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of the linear complexity of the constructed sequences according to the deep relationship among the
characteristic polynomials, and show it is 2N + 2. Moreover, we determine the 2-adic complexity of
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Algorithm, in addition are good for communication.
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1. Introduction

Sequences with good cryptographic properties such as optimal autocorrelation, large linear
complexity and high 2-adic complexity are widely used in cryptography and communication
systems [1]. The interleaved structure of sequences was introduced by Gong [2]. It is shown that
the interleaving technique is effective to analyze and design sequences [3]. Linear complexity of a
sequence is the length of the shortest linear feedback shift register generating the sequence, which is the
criterion of the ability to resist the Berlekamp-Massey attack. Li [5] determined the linear complexity
of a class of optimal autocorrelation sequences with period 4N based on interleaving technique.
Edemskiy [6] proved that the linear complexity of interleaved sequences with period 4p based on
Hall sequences and Legendre sequences is maximal. Fan [7] proved that this class of sequences has a
large linear complexity. Zhang [8] discussed the linear complexity of two classes of binary interleaved
sequences with period 4N with low autocorrelation. Liu [9] proved binary interleaved sequences with
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period 4n have high linear complexity.
In 2010, Tian and Qi determined the 2-adic complexity of the m-sequence [10]. Xiong [11] proposed

a new method to compute 2-adic complexity of binary sequence, and proved the 2-adic complexity of
all the ideal 2-level autocorrelation sequences attained the maximum, such as twin-prime sequences,
Legendre sequences etc. Hu [12] used a simpler way to prove that the 2-adic complexity of binary
sequences achieves the maximum. Moreover, the 2-adic complexity of a class of binary sequences with
interleaved structure optimal autocorrelation magnitude were studied in [13, 14]. Yu-Gong sequences
with optimal autocorrelation magnitude of interleaved structure have been constructed by Sun [15].
Zhang [16] determined the 2-adic complexity of a class of sequences utilizing Gauss periods and
quadratic Gauss sums. Qiang [17] studied the 2-adic complexity of GMW sequences and two-prime
sequences with interleaved structure. Xiao [18] calculated the 2-adic complexity of binary sequences
with optimal autocorrelation magnitude constructed by Tang and Gong [19]. Edemskiy [20] studied
the symmetric 2-adic complexity of sequences with period 8q with optimal autocorrelation magnitude.

In this paper, we investigate the linear complexity and the 2-adic complexity of binary sequences
with optimal autocorrelation magnitude constructed by reference [21] and show that the linear
complexity of sequences with period 4N is 2N + 2. Furthermore, we determine the 2-adic complexity
of such sequences, and show it does reach the maximum value. The rest of the paper is organized
as follows. In Section 2, we introduce some necessary notations and definitions. In Section 3, we
determine the linear complexity of sequences. In Section 4, we discuss the 2-adic complexity of
sequences. Section 5 concludes this paper.

2. Preliminaries

2.1. Autocorrelation function

Let N be a positive integer, ZN = {0, 1, · · · ,N − 1} be the residue class ring modulo N, and s =

(s0, s1, · · · , sN−1) be a binary sequence red with period N. The autocorrelation function of binary
sequence s with period N is defined by

ACs(τ) =

N−1∑
i=0

(−1)si+si+τ (0 ≤ τ ≤ N − 1). (2.1)

It is easy to see ACs(0) = N.
A sequence s is said to have optimal autocorrelation if when N ≡ 0, 1, 2, 3 (mod 4) the

corresponding autocorrelation functions have range as {0,−4}, {1,−3}, {2,−2}, {−1} separately for any
τ , 0.

