling the definition of (ek) and the condition (C1), we have

lim
k→∞
‖ek − pk‖ = lim

k→∞
ξk‖pk − pk−1‖ = 0. (3.5)

Recalling (3.4) and (3.5), the following relation

‖ek − pk+1‖ ≤ ‖ek − pk‖ + ‖pk − pk+1‖,

infers that
lim
k→∞
‖ek − pk+1‖ = 0. (3.6)

Note that pk+1 ∈ Ck+1, therefore the following relation

‖wk − pk+1‖ ≤ ‖pk − pk+1‖ + 2ξk‖pk − pk−1‖ + 2ξk〈pk − pk+1, pk − pk−1〉,

infers, on employing (3.4) and the condition (C1), that

lim
k→∞
‖wk − pk+1‖ = 0. (3.7)

Again, recalling (3.4) and (3.7), the following relation

‖wk − pk‖ ≤ ‖wk − pk+1‖ + ‖pk+1 − pk‖

infers that
lim
k→∞
‖wk − pk‖ = 0. (3.8)

In view of the condition (C2), observe the variant of (3.2)

(1 − 2µd1)‖uik ,k − ek‖
2 − (1 − 2µd2)‖uik ,k − vik ,k‖

2

≤ (‖pk − p∗‖ + ‖wk − p∗‖)‖pk − wk‖ + ξ2
k‖pk − pk−1‖

2 + 2ξk‖pk − p∗‖‖pk − pk−1‖.

Recalling (3.8) and condition (C1), we get

(1 − 2µd1) lim
k→∞
‖uik ,k − ek‖

2 − (1 − 2µd2) lim
k→∞
‖uik ,k − vik ,k‖

2 = 0. (3.9)

The above estimate (3.9) implies that

lim
k→∞
‖uik ,k − ek‖

2 = lim
k→∞
‖uik ,k − vik ,k‖

2 = 0. (3.10)

Reasoning as above, recalling (3.5), (3.8) and (3.10), we have

AIMS Mathematics Volume 7, Issue 8, 13910–13926.



13916

• ‖v̄k − ek‖ ≤ ‖v̄k − uik ,k‖ + ‖uik ,k − ek‖ → 0;
• ‖v̄k − pk‖ ≤ ‖v̄k − ek‖ + ‖ek − pk‖ → 0;
• ‖wk − ek‖ ≤ ‖wk − pk‖ + ‖pk − ek‖ → 0;
• ‖wk − v̄k‖ ≤ ‖wk − ek‖ + ‖ek − v̄k‖ → 0.

In view of the estimate limk→∞ ‖wk − v̄k‖ = 0, we have

lim
k→∞
‖T jv̄k − v̄k‖ = 0, ∀ j = {1, 2, · · · ,N}. (3.11)

Next, we show that p̃∗ ∈
⋂M

i=1 EP(gi).
Observe that

ui,k = arg min{µgi(ek, ν) +
1
2
‖ek − ν‖

2 : ν ∈ K}.

Recalling Lemma 2.6, we get

0 ∈ ∂2{µgi(ek, ν) +
1
2
‖ek − ν‖

2}(ui,k) + NK(ui,k).

This implies the existence of x̃ ∈ ∂2gi(ek, ui,k) and x̃∗ ∈ NK(ui,k) such that

µx̃ + ek − ui,k + x̃∗. (3.12)

Since x̃∗ ∈ NK(ui,k) and 〈x̃∗, ν − ui,k〉 ≤ 0 for all ν ∈ K. Therefore recalling (3.12), we have

µ〈x̃, ν − ui,k〉 ≥ 〈ui,k − ek, ν − ui,k〉, ∀ ν ∈ K. (3.13)

Since x̃ ∈ ∂2gi(ek, ui,k),
gi(ek, ν) − gi(ek, ui,k) ≥ 〈p, ν − ui,k〉, ∀ ν ∈ K. (3.14)

Therefore recalling (3.13) and (3.14), we obtain

µ(gi(ek, ν) − gi(ek, ui,k)) ≥ 〈ui,k − ek, ν − ui,k〉, ∀ ν ∈ K. (3.15)

