
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(8): 13821–13831.
DOI: 10.3934/math.2022762
Received: 13 March 2022
Revised: 28 April 2022
Accepted: 5 May 2022
Published: 23 May 2022

Research article

Interpolative Hardy Roger’s type contraction on a closed ball in ordered
dislocated metric spaces and some results

Abdullah Shoaib1,*, Poom Kumam2,* and Kanokwan Sitthithakerngkiet3

1 Department of Mathematics and Statistics, Riphah International University, Islamabad, Pakistan
2 Center of Excellence in Theoretical and Computational Science (TaCS-CoE) & KMUTT Fixed

Point Research Laboratory, Room SCL 802 Fixed Point Laboratory, Science Laboratory Building,
Departments of Mathematics, Faculty of Science, King Mongkut’s University of Technology
Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand

3 Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics,
Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok
(KMUTNB), 1518, Wongsawang, Bangsue, Bangkok 10800, Thailand

* Correspondence: Email: poom.kum@kmutt.ac.th; Tel: +66024708994;
Fax: +66024284025.

Abstract: The aim of this paper is to find out fixed point results with interpolative contractive
conditions for pairs of generalized locally dominated mappings on closed balls in ordered dislocated
metric spaces. We have explained our main result with an example. Our results generalize the result of
Karapınar et al. (Symmetry 2018, 11, 8).

Keywords: dominated mappings; common fixed point; interpolative Hardy Roger’s type contraction;
closed ball; ordered dislocated metric spaces
Mathematics Subject Classification: 54H25, 47H10

1. Introduction and preliminaries

In the 19th century the study of fixed point theory was initiated by Poincare and in 20th century,
it was developed by many mathematicians like Brouwer, Schauder, Banach, Kannan, and others. The
theory of fixed point is one of the most powerful subject of functional analysis. Theorems ensuring the
existence of fixed points of functions are known as fixed point theorems, see [25, 29–31, 33, 36, 39].
Fixed point theory is a beautiful mixture of topology, geometry and analysis which has a large number
of applications in many fields such as game theory, mathematics engineering, economics, biology,
physics, optimization theory and many others, see [8, 15, 20, 26]. In 2000, Hitzler and Seda [22]
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established the notation of dislocated metric space. Dislocated metric space plays very important role
in electronics engineering and in logical programming [23]. For further results on dislocated metric
spaces, see [1, 6, 37].

Arshad et al. [6] examined some functions having fixed point but there was no result to guarantee
the presence of fixed point of such functions. They defined a restriction and involved a closed ball in
his result to guarantee the presence of fixed points of such functions. For further results on closed ball,
see [3, 4, 7, 38].

Ran and Reurings [35] and Nieto et al. [32] gave an extension to the results in fixed point theory
and obtained results in partially ordered sets, see also [11–13, 40].

Many researchers have used interpolative technique to obtain generalized results by using different
form of contractions [9, 10, 18]. Karapınar et al. [27] introduced a interpolative Hardy Roger’s type
contraction mapping and proved a fixed point result. Hardy Roger’s theorem has been generalized in
different ways by many researchers, see [5, 19, 21, 28, 34].

In this paper, we obtain common fixed point for a pair of dominated functions satisfying
interpolative Hardy Roger’s type contraction on a closed ball in ordered dislocated metric spaces.
Now, we recall the following definitions and results which will be useful to understand the paper.
Definition 1.1. [6] Consider Υ be a nonempty set and dl : Υ × Υ → [0,+∞) . Then dl is known as a
dl−metric, if the following conditions hold for m, f , k ∈ Υ :

(i) if dl (m, f ) = 0, then m = f ,
(ii) dl (m, f ) = dl ( f ,m) ,
(iii) dl (m, f ) ≤ dl (m, k) + dl (k, f ) − dl (k, k) .

The dislocated metric space is represented by the pair (Υ, dl) . We will use DMS instead of dislocated
metric space for now onward. It is evident that if dl (m, f ) = 0, then from (i) m = f . But the converse
is not true in general.
Remark 1.2. [6] From (iii) of Definition 1.1, we deduce

dl (m, f ) + dl (k, k) ≤ dl (m, k) + dl (k, f ) ,

for all m, f , k ∈ Υ.

Example 1.3. [6] If Υ = [0,+∞) , then dl (m, g) = m + g define a dislocated metric dl on Υ.