2.2. Linear complexity

Let p be an odd prime and m be a positive integer, Fpm be the extension field of pm elements with
characteristic p. Let s = (s0, s1, · · · , sN−1) be a sequence with period N. The linear complexity of s,
denoted by LC(s), is the length of the shortest feedback shift register generating s that is, the smallest
positive integer L which satisfies the following recurrence relation

st+L = cL−1st+L−1 + · · · c1st+1 + c0st
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for t ≥ 0, c0, c1, · · · , cL−1 ∈ Fpm . The minimal polynomial of s is

m(x) = xL −

L−1∑
i=0

cixi,

and the generating polynomial of s is

S (x) =

N−1∑
t=0

stxt. (2.2)

The following equation relates the minimal polynomial and the generating polynomial [7] of s

m(x) =
xN − 1

gcd(xN − 1, S (x))
. (2.3)

Moerover, the linear complexity of s can also be given by

LC(s) = deg(m(x)) = N − deg(gcd(xN − 1, S (x))). (2.4)

2.3. 2-Adic complextiy

Let s = (s0, s1, · · · , sN−1) be a binary sequence with period N and put S (x)=
N−1∑
i=0

sixi ∈ Z[x]. If

S (x) , 0, write

S (2)
2N − 1

=

N−1∑
i=0

si2i

2N − 1
=

a
q

with integer 1 ≤ a ≤ q and gcd(a, q) = 1, then the 2-adic complexity Φ(s) of s is the real number⌊
log2q

⌋
. If gcd(S (2), 2N − 1) = 1, then the 2-adic complexity Φ(s) of s achieves the maximum value N.

Clearly, when MN = 2N−1 is prime, which is called Mersenne prime, we have gcd(S (2), 2N−1) = 1,
the 2-adic complexity of such sequences is maximum. For the common situation, it is interesting to
find which kind of sequence satisfies gcd(S (2), 2N − 1) = 1 or a small number.

Xiong [11] utilized the determinant of the circulant matrix sequence s to decide whether Φ(s) = N.
Lemma 1. [11] Let s = (s0, s1, . . . , sN−1) be a binary sequence with period N and Ps(x) =

∑N−1
i=0 sixi ∈

Z[x]. Put A = (ai, j)N×N be the matrix defined by ai, j = s(i− j) mod N , and view A as a matrix over the
rational number set Q. If det(A) , 0 and gcd(1 − 2N , det(A)) = 1, then Φ(s) = N.

By Lemma 1, we only need to compute the determinate of the circulant matrix constructed from the
sequence and then verify whether gcd(1 − 2N , det(A)) = 1.
Lemma 2. [12] Let s = (s0, s1, . . . , sN−1) be an ideal two-level autocorrelation sequence with period
N, S (x) =

∑N−1
i=0 sixi ∈ Z[x] and P(x) =

∑N−1
i=0 (−1)si xi ∈ Z[x]. Then

S (2)P(2−1) ≡ −
N + 1

2
(mod 2N − 1)

This shows gcd(S (2), 2N − 1) = 1, and means the 2-adic complexity of two-level autocorrelation
sequence is maximum. Moreover, Hu shows that the 2-adic complexity of ideal two-level
autocorrelation sequences is maximum.
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2.4. Interleaved sequences

Let N be a positive integer and si = (si (0) , si (1) , · · · , si (N − 1)), 0 ≤ i ≤ T − 1 be T binary
sequences with period N. Based on these T binary sequences, an N × T matrix u =

(
ui, j

)
can be given

by

u =


s0 (0) s1 (0) · · · sT−1 (0)
s0 (1) s1 (1) · · · sT−1 (1)
...

...
. . .

...

s0 (N − 1) s1 (N − 1) · · · sT−1 (N − 1)

 . (2.5)

An interleaved sequence which is also denoted by u is defined by placing the sequence si on the ith
column and concatenate the successive rows of the matrix u. For simplicity, the interleaved sequence
u can be written as u = I (s0, s1, · · · , sT−1) where I denotes the interleaved operator and s0, s1, · · · , sT−1

are called the column sequences of u.
The cyclic left shift operator of u is defined by Le(u), where 0 ≤ e ≤ N − 1, which means shifting e

bits to the left on sequences u .
Let s = (s0, s1, . . . , sN−1) be a binary sequence with period N with ideal autocorrelation, where

N ≡ 3 (mod 4). Define the interleaved sequence u as follows

u = u(a,b) = I
(
a, L

N+1
4 (b) , L

N+1
2

(
a
)
, L

3(N+1)
4 (b)

)
(2.6)

where a is the even decimated sequence of binary ideal autocorrelation sequence s with period N, b is
the odd decimated sequence of the sequence s, a is the complement sequences of a.