Observe from the fact that (pk) is bounded then pkt ⇀ p̃∗ ∈ H as t → ∞ for a subsequence (pkt) of (pk).
This also infers that w̄kt ⇀ p̃∗, v̄kt ⇀ p̃∗ and bkt ⇀ p̃∗ as t → ∞. Since ek ⇀ p̃∗ and ‖ek − ui,k‖ → 0 as
k → ∞, this implies ui,k ⇀ p̃∗. Recalling the assumption (A3) and (3.15), we deduce that gi( p̃∗, ν) ≥ 0
for all ν ∈ K and i ∈ {1, 2, · · · ,M}. Therefore, p̃∗ ∈

⋂M
i=1 EP(gi). Moreover, recall that v̄kt ⇀ p̃∗ as

t → ∞ and (3.11) we have p̃∗ ∈
⋂N

j=1 Fix(T j). Hence p̃∗ ∈ Γ.
Step 4. pk → p∗ = ΠH

Γ
p1.

Since p∗ = ΠH
Γ

p1 and p̃∗ ∈ Γ, therefore we have pk+1 = ΠHCk+1
p1 and p∗ ∈ Γ ⊂ Ck+1. This implies that

‖pk+1 − p1‖ ≤ ‖p∗ − p1‖ .

By recalling the weak lower semicontinuity of the norm, we have

‖p1 − p∗‖ ≤ ‖p1 − p̃∗‖ ≤ lim inf
t→∞

‖p1 − pkt‖ ≤ lim sup
t→∞

‖p1 − pkt‖ ≤ ‖p1 − p∗‖.

Recalling the uniqueness of the metric projection operator yields that p̃∗ = p∗ = ΠH
Γ

p1. Also
limt→∞ ‖pkt − p1‖ = ‖p∗ − p1‖ = ‖ p̃∗ − p1‖. Moreover, recalling the Kadec-Klee property of H with
the fact that pkt − p1 ⇀ p̃∗ − p1, we have pkt − p1 → p̃∗ − p1 and hence pkt → p̃∗. This completes the
proof. �
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Corollary 3.3. Let K ⊆ H be a nonempty closed and convex subset of a real Hilbert spaceH . For all
i ∈ {1, 2, · · · ,M}, let gi : K ×K → R∪{+∞} be a finite family of bifunctions satisfying Assumption 2.1.
Assume that Γ :=

⋂M
i=1 EP(gi) , ∅, such that

ek = pk + ξk(pk − pk−1);
ui,k = arg min{µgi(ek, ν) + 1

2‖ek − ν‖
2 : ν ∈ K}, i = 1, 2, · · · ,M;

vi,k = arg min{µgi(ui,k, ν) + 1
2‖ek − ν‖

2 : ν ∈ K}, i = 1, 2, · · · ,M;
ik = arg max{‖vi,k − pk‖ : i = 1, 2, · · · ,M}, v̄k = vik ,k;
Ck+1 = {z ∈ Ck : ‖v̄k − z‖2 ≤ ‖pk − z‖2 + ξ2

k‖pk − pk−1‖
2 + 2ξk〈pk − z, pk − pk−1〉};

pk+1 = ΠHCk+1
p1,∀ k ≥ 1.

(3.16)

Assume that the condition (C1) holds, then the sequence (pk) generated by (3.16) strongly converges
to a point in Γ.

We now propose an other variant of the hybrid iterative algorithm embedded with the Halpern
iterative algorithm [20].

Algorithm 2 Parallel Hybrid Inertial Halpern-Extragradient Algorithm (Alg.2)
Initialization: Choose arbitrarily q, p0, p1 ∈ H , K ⊆ H and C1 = H . Set k ≥ 1, {α1, · · · , αN}, βk ⊂

(0, 1) such that
∑N

j=1 α j = 1, 0 < µ < min( 1
2d1
, 1

2d2
), ξk ⊂ [0, 1) and γk ∈ (0,∞).