Definition 1.4. [6] Consider { fn} be a sequence in a DMS (Υ, dl) , we call { fn} be a Cauchy sequence if,
ε > 0, there exists n0 ∈ N, so that for all n,m ≥ n0, we get dl ( fm, fn) < ε.
Definition 1.5. [6] Consider { fn} be a sequence in a DMS (Υ, dl). We call this sequence to be converges
with respect to dl, if there exists f ∈ Υ such that dl ( fn, f )→ 0 as n→ +∞. Where, f is known as limit
of { fn} , and we write fn → f .
Definition 1.6. [6] A DMS (Υ, dl) is called complete, if every Cauchy sequence in Υ converges to a
point in Υ.
Definition 1.7. [6] Consider Υ be a nonempty set. The triplet (Υ,�, dl) is said to be ordered DMS, if:

(i) if dl to be a dislocated metric of Υ,
(ii) if � is a partial order on Υ.

Definition 1.8. [6] Consider a partial ordered set (Υ,�). If m � g or g � m holds then m and g are
called comparable.
Definition 1.9. [2] Consider a partially ordered set (Υ,�). Let g be self mapping on Υ. Then we call g
is dominated mapping, if gm � m for every m in Υ.
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2. Main result

Now, we define interpolative dominated contractive condition on a closed ball in ordered dislocated
metric space and prove our main result.
Theorem 2.1. Let (Υ,�, dl) be a complete ordered DMS, T and S are dominated mappings on Υ,
f0 ∈ Υ and r > 0. Assume that f and y are comparable element in B ( f0, r), such that

dl (S f ,Ty) ≤ λ (dl ( f , y))β . (dl ( f , S f ))α . (dl (y,Ty))γ .[
1
2

(dl (y, S f ) + dl ( f ,Ty))
]1−α−β−γ

, (2.1)

for some α, β, γ, λ ∈ [0, 1) , with α + 2β + 2γ < 1 and

dl ( f0, S f0) ≤ r (1 − λ) . (2.2)

Then there exists a non increasing sequence { fn} ⊆ B ( f0, r), such that fn → f ∗ ∈ B ( f0, r). Also, if
f ∗ � fn, then f ∗ = T f ∗ = S f ∗ and dl ( f ∗, f ∗) = 0.
Proof. Consider a point f1 on Υ such that f1 = S f0. As S f0 � f0 so f1 � f0 and let f2=T f1. Now
T f1 � f1 gives f2 � f1, continuing this method and choosing fn in Υ such that f2h+1=S f2h , f2h+2 = T f2h+1 ,

where h = 0, 1, 2, . . . clearly, f2h+1=S f2h � f2h = T f2h−1 � f2h−1, and this implies that the sequence { fn}

is non increasing. By using inequality (2.2), we have dl ( f0, f1) ≤ r, or f1 ∈ B
(
f0,r

)
. Assume that

f2, . . . , f j ∈ B ( f0, r) for some j ∈ N. Now, if 2h + 1 ≤ j, by using inequality (2.1), we obtain

dl ( f2h+1, f2h+2) = dl (S f2h,T f2h+1)

≤ λ (dl ( f2h, f2h+1))β . (dl ( f2h, S f2h))α . (dl ( f2h+1,T f2h+1))γ .[ 1
2 (dl ( f2h,T f2h+1) + dl ( f2h+1, S f2h))−

dl ( f2h+1, f2h−1) + dl ( f2h+1, f2h−1)

]1−α−β−γ

.

By Remark 1.2, we have

dl ( f2h+1, f2h+2) ≤ λ (dl ( f2h, f2h+1))β . (dl ( f2h, f2h+1))α . (dl ( f2h+1, f2h+2))γ[
1
2

(dl ( f2h, f2h+1) + dl ( f2h+1, f2h+2))
]1−α−β−γ

. (2.3)

Suppose that
dl ( f2h, f2h+1) < dl ( f2h+1, f2h+2) .

This implies that
1
2

(dl ( f2h, f2h+1) + dl ( f2h+1, f2h+2)) < dl ( f2h+1, f2h+2) .

Consequently, the inequality (2.1) yield that

(dl ( f2h+1, f2h+2))α+β
≤ λ (dl ( f2h, f2h+1))α+β ,

so we conclude that
dl ( f2h, f2h+1) > dl ( f2h+1, f2h+2) ,
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which is a contradiction, thus we have

dl ( f2h+1, f2h+2) < dl ( f2h, f2h+1) .

This implies that
1
2

(dl ( f2h, f2h+1) + dl ( f2h, f2h+1)) ≤ dl ( f2h, f2h+1) .

By simple elimination, the inequality (2.1) becomes

(dl ( f2h+1, f2h+2))1−γ
≤ λ (dl ( f2h, f2h+1))1−γ .