Let N be an odd prime. ZN = {0, 1, · · · ,N − 1} is the integer residue ring and Z∗N = ZN\ {0}. Let
QN =

{
x2 mod N| x ∈ Z∗N

}
and QN = Z∗N\QN . There are two types of Legendre sequence l and l′ with

period N defined by [21]

l(i) = l′(i) =

{
1, if i ∈ QN ,

0, if i ∈ Q̄N ,

and l (0) = 1, l′ (0) = 0.

3. Linear complexity of optimal autocorrelation sequences with period 4N

Lemma 3. [4] Let a be a binary sequence with period N, and define S a(x) to be the polynomial
S a(x) = a0 + a1x + a2x2 + · · · + aN−1xN−1.

(1) If b = Lτ(a), then S b(x) = xN−τS a(x) mod xN − 1.
(2) If b is the complement sequence of a, then S b(x) = S a(x) + xN−1

x−1 .
(3) If u = I(a,b, c,d), then S u(x) = S a(x4) + xS b(x4) + x2S c(x4) + x3S d(x4).

Lemma 4. Let N be an odd integer, and a = (s2i)N−1
i=0 and b = (s2i+1)N−1

i=0 be the even decimated
sequence and odd decimated sequence of binary ideal autocorrelation sequences s respectively, where
2i and 2i + 1 are performed modulo N. Denote

u = u(a,b) = I
(
a, L

N+1
4 (b) , L

N+1
2

(
a
)
, L

3(N+1)
4 (b)

)
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as a binary interleaved sequence with period 4N, and S u(x) =
∑4N−1

i=0 uixi ∈ F2[x]. Then

S u (x) =

4N−1∑
i=0

uixi =
(
1 + x2N

) N−1∑
i=0

s2ix4i +
(
xN + x3N

) N−1∑
i=0

s2i+1x4i + x2N x4N − 1
x4 − 1

(
mod x4N − 1

)
.

Theorem 1. Let β be a primitive Nth root of unity in an extension field K of F2. Denote

S a(x) =
N−1∑
i=0

a2ixi, S b(x) =
N−1∑
i=0

b2i+1xi, S a+b(x) = S a(x) + S b(x), Ma =
{
1 ≤ λ ≤ N − 1 : S a(βλ) = 0

}
,

Mb =
{
1 ≤ λ ≤ N − 1 : S b(βλ) = 0

}
and Ma+b =

{
1 ≤ λ ≤ N − 1 : S a+b(βλ) = 0

}
. Then the linear

complexity of the interleaved sequence u = u(a,b) is

LC (u) = 2N + 2 − deg
(
gcd

(
S a (x) , S b (x) ,

xN − 1
x − 1

))
− deg

(
gcd

(
S a+b (x) ,

xN − 1
x − 1

))
.

Proof. Since K is the splitting field of xN − 1 and has characteristic 2, we have

x4N − 1 = (xN − 1)4 =

N−1∏
λ=0

(x − βλ)4
= (x − 1)4

N−1∏
λ=1

(x − βλ)4
.

By Lemma 4 we have

S u (x) =

4N−1∑
i=0

uixi =

(
xN − 1
x − 1

)2 (x − 1)2S a
(
x4

)
+ xN(x − 1)2S b

(
x4

)
+ x2N

(
xN − 1
x − 1

)2 .
Therefore,

gcd(S u(x), x4N−1) =

(
xN − 1
x − 1

)2

·gcd

(x − 1)2S a
(
x4

)
+ xN(x − 1)2S b

(
x4

)
+ x2N

(
xN − 1
x − 1

)2

,
(
xN − 1

)2
(x − 1)2

 .
Denote

F(x) = (x − 1)2S a
(
x4

)
+ xN(x − 1)2S b

(
x4

)
+ x2N

(
xN − 1
x − 1

)2

.