Iterative Steps: Given pk ∈ H , calculate ek, v̄k and wk as follows:
Step 1. Compute

ek = pk + ξk(pk − pk−1);
ui,k = arg min{µgi(ek, ν) + 1

2‖ek − ν‖
2 : ν ∈ K}, i = 1, 2, · · · ,M;

vi,k = arg min{µgi(ui,k, ν) + 1
2‖ek − ν‖

2 : ν ∈ K}, i = 1, 2, · · · ,M;
ik = arg max{‖vi,k − pk‖ : i = 1, 2, · · · ,M}, v̄k = vik ,k;
wk =

∑N
j=1 α j((1 − γk)Id + γkT j)v̄k;

tl,k = βkq + (1 − βk)wk;
lk = arg max{‖t j,k − pk‖ : j = 1, 2, · · · , P}, t̄k = tlk ,k.

If t̄k = wk = v̄k = ek = pk then terminate and pk solves the problem 2.1. Else
Step 2. Compute

Ck+1 = {z ∈ Ck : ‖t̄k − z‖2 ≤ βk‖q − z‖2 + (1 − βk)(‖pk − z‖2 + ξ2
k‖pk − pk−1‖

2

+2ξk〈pk − z, pk − pk−1〉)};
pk+1 = ΠHCk+1

p1, ∀ k ≥ 1.

Set k =: k + 1 and go back to Step 1.

Remark 3.4. Note for the Algorithm 2 that the claim pk is a common solution of the EP and FPP
provided that pk+1 = pk, in general is not true. So intrinsically a stopping criterion is implemented for
k > kmax for some chosen sufficiently large number kmax.

Theorem 3.5. Let Γ , ∅ and the following conditions:

(C1)
∑∞

k=1 ξk‖pk − pk−1‖ < ∞;
(C2) 0 < a∗ ≤ γk ≤ min{1 − η1, · · · , 1 − ηN} and limk→∞ βk = 0,
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hold. Then the Algorithm 2 solves the problem 2.1.

Proof. Observe that the set Ck+1 can be expressed in the following form:

Ck+1 = {z ∈ Ck : ‖t̄k − z‖2 ≤ βk‖q − z‖2 + (1 − βk)(‖pk − z‖2 + ξ2
k‖pk − pk−1‖

2

+2ξk〈pk − z, pk − pk−1〉)}.

Recalling the proof of Theorem 3.1, we deduce that the sets Γ and Ck+1 are closed and convex satisfying
Γ ⊂ Ck+1 for all k ≥ 0. Further, (pk) is bounded and

lim
k→∞
‖pk+1 − pk‖ = 0. (3.17)

Since pk+1 = ΠHCk+1
(q) ∈ Ck+1, we have

‖t̄k − pk+1‖
2 ≤ βk‖q − pk+1‖

2 + (1 − βk)(‖pk − pk+1‖
2 + ξ2

k‖pk − pk−1‖
2

+2ξk〈pk − pk+1, pk − pk−1〉).

Recalling the estimate (3.17) and the conditions (C1) and (C2), we obtain

lim
k→∞
‖t̄k − pk+1‖ = 0.

Reasoning as above, we get
lim
k→∞
‖t̄k − pk‖ = 0.

The rest of the proof of Theorem 3.5 follows from the proof of Theorem 3.1 and is therefore omitted.
�
The following remark elaborate how to align condition (C1) in a computer-assisted iterative algorithm.

Remark 3.6. We remark here that the condition (C1) can easily be aligned in a computer-assisted
iterative algorithm since the value of ‖pk − pk−1‖ is quantified before choosing ξk such that 0 ≤ ξk ≤ ξ̂k

with

ξ̂k =

{
min{ σk

‖pk−pk−1‖
, ξ} i f pk , pk−1;

ξ otherwise.

Here {σk} denotes a sequence of positives
∑∞

k=1 σk < ∞ and ξ ∈ [0, 1).

As a direct application of Theorem 3.1, we have the following variant of the problem 2.1, namely
the generalized split variational inequality problem associated with a finite family of single-valued
monotone and hemicontinuous operators A j : K → H defined on a nonempty closed convex subset K
of a real Hilbert spaceH for each j ∈ {1, 2, · · · ,N}. The set VI(K, A) represents all the solutions of the
following variational inequality problem 〈Aµ, ν − µ〉 ≥ 0 ∀ ν ∈ C.