This implies that

dl ( f2h+1, f2h+2) ≤ λdl ( f2h, f2h+1) .

Similarly, if 2h ≤ j, we deduce

dl ( f2h+1, f2h) ≤ λdl ( f2h, f2h−1) .

By the previous inequality, we get

dl ( f2h+1, f2h+2) ≤ λdl ( f2h, f2h+1) ≤ . . . ≤ λ2h+1dl ( f0, f1)

dl ( f2h+1, f2h) ≤ λdl ( f2h, f2h−1) ≤ . . . ≤ λ2hdl ( f0, f1) . (2.4)

Thus from inequality (2.4), we have

dl

(
f j, f j+1

)
≤ λ jdl ( f0, f1) , (2.5)

for some j ∈ N. Now, using (2.5), and (2.2), we get

dl

(
f0, f j+1

)
≤ dl ( f0, f1) + . . . + dl

(
f j, f j+1

)
−

[
dl

(
f1, f1

)
+ . . . dl

(
f j, f j

)]
≤ dl ( f0, f1)

[
1 + . . . + λ j−1 + λ j

]
≤ (1 − λ) r

(
1 − λ j+1

)
1 − λ

< r.

Thus f j+1 ∈ B ( f0, r). Therefore fh ∈ B ( f0, r), for all h ∈ N. Since fh+1 � fh for all h ∈ N, then it follow
that

dl ( fh+i, fh) ≤ dl ( fh+i, fh+i−1) + · · · + dl ( fh+1, fh)

−dl ( fh+i−1, fh+i−1) − · · · − dl ( fh+1, fh+1)

≤ λh+i−1dl ( f0, f1) + . . . + λhdl ( f0, f1)

≤ λhdl ( f0, f1)
1 − λi

1 − λ
→ 0, as h→ +∞.

This shows that { fn} is a Cauchy sequence in
(
B ( f0, r), dl

)
. Now,

(
B ( f0, r), dl

)
is complete because

B ( f0, r) is closed. Therefore there exist a point f ∗ ∈ B ( f0, r) with

lim
n→+∞

dl ( fn, f ∗) = 0. (2.6)
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By assumption f ∗ � fn as fn → f ∗, we have

dl (S f ∗, f ∗) ≤ dl (S f ∗,T f2h+1) + dl ( f2h+2, f ∗) − dl ( f2h+2, f2h+2)

≤ λdl ( f ∗, f2h+1)β . (dl ( f ∗, S f ∗))α .
(
dl

(
f2h+1,T f2h+1

))γ .[
1
2

dl ( f ∗,T f2h+1) + dl ( f2h+1, S f ∗)
]1−α−β−γ

+ dl ( f2h+2, f ∗)

≤ dl ( f ∗, f2h+2) + λ (dl ( f ∗, f2h+1))β . (dl ( f ∗, S f ∗))α . (dl ( f2h+1, f2h+2))γ .[
1
2

dl ( f ∗, f2h+2) + dl ( f2h+1, S f ∗)
]1−α−β−γ

.

On taking limit h → +∞ and by using inequalities (2.4) and (2.6 ), we obtain dl ( f ∗, S f ∗) ≤ 0 which
implies,

f ∗ = S f ∗.

Similarly from
dl ( f ∗,T f ∗) ≤ dl ( f ∗, f2h+1) + dl ( f2h+1,T f ∗) − dl ( f2h+1, f2h+1) ,

we can obtain f ∗ = T f ∗. Hence S and T have a common fixed point in B ( f0, r). Now,

dl ( f ∗, f ∗) = dl (S f ∗,T f ∗)

≤ λ (dl ( f ∗, f ∗))β . (dl ( f ∗, S f ∗))α . (dl ( f ∗,T f ∗))γ .[
1
2

dl ( f ∗, S f ∗) + dl ( f ∗,T f ∗)
]1−α−β−γ

,

and this implies that.
dl ( f ∗, f ∗) = 0.

In Theorem 2.1, the condition 2.1 is applicable only for all comparable points in a closed ball and the
condition 2.2 is used to obtain a sequence in a closed ball and Example 2.10 will show the importance
of this restriction. Now, in the next result the condition 2.2 is relaxed and the condition 2.1 is applied
for all comparable points in the ground set.
Corollary 2.2. Let (Υ,�, dl) be a complete ordered DMS, T and S are dominated mappings on Υ.
Assume that f and y are comparable element in Υ, such that

dl (S f ,Ty) ≤ λ (dl ( f , y))β . (dl ( f , S f ))α . (dl (y,Ty))γ .[
1
2

(dl (y, S f ) + dl ( f ,Ty))
]1−α−β−γ

,

for some α, β, γ, λ ∈ [0, 1) , with α+ 2β+ 2γ < 1. Then there exists a non increasing sequence { fn} ⊆ X
such that fn → f ∗ ∈ X. Also, if f ∗ � fn, then f ∗ = S f ∗ = T f ∗ and dl ( f ∗, f ∗) = 0.