Since F(x) ≡ x2N
(

xN−1
x−1

)2
≡ N2x2N ≡ 1 (mod x − 1), we have gcd(F(x), x − 1) = 1. Then

gcd(S u(x), x4N−1) =

(
xN − 1
x − 1

)2

·gcd

F(x),
(

xN − 1
x − 1

)2 =

(
xN − 1
x − 1

)2

gcd

S a
(
x4

)
+ xNS b

(
x4

)
,

(
xN − 1
x − 1

)2 .
Denote

q(x) = gcd

F(x),
(

xN − 1
x − 1

)2 = gcd

S a
(
x4

)
+ xNS b

(
x4

)
,

(
xN − 1
x − 1

)2 ,
and

f (x) = S a
(
x4

)
+ xNS b

(
x4

)
,

then f ′ (x) = NxN−1S b
(
x4

)
= xN−1S b

(
x4

)
. Since

(
xN−1
x−1

)2
=

∏N−1
λ=1

(
x − βλ

)2
, then q (x) =∏N−1

λ=1

(
x − βλ

)qλ
, 0 ≤ qλ ≤ 2. For 1 ≤ λ ≤ N − 1, we have f (βλ) = S a

(
β4λ

)
+ βλNS b

(
β4λ

)
= S a+b

(
β4λ

)
,

we discuss the result by the following.
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(1) If S a+b
(
βλ

)
, 0, then f (βλ) , 0 and q(βλ) , 0, we obtain qλ = 0.

(2) If S a+b
(
βλ

)
= 0 and S b(βλ) , 0, then S a

(
βλ

)
, 0 and f (βλ) = 0. Since f ′(βλ) , 0, we have

qλ = 1.
(3) If S a+b

(
βλ

)
= S b

(
βλ

)
= 0, then S a

(
βλ

)
= 0 and

(
x − βλ

)2∣∣∣∣ f (x), we have qλ = 2. Then we
obtain

q (x) =

N−1∏
λ=1

S a(βλ)=S b(βλ)=0

(
x − βλ

)2
·

N−1∏
λ=1

S a(βλ)=S b(βλ),0

(
x − βλ

)
.

Then

LC(u) = 4N − deg gcd
(
S u(x), x4N − 1

)
= 4N − deg

(
xN−1
x−1

)2
gcd

(
S a

(
x4

)
+ xNS b

(
x4

)
,
(

xN−1
x−1

)2
)

= 4N − 2 (N − 1) − deg q(x)
= 2N + 2 − 2 |Ma ∩ Mb| − |Ma+b\(Ma ∩ Mb)|
= 2N + 2 − |Ma ∩ Mb| − |Ma+b|

= 2N + 2 − deg gcd
(
S a(x), S b(x), xN−1

x−1

)
− deg gcd

(
S a+b(x), xN−1

x−1

)
.

Since Ma ∩ Mb =
{
1 ≤ λ ≤ N − 1 : S a(βλ) = S b(βλ) = 0

}
, Ma+b =

{
1 ≤ λ ≤ N − 1 : S a+b(βλ) = 0

}
.

So we have |Ma ∩ Mb| = deg gcd
(
S a (x) , S b (x) , xN−1

x−1

)
and |Ma+b| = deg gcd

(
S a+b (x) , xN−1

x−1

)
. This

completes the proof of Theorem 1.
�

From Theorem 1 we obtain LC(u) ≤ 2N + 2. Moreover, LC(u) = 2N + 2 if and only if Ma ∩ Mb

and Ma+b are empty. It is easy to see that Ma ∩ Mb ⊂ Ma+b.
Theorem 2. Let N ≡ 3 (mod 4) be a prime number, l1 be the even decimated of the first type Legendre
sequence, c = Lr (l′) , 1 ≤ r ≤ N − 1, u = u (l1, c), then LC(u) = 2N + 2.

Proof. S l(x) =
N−1∑
i=1

xi, S l1 =
N−1∑
i=0

l2ixi, S l′(x) = 1 + S l(x), S c = xN−rS l′(x)(mod xN−1), S l1+c ≡ S l1 +

xN−r (S l(x) + 1) (mod xN−1). So

gcd
(
S l1(x) + xN−r(S l(x) + 1),

xN − 1
x − 1

)
= 1,

for each λ, 1 ≤ λ ≤ N − 1,
S l1(β

λ) + β−rλ(S l(βλ) + 1) , 0.

Therefore
LC(u) = 2N + 2.