Theorem 3.7. Assume that Γ =
⋂M

i=1 VI(C, Ai) ∩
⋂N

j=1 Fix(T j) , ∅ and the conditions (C1)–(C4) hold.
Then the sequence (pk)

ek = pk + ξk(pk − pk−1);
ui,k = ΠK(ek − µAi(ek)), i = 1, 2, · · · ,M;
vi,k = ΠK(ek − µAi(ui,k)), i = 1, 2, · · · ,M;
ik = arg max{‖vi,k − pk‖ : i = 1, 2, · · · ,M}, v̄k = vik ,k;
wk =

∑N
j=1 α j((1 − γk)Id + γkT j)v̄k;

Ck+1 = {z ∈ Ck : ‖wk − z‖2 ≤ ‖pk − z‖2 + ξ2
k‖pk − pk−1‖

2 + 2ξk〈pk − z, pk − pk−1〉},

pk+1 = ΠHCk+1
p1, ∀ k ≥ 1,

(3.18)

generated by (3.18) solves the problem 2.1.
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Proof. Observe that, if we set gi(µ̄, ν̄) = 〈Ai(µ̄), ν̄ − µ̄〉 for all µ̄, ν̄ ∈ K, then each Ai being L-Lipschitz
continuous infers that gi is Lipschitz-type continuous with d1 = d2 = L

2 . Moreover, the pseudo-
monotonicity of Ai ensures the pseudo-monotonicity of gi. Recalling the assumptions (A3)–(A4) and
the Algorithm 1, note that

ui,k = arg min{µ〈Ai(pk), ν − pk〉 +
1
2
‖pk − ν‖

2 : ν ∈ K};

vi,k = arg min{µ〈Ai(ui,k), ν − ui,k〉 +
1
2
‖pk − ν‖

2 : ν ∈ K},

can be transformed into

ui,k = arg min{
1
2
‖ν − (pk − µAi(pk)‖2 : ν ∈ K} = ΠK(pk − µAi(pk));

vi,k = arg min{
1
2
‖ν − (pk − µAi(ui,k)‖2 : ν ∈ K} = ΠK(pk − µAi(ui,k)).

Hence recalling gi(µ̄, ν̄) = 〈Ai(µ̄), ν̄ − µ̄〉 for all µ̄, ν̄ ∈ K and for all i ∈ {1, 2, · · · ,M} in Theorem 3.1,
we have the desired result. �

4. Numerical experiment and results

This section provides the effective viability of the algorithm via a suitable numerical experiment.

Example 4.1. Let H = R be the set of all real numbers with the inner product defined by 〈p, q〉 =

pq, for all p, q ∈ R and the induced usual norm | · |. For each i = {1, 2, · · · ,M}, let the family of
pseudomonotone bifunctions gi(p, q) : K × K → R on K = [0, 1] ⊂ H , is defined by gi(p, q) =

S i(p)(q − p), where

S i(p) =

{
0, 0 ≤ p ≤ λi;
sin(p − λi) + exp(p − λi) − 1, λi ≤ p ≤ 1.

where 0 < λ1 < λ2 < ... < λM < 1. Note that EP(gi) = [0, λi] if and only if 0 ≤ p ≤ λi and q ∈ [0, 1].
Consequently,

⋂M
i=1 EP(gi) = [0, λ1]. For each j ∈ {1, 2, · · · ,N}, let the family of operators T j : R→ R

be defined by

T j(p) =

{
−

3p
j , p ∈ [0,∞);

p, p ∈ (−∞, 0).