The metric space version of Corollary 2.2 is given below.
Corollary 2.3. Let (Υ,�, ρ) be a complete ordered metric space, T and S are dominated mappings on
Υ. Assume that f and y are comparable elements in Υ, such that

ρ (S f ,Ty) ≤ λ (ρ ( f , y))β . (ρ ( f , S f ))α . (ρ (y,Ty))γ .
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1
2

(ρ (y, S f ) + ρ ( f ,Ty))
]1−α−β−γ

,

for some α, β, γ, λ ∈ [0, 1) , with α+ 2β+ 2γ < 1. Then there exists a non increasing sequence { fn} ⊆ X
such that fn → f ∗ ∈ X. Also, if f ∗ � fn, then f ∗ = S f ∗ = T f ∗.

In Theorem 2.1, if we replace S by T, then the following result is obtained.
Corollary 2.4. Let (Υ,�, dl) be a complete ordered DMS, T is a dominated mappings on Υ, f0 ∈ Υ

and r > 0. Assume that f and y are comparable element in B ( f0, r), such that

dl (T f ,Ty) ≤ λ (dl ( f , y))β . (dl ( f ,T f ))α . (dl (y,Ty))γ .[
1
2

(dl (y,T f ) + dl ( f ,Ty))
]1−α−β−γ

,

for some α, β, γ, λ ∈ [0, 1) , with α + 2β + 2γ < 1 and

dl ( f0,T f0) ≤ (1 − λ) r.

Then there exists a non increasing sequence { fn} ⊆ B ( f0, r), such that fn → f ∗ ∈ B ( f0, r). Also, if
f ∗ � fn, then f ∗ = T f ∗ and dl ( f ∗, f ∗) = 0.

Without closed ball version of Corollary 2.4 is given below.
Corollary 2.5. Let (Υ,�, dl) be a complete ordered DMS, T are dominated mappings on Υ. Assume
that f and y are comparable element in Υ, such that

dl (T f ,Ty) ≤ λ (dl ( f , y))β . (dl ( f ,T f ))α . (dl (y,Ty))γ .[
1
2

(dl (y,T f ) + dl ( f ,Ty))
]1−α−β−γ

,

for some α, β, γ, λ ∈ [0, 1) , with α+ 2β+ 2γ < 1. Then there exists a non increasing sequence { fn} ⊆ X,
such that fn → f ∗ ∈ X. Also, if f ∗ � fn, then f ∗ = T f ∗ and dl ( f ∗, f ∗) = 0.

If we put the value of α is equal to zero. Then the following result is obtained.
Corollary 2.6. Let (Υ,�, dl) be a complete ordered DMS, T and S are dominated mappings on Υ,
f0 ∈ Υ and r > 0. Assume that f and y are comparable element in B ( f0, r), such that

dl (S f ,Ty) ≤ λ (dl ( f , y))β . (dl (y,Ty))γ .
[
1
2

(dl (y, S f ) + dl ( f ,Ty))
]1−β−γ

,

for some β, γ, λ ∈ [0, 1) , with 2β+ 2γ < 1. Then there exists a non increasing sequence { fn} ⊆ B ( f0, r),
such that fn → f ∗ ∈ B ( f0, r). Also, if f ∗ � fn, then f ∗ = S f ∗ = T f ∗ and dl ( f ∗, f ∗) = 0.

If we put the value of β is equal to zero. Then the following result is obtained.
Corollary 2.7. Let (Υ,�, dl) be a complete ordered DMS, T and S are dominated mappings on Υ,
f0 ∈ Υ and r > 0. Assume that f and y are comparable element in B ( f0, r), such that

dl (S f ,Ty) ≤ λ (dl ( f , S f ))α . (dl (y,Ty))γ .
[
1
2

(dl (y, S f ) + dl ( f ,Ty))
]1−α−γ

,
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for some α, γ, λ ∈ [0, 1) , with α + 2γ < 1. Then there exists a non increasing sequence { fn} ⊆ B ( f0, r),
such that fn → f ∗ ∈ B ( f0, r). Also, if f ∗ � fn, then f ∗ = S f ∗ = T f ∗ and dl ( f ∗, f ∗) = 0.