�
Example 1. Let N = 19 and r = 3, the even decimated of Legendre sequence is

l1 = (1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1) ,

and the modified Legendre sequence is

c=L3(l′) = (0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0).
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Then the new binary interleaved sequence

u = I(l1, L
N+1

4 (c), L
N+1

2 (l1), L
3(N+1)

4 (c))

with period 4N = 76 defined in Theorem 1 is

u = (1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1).

By Magma program, the linear complexity of this sequence is LC(u) = 40, which are compatible with
the results given by Theorem 2.

Table 1 shows the comparison of linear complexity of binary interleaved sequences with period
T ≡ 0(mod 4).

Table 1. Comparison of linear complexity.

Sequence Period Linear complexity

a = I(s1, Ld(s1), s2, Ld(s2))[8] 4N 2N

a = I(s1, Ld(s1), s2, Ld(s2))[8] 4N 2N + 1

w = I(a, Lm(b), L2m(a), L3m(b))[9] 4n 2n + 2

u = I(a, L N+1
4 (b), L

N+1
2 (a), L

3(N+1)
4 (b))[this paper] 4N 2N + 2

4. 2-Adic complexity of optimal autocorrelation sequences with period 4N

Lemma 5. [23] Let u = I
(
a, L N+1

4 (b) , L
N+1

2
(
a
)
, L

3(N+1)
4 (b)

)
be binary interleaved sequence. For τ =

4τ1 + τ2 where 0 ≤ τ2 < 4 and 0 ≤ τ1 < N, the autocorrelation value of the sequence u is

AC(τ) =


4N, τ1 = 0, τ2 = 0,
−4, 0 < τ1 < N, τ2 = 0,
0, 0 ≤ τ1 < N, τ2 = 1, 2, 3.

Lemma 6. [22] Let s be a binary sequence with period N, S (x) =
N−1∑
i=0

sixi ∈ Z [x], P (x) =
N−1∑
i=0

(−1)si xi ∈

Z [x]. Then

−2S (x) P
(
x−1

)
≡ N +

N−1∑
τ=1

AC (τ)xτ − P
(
x−1

) N−1∑
i=0

xi
(
mod xN − 1

)
.

Lemma 7. Let u be a binary sequence with period 4N, U (x) =
4N−1∑
i=0

uixi ∈ Z [x] and T (x) =

4N−1∑
i=0

(−1)ui xi ∈ Z [x]. Then

AIMS Mathematics Volume 7, Issue 8, 13790–13802.
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U (2) T
(
2−1

)
≡ −2

(
N + 1 −

24N − 1
15

) (
mod 24N − 1

)
.

Proof. From Lemma 6, we obtain

−2U (2) T
(
2−1

)
≡ 4N +

4N−1∑
τ=1

AC (τ)2τ − T
(
2−1

) 4N−1∑
i=0

2i

≡ 4N +
4N−1∑
τ=1

AC (τ)2τ
(

mod 24N − 1
)
.

Since gcd
(
2, 24N − 1

)
= 1, the equation above can be simplified into

U (2) T
(
2−1

)
≡ −2N − 1

2

4N−1∑
τ=1

AC (τ)2τ
(
mod 24N − 1

)
.

By utilizing Lemma 5, we obtain

4N−1∑
τ=1

AC (τ) 2τ =
N−1∑
τ1=1

3∑
τ2=1

AC (τ)24τ1+τ2

= −4
N−1∑
τ1=1

24τ1

= −4
(

1−24N

1−24 − 1
)
.

Thus,
U (2) T

(
2−1

)
= −2N + 2

(
24N−1
24−1 − 1

)
≡ −2 (N + 1) + 224N−1

24−1

(
mod 24N − 1

)
≡ −2

(
N + 1 − 24N−1

15

) (
mod 24N − 1

)
.

�
Lemma 8. Let N be an odd prime.

(1) If N , 3, then 3| 2N + 1, 9 - 2N + 1.
(2) If N > 3, then 15| 24N − 1, 9 - 24N − 1; if N > 5, then 25 - 24N − 1.