Clearly, T j defines a finite family of η-demimetric operators with
⋂N

j=1 Fix(T j) = {0}. Hence Γ =

(
⋂M

i=1 EP(gi)) ∩ (
⋂N

j=1 Fix(T j)) = 0. In order to compute the numerical values of the Algorithm 1, we
choose ξ = 0.5, αk = 1

100k+1 , µ = 1
7 , λi = i

(M+1) , M = 2 × 105 and N = 3 × 105. Since{
min{ 1

k2‖pk−pk−1‖
, 0.5} i f pk , pk−1;

0.5 otherwise,

Observe that the expression

ui,k = arg min{µS i(ek)(ν − ek) +
1
2

(y − pk)2, ∀ ν ∈ [0, 1]},
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in the Algorithm 1 is equivalent to the following relation ui,k = ek − µS i(ek), for all i ∈ {1, 2, · · · ,M}.
Similarly vi,k = ek − µS i(ui, k), for all i ∈ {1, 2, · · · ,M}. Hence, we can compute the intermediate
approximation v̄k which is farthest from ek among vi,k, for all i ∈ {1, 2, · · · ,M}. Generally, at the kth

step if Ek = ‖pk − pk−1‖ = 0 then pk ∈ Γ implies that pk is the required solution of the problem. The
terminating criteria is set as Ek < 10−6. The values of the Algorithm 1 and its variant are listed in the
following table (see Table 1):

Table 1. Numerical values of Algorithm 1.
No. of Iter. CPU-Time (Sec)

N0. Alg.1,ξk = 0 Alg.1, ξk , 0 Alg.1, ξk = 0 Alg.1, ξk , 0
Choice 1. p0 = (5), p1 = (2) 87 75 0.088153 0.073646

Choice 2. p0 = (4.3), p1 = (1.7) 88 79 0.072250 0.068662
Choice 3. p0 = (−7), p1 = (3) 99 92 0.062979 0.051163

The values of the non-inertial and non-parallel variant of the Algorithm 1 referred as Alg.1∗ are
listed in the following table (see Table 2):

Table 2. Numerical values of Algorithm Alg.1∗.
No. of Choices No. of Iter. CPU-Time (Sec)

Choice 1. p0 = (5), p1 = (2) 111 0.091439
Choice 2. p0 = (4.3), p1 = (1.7) 106 0.089872
Choice 3. p0 = (−7), p1 = (3) 104 0.081547

The error plotting Ek against the Algorithm 1 and its variants for each choices in Tables 1 and 2
are illustrated in Figure 1.
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Figure 1. Comparison between Algorithm 1 and its variants in view of Example 4.1.
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Example 4.2. Let H = Rn with the induced norm ‖p‖ =
√∑n

i=1 |pi|
2 and the inner product 〈p, q〉 =∑n

i=1 piqi, for all p = (p1, p2, · · · , pn) ∈ Rn and q = (q1, q2, · · · , qn) ∈ Rn. The set K is given by
K = {p ∈ Rn

+ : |pk| ≤ 1}, where k = {1, 2, · · · , n}. Consider the following problem:

find p∗ ∈ Γ :=
M⋂

i=1

EP(gi) ∩
N⋂

j=1

Fix(T j),

where gi : K × K → R is defined by:

gi(p, q) =

n∑
k=1

S i,k(q2
k − p2

k), ∀ i ∈ {1, 2, · · · ,M},

where S i,k ∈ (0, 1) is randomly generated for all i = {1, 2, · · · ,M} and k = {1, 2, · · · , n}. For each
j ∈ {1, 2, · · · ,N}, let the family of operators T j : H → H be defined by

T j(p) =

{
−

4p
j , p ∈ [0,∞);

p, p ∈ (−∞, 0).

for all p ∈ H . It is easy to observe that Γ =
⋂M

i=1 EP(gi) ∩
⋂N

j=1 Fix(T j) = 0. The values of the
Algorithm 1 and its non-inertial variant are listed in the following table (see Table 3):

Table 3. Numerical values of Algorithm 1.
No. of Iter. CPU-Time (Sec)

N0. Alg.1,ξk = 0 Alg.1, ξk , 0 Alg.1, ξk = 0 Alg.1, ξk , 0
Choice 1. p0 = (5), p1 = (2), n = 5 46 35 0.061975 0.054920

Choice 2. p0 = (1), p1 = (1.5),n = 10 38 27 0.056624 0.040587
Choice 3. p0 = (−8), p1 = (3), n = 30 50 37 0.055844 0.041246

The values of the non-inertial and non-parallel variant of the Algorithm 1 referred as Alg.1∗ are
listed in the following table (see Table 4):

Table 4. Numerical values of Algorithm Alg.1∗.
No. of Choices No. of Iter. CPU-Time (Sec)

Choice 1. p0 = (5), p1 = (2), n = 5 81 0.072992
Choice 2. p0 = (1), p1 = (1.5),n = 10 75 0.065654
Choice 3. p0 = (−8), p1 = (3), n = 30 79 0.068238

The error plotting Ek ≤ 10−6 against the Algorithm 1 and its variants for each choices in Tables 3
and 4 are illustrated in Figure 2.
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Figure 2. Comparison between Algorithm 1 and its variants in view of Example 4.2.