If we put the value of γ is equal to zero. Then the following result is obtained.
Corollary 2.8. Let (Υ,�, dl) be a complete ordered DMS, T and S are dominated mappings on Υ,
f0 ∈ Υ and r > 0. Assume that f and y are comparable element in B ( f0, r), such that

dl (S f ,Ty) ≤ λ (dl ( f , y))β . (dl ( f , S f ))α .
[
1
2

(dl (y, S f ) + dl ( f ,Ty))
]1−α−β

,

for some α, β, λ ∈ [0, 1) , with α + 2β < 1. Then there exists a non increasing sequence { fn} ⊆ B ( f0, r),
such that fn → f ∗ ∈ B ( f0, r). Also, if f ∗ � fn, then f ∗ = S f ∗ = T f ∗ and dl ( f ∗, f ∗) = 0.

If we take complete DMS (Υ, dl) instead of complete ordered DMS (Υ,�, dl). Then the following
result is obtained.
Corollary 2.9. Let (Υ, dl) be a complete DMS, T and S are self mappings on Υ, f0 ∈ Υ and r > 0.
Assume that f and y are element in B ( f0, r), such that

dl (S f ,Ty) ≤ λ (dl ( f , y))β . (dl ( f , S f ))α . (dl (y,Ty))γ .[
1
2

(dl (y, S f ) + dl ( f ,Ty))
]1−α−β−γ

,

for some α, β, γ, λ ∈ [0, 1) , with α + 2β + 2γ < 1 and

dl ( f0, S f0) ≤ r (1 − λ) .

Then there exists a sequence { fn} ⊆ B ( f0, r), such that fn → f ∗ ∈ B ( f0, r), f ∗ = T f ∗ = S f ∗ and
dl ( f ∗, f ∗) = 0.
Example 2.10. Let Υ = [0,+∞)∩Q be endowed with the order f � y if dl ( f , f ) ≤ dl (y, y) , and define
dl : Υ × Υ → Υ as dl ( f , y) = f + y. Then (Υ, dl) is an ordered completed dislocated metric space. Let
T, S : Υ→ Υ be defined by,

S f =

{ f
7 if f ∈ [0, 1] ∩ Υ

f − 1
3 if f ∈ (1,+∞) ∩ Υ

}

T f =

{ 2 f
7 if f ∈ [0, 1] ∩ Υ

f − 1
4 if f ∈ (1,+∞) ∩ Υ

}
.

Clearly T and S are dominated mappings. For f0 = 1, r = 2, α = 1
7 , and β = 1

9 , γ = 1
10 , λ = 3

7 ,

B ( f0, r) = [0, 1] ∩ Υ, and (1 − λ) r = 8
7 = dl ( f0, S f0) . Now if f = 1, y = 2 then

dl (S f ,Ty) =
f
7

+ y −
1
4
≥

3
7

( f + y)
1
9 .

(
f +

f
7

) 1
7

.

(
2y −

1
4

) 1
10

.[
1
2

(
y +

f
7

+ f + y −
1
4

)]1− 1
9−

1
7−

1
10

,
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and so,

dl (S f ,Ty) ≥ λ (dl ( f , y))β . (dl ( f , S f ))α . (dl (y,Ty))γ .
[
1
2

(dl (y, S f ) + dl ( f ,Ty))
]1−α−β−γ

.

Thus, the contractive condition does not hold on Υ. Now if f , y ∈ B ( f0, r), then

dl (S f ,Ty) =
f
7

+
2y
7

=
1
7

( f + 2y)

≤
3
7
. ( f + y)

1
9 .

(
f +

f
7

) 1
7

.

(
f +

2y
7

) 1
10

.[
1
2

(
y +

f
7

+ f +
2y
7

)]1− 1
9−

1
7−

1
10

= λ (dl ( f , y))β . (dl ( f , S f ))α . (dl (y,Ty))γ .[
1
2

(dl (y, S f ) + dl ( f ,Ty))
]1−α−β−γ

.

Therefore all the condition of theorem are satisfied. Moreover, 0 is the common fixed point of T and S .

3. Conclusions

Arshad et al. [6] analyzed that there are mappings which are contractive only on the subsets of
its domain. They deduced the fixed point results satisfying contraction on closed ball to ensure the
existence of fixed point of such mappings. On the other hand, Karapınar et al. [27] recently gave
the concept interpolative contraction and established some result. We extend their findings, and in
this paper, fixed point results with interpolative contractive conditions for a pair of generalized locally
dominated mappings on closed balls in ordered dislocated metric spaces have been established.
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