Proof. (1) Obviously, 3| 2N + 1, it follows that 2N ≡ −1 (mod 3). Since

2N + 1
3

=
3
(
1 − 2 + 22 − 23 + · · · − 2N−1

)
3

≡ N (mod 3) ,

we have gcd
(

2N+1
3 , 3

)
= gcd (N, 3) = 1, if N , 3, which shows 9 - 2N + 1.

(2) 3| 24N − 1 and 5| 24N − 1 are easily derived by 15| 24N − 1. Since

24N − 1
3

≡

(
22 − 1

) (
22 + 1

) (
1 + 24 + 24·2 + · · · + 24·(N−1)

)
22 − 1

≡ 5N (mod 3) ,

we have gcd
(

24N−1
3 , 3

)
= gcd (5N, 3) = 1 , when N > 3. Therefore gcd

(
24N − 1, 9

)
= 3 and 9 - 24N − 1.

Since 5
∣∣∣24N − 1, it follows that 24N ≡ 1 (mod 5).
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Similarly,

24N − 1
5

≡

(
22 − 1

) (
22 + 1

) (
1 + 24 + 24·2 + · · · + 24·(N−1)

)
22 + 1

≡ 3N (mod 5) ,

we have gcd
(

24N−1
5 , 5

)
= 1, gcd

(
24N − 1, 25

)
= 1 and 25 - 24N − 1 when N > 5.

�
Lemma 9. Let N be a prime satisfying N ≡ 3 (mod 4), and T = 4N. Then
gcd

(
N + 1 − 24N−1

15 , 22N − 1
)

= 1.
Proof. It is clear that

gcd
(
N + 1 −

24N − 1
15

, 24N − 1
)

= gcd
(
N + 1 −

24N − 1
15

, 22N − 1
)

gcd
(
N + 1 −

24N − 1
15

, 22N + 1
)
.

Since 24N−1
15 = 22N+1

5 · 2N+1
3 ·

(
2N − 1

)
, we have 2N − 1

∣∣∣ 24N−1
15 and 2N+1

∣∣∣ 24N−1
5 . Thus

N + 1 −
24N − 1

15
≡

 N + 1
(
mod 2N − 1

)
,

N + 1 − 24N−1
15

(
mod 2N + 1

)
.

Firstly, gcd
(
N + 1, 22N − 1

)
= 1, which suggests both gcd

(
N + 1, 2N − 1

)
= 1 and

gcd
(
N + 1, 2N + 1

)
= 1. Now we show that gcd

(
N + 1, 2N − 1

)
= 1. Let r be an odd prime factor

of gcd
(
N + 1, 2N − 1

)
. Since r| 2N − 1, we get 2N ≡ 1 mod r, which is only possible if ordr2 = N.

Moreover, we have N | r − 1 by the Fermat’s little theorem. However r|N + 1, we have a contradiction.
Therefore, gcd

(
N + 1, 2N − 1

)
= 1. Then show that gcd

(
N + 1 − 24N−1

15 , 2N + 1
)

= 1. If N = 3, by a

simple calculation, we can verify that 3 - N + 1 − 24N−1
15 . On the other hard, we have 3| 2N + 1 and

2N+1
3

∣∣∣∣ 24N−1
15 , so we get

gcd
(
N + 1 −

24N − 1
15

, 2N + 1
)

= gcd
(
N + 1 −

24N − 1
15

,
2N + 1

3

)
= gcd

(
N + 1,

2N + 1
3

)
.

Suppose r is an odd prime factor of gcd
(
N + 1, 2N+1

3

)
. Since r| 2N+1

3 , it follows that 2N ≡ −1 (mod r).

Then we have 22N ≡ 1 (mod r), which suggests ordr2 = 2 or 2N. If ordr2 = 2, then r = 3. Since 3| 2N+1
3 ,

9| 2N + 1, which contradicts to Lemma 8. If ordr2 = 2N, then 2N |r − 1 by the Fermat’s little theorem,
so N ≤ r−1

2 . While r |N + 1, we deduce a contradiction. Therefore, gcd
(
N + 1 − 24N−1

15 , 22N − 1
)

= 1.
�

Lemma 10. Let N be a prime satisfying N ≡ 3 (mod 4), and T = 4N. Then
gcd

(
N + 1 − 24N−1

15 , 22N + 1
)

= 1.