Example 4.3. Let L2([0, 1]) = H with induced norm ‖p‖ = (
∫ 1

0
|p(s)|2ds)

1
2 and the inner product

〈p, q〉 =
∫ 1

0
p(s)q(s)ds, for all p, q ∈ L2([0, 1]) and s ∈ [0, 1]. The feasible set K is given by: K = {p ∈

L2([0, 1]) : ‖p‖ ≤ 1}. Consider the following problem:

find p̄ ∈ Γ :=
M⋂

i=1

EP(gi) ∩
N⋂

j=1

Fix(T j),

where gi(p, q) is defined as 〈S i p, q − p〉 with the operator S i : L2([0, 1])→ L2([0, 1]) given by

S i(p(s)) = max
{
0,

p(s)
i

}
, ∀ i ∈ {1, 2, · · · ,M}, s ∈ [0, 1].

Since each gi is monotone and hence pseudomonotone on C. For each j ∈ {1, 2, · · · ,N}, let the family
of operators T j : H → H be defined by

T j(p) = ΠC(p) =

{ p
‖p‖ , ‖p‖ > 1;

p, ‖p‖ ≤ 1.

Then T j is a finite family of η-demimetric operators. It is easy to observe that Γ =
⋂M

i=1 EP(gi) ∩⋂N
j=1 Fix(T j) = 0. Choose M = 50 and N = 100. The values of the Algorithm 1 and its non-inertial

variant have been computed for different choices of p0 and p1 in the following table (see Table 5):

Table 5. Numerical values of Algorithm 1.

No. of Iter. CPU-Time (Sec)
N0. Alg.1,ξk = 0 Alg.1, ξk , 0 Alg.1, ξk = 0 Alg.1, ξk , 0

Choice 1. p0 = exp(3s) × sin(s), p1 = 3s2 − s 10 5 1.698210 0.981216
Choice 2. p0 = 1

1+s , p1 = s2

10 14 6 2.884623 1.717623
Choice 3. p0 =

cos(3s)
7 , p1 = s 16 5 2.014687 1.354564

The values of the non-inertial and non-parallel variant of the Algorithm 1 referred as Alg.1∗ have
been computed for different choices of p0 and p1 in the following table (see Table 6):
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Table 6. Numerical values of Algorithm Alg.1∗.
No. of Choices No. of Iter. CPU-Time (Sec)

Choice 1. p0 = exp(3s) × sin(s), p1 = 3s2 − s 23 2.65176
Choice 2. p0 = 1

1+s , p1 = s2

10 27 3.102587
Choice 3. p0 =

cos(3s)
7 , p1 = s 26 2.903349

The error plotting Ek =< 10−4 against the Algorithm 1 and its variants for each choices in Tables 5
and 6 are illustrated in Figure 3.
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Figure 3. Comparison between Algorithm 1 and its variants in view of Example 4.3.

We can see from Tables 1–6 and Figures 1–3 that the Algorithm 1 out performs its variants with
respect to the reduction in the error, time consumption and the number of iterations required for the
convergence towards the common solution.

5. Conclusions

In this paper, we have constructed some variants of the classical extragradient algorithm that are
embedded with the inertial extrapolation and hybrid projection techniques. We have shown that the
algorithm strongly converges towards the common solution of the problem 2.1. A useful instance of the
main result, that is, Theorem 3.1, as well as an appropriate example for the viability of the algorithm,
have also been incorporated. It is worth mentioning that the problem 2.1 is a natural mathematical
model for various real-world problems. As a consequence, our theoretical framework constitutes an
important topic of future research.
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