Proof. Firstly, note that 3 - 22N + 1, hence 3 is not an odd prime factor of gcd
(
N + 1 − 24N−1

15 , 22N + 1
)
.

Let m be a common prime factor of both N + 1 − 24N−1
15 and 22N + 1. If m = 5, we claim that for any

prime N we have 5 - N + 1 − 24N−1
15 . Then we will show that gcd

(
N + 1 − 24N−1

15 , 22N + 1
)

has no prime
factors greater than 5.

Let m > 5 be a common prime factor of both N + 1 − 24N−1
15 and 22N + 1. From m|22N + 1 it follows

that m|24N − 1. And since m > 5, we obtain m| 24N−1
15 and hence m|N + 1. Moreover, since m

∣∣∣22N + 1,
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we get 22N ≡ −1(mod m) and 24N ≡ 1(mod m), which suggests ordm2 = 4 or 4N. If ordm2 = 4, we
have m = 5, which contradicts to m > 5. If ordm2 = 4N, then we have 4N |m − 1, i.e., N ≤ m−1

4 . Since
we have showed m |N + 1, then N ≤ m−1

4 , we arrive a contradiction. The proof is completed.
�

Theorem 3. Let u = I
(
a, L N+1

4 (b) , L
N+1

2
(
a
)
, L

3(N+1)
4 (b)

)
be the sequence with period 4N defined in (2.6).

Then the 2-adic complexity Φ(u) of sequence u is given by

Φ(u) = log2(24N − 1).

Proof. To obtain the 2-adic complexity of sequences u, it suffices to determine gcd
(
U (2) , 24N − 1

)
.

Since

gcd
(
U (2) , 24N − 1

) ∣∣∣∣gcd
(
U (2) T

(
2−1

)
, 24N − 1

)
,

from Lemmas 9 and 10, we have

gcd
(
N + 1 −

24N − 1
15

, 22N − 1
)

= 1

and

gcd
(
N + 1 −

24N − 1
15

, 22N + 1
)

= 1.

It follows that gcd
(
U (2) T

(
2−1

)
, 24N − 1

)
= 1 and we have gcd

(
U (2) , 24N − 1

)
= 1.

�

Example 2. Let

l = (1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0)

be a sequence with period N = 19. Then the binary interleaved sequence u =

I
(
a, L N+1

4 (b) , L
N+1

2
(
a
)
, L

3(N+1)
4 (b)

)
with period 4N is

u = (1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1,
0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1,
0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1) .

By Magma, gcd
(
U (2) , 276 − 1

)
= 1 and the 2-adic complexity of u is Φ (u) = log2

276−1
gcd(U(2),276−1) =

log2

(
276 − 1

)
, which is consistent with the Theorem 1.

Example 3. Let

l = (1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0)

be a sequence with period N = 59. Then the binary interleaved sequence u =

AIMS Mathematics Volume 7, Issue 8, 13790–13802.
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I
(
a, L N+1

4 (b) , L
N+1

2
(
a
)
, L

3(N+1)
4 (b)

)
with period 4N is

u = (1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0,
0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1,
0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,
0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1,
0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1,
0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1,
1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1) .

By Magma, gcd
(
U (2) , 2236 − 1

)
= 1 and the 2-adic complexity of u is Φ (u) = log2

2236−1
gcd(U(2),2236−1) =

log2

(
2236 − 1

)
, which is consistent with the Theorem 1.

5. Conclusions

In this paper, we investigate the linear complexity and 2-adic complexity of a class of binary
sequences with period 4N and optimal autocorrelation magnitude. This sequence is obtained by even
and odd sampling from Legendre sequence. We show that the linear complexity of binary sequences
with period 4N is 2N + 2. Our results show that these sequences are safe enough to resist the attacks
by the Rational Approximation algorithm and the Berlekamp-Massey algorithm. By discussing some
great common divisors according to Hu [12], we determine that the 2-adic complexity of the sequence
can reach the maximum value log2(24N − 1). Our results show that these sequences are safe enough to
resist attacks of the rational approximation algorithm.
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