
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(8): 13777–13789.
DOI: 10.3934/math.2022759
Received: 03 January 2022
Revised: 01 May 2022
Accepted: 05 May 2022
Published: 23 May 2022

Research article

Min-max differential game with partial differential equation

Ebrahim. A. Youness1, Abd El-Monem. A. Megahed2, Elsayed. E. Eladdad1 and Hanem. F. A.
Madkour1,*

1 Department of Mathematics, Faculty of Science, Tanta University, Tanta 31527, Egypt
2 Department of Basic Science, Faculty of Computers and Informatics, Suez Canal University,

Ismalia 41511, Egypt

* Correspondence: Email: hanem.unique@gmail.com, hanem.madkoor@science.tanta.edu.eg.

Abstract: In this paper, we are concerned with a min-max differential game with Cauchy initial value
problem (CIVP) as the state trajectory for the differential game, we studied the analytical solution and
the approximate solution by using Picard method (PM) of this problem. We obtained the equivalent
integral equation to the CIVP. Also, we suggested a method for solving this problem. The existence,
uniqueness of the solution and the uniform convergence are discussed for the two methods.

Keywords: Cauchy initial value problem; min-max differential game; uniform convergence;
existence; uniqueness; Picard method
Mathematics Subject Classification:35K15, 35A01, 35A02, 65M12, 91A05, 91A23

1. Introduction

Most physical phenomena use partial differential equations (PDEs) for example, fluid dynamics,
electricity, magnetism, mechanics, optics, or heat flow. It’s true that simplifications can be made that
reduce the equations in question to ordinary differential equations, but, nevertheless, the complete de-
scription of these systems resides in the general area of PDEs [1,2]. In [3] Hemeda, A. A. introduced an
integral iterative method (IIM) as a modification for PM to solve nonlinear integro-differential and sys-
tems of nonlinear integro-differential equations. Hemeda, A. A. and Eladdad, E. E. used IIM with the
new iterative method (NIM) in [4] for solving linear and nonlinear Fokker-Planck equations. Hemeda,
A. A. used local integral iterative method (LIIM) and local new iterative method (LNIM) in [5] for
solving local fractional differential equations. A Cauchy problem in mathematics asks for the solution
of a partial differential equation that satisfies certain conditions that are given on a hypersurface in the
domain [6].

In [7] Ivan Yegorov and Peter M. Dower presented the method of characteristics for solving some
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problem classes under convexity/concavity conditions on Hamilton–Jacobi–Bellman equations in op-
timal control problems. In [8] Chow, Y. T. , et al. developed a parallel method for solving possibly
non-convex time- dependent Hamilton–Jacobi equations arising from optimal control and differential
game problems. They proposed an algorithm to overcome the curse of dimensionality when solving HJ
PDE. Chow, Y. T. , et al. developed a method for solving a large class of non-convex Hamilton-Jacobi
partial differential equations (HJ PDE) see [9]. Mitchell, I. M., et al. described and implemented an
algorithm for computing the set of reachable states of a continuous dynamic game in [10]. The dif-
ferential game is a direct application of a differential equation and game theory. Game theory is an
important field in mathematics see [11,12]. In [13] Megahed, A. A., et al. discussed the min-max
zero-sum two persons continuous differential games with fuzzy controls and fuzzy state trajectories,
they derived the necessary and sufficient conditions for getting the optimal strategies. In [14] Megahed,
A. A., et al. studied a differential game problem between governments and terrorist organizations for
counterterrorism.
In this paper, we assume that two players (player 1 and player 2) play a min-max game in the time
interval t ∈ [0,T ]. Suppose that player 1’s plan against player 2 is u(x, t) which satisfies the Cauchy
initial value problem (CIVP):

utt + p(x)ut = q(x, t), t ∈ [0,T ], x ∈ R (1.1)

with respect to the initial conditions

u(x, 0) = f (x), ut(x, 0) = g(x) (1.2)

In order to increase the profit, the player 1’s plan u(x, t) at (xi, ti) within R × [0,T ], and the resulting
profit can be written as

J =

n∑
i=1

u(xi, ti).

The problem arises to determine the best (xi, ti) in order to maximize J for player 1, the most convenient
defense q(x, t) for player 2 in order to minimize J for player 1. Here, we have a non-homogenuous
linear partial differential equation that classified as a parabolic partial differential equation. In this
work, we obtain the integral equation

u(x, t) = f (x) + tg(x) + tP(x) f (x) + I2[q(x, t)] − I[P(x)u(x, t)], x ∈ R, t ∈ [0,T ] (1.3)

that equivalent to the CIVP (1.1) and (1.2), then we will prove the existence and the uniqueness of
continuous solution for (1.3) by using the principle of contraction mapping. Also, we will apply on
the integral equation (1.3) an analytical method; the classical method of successive approximations
(PM)[15] which consists of the construction of a sequence of functions such that the limit of this
sequence of functions in the sense of uniform convergence is the solution of the integral equation.
In this paper, the rest of it is organized as follows the existence and the uniqueness for the solution
are discussed in section 2. The purpose of section 3 is to solve the CIVP using PM. In section 4,
we suggest a method for solving CIVP. Section 5 is reserved for application.Finally, the conclusion
contains comparison between the two methods.
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2. Existence and uniqueness

In [16] El-Sayed, A. M. A., et al. concerned with the Cauchy problem of a delay stochastic
differential equation of arbitrary (fractional) orders. They proved the existence (local) of a unique
mean square continuous solution and studied the continuous dependence of the solution on the initial
random variable.
Here, we study the existence of the solution for the integral equation (1.3), let now the Cauchy initial
value problem (1.1) and (1.2). By integrating the equation (1.1) relative to t, we have

ut(x, t) − ut(x, 0) + p(x)u(x, t) − p(x)u(x, 0) = I[q(x, t)]

ut(x, t) − g(x) + p(x)u(x, t) − p(x) f (x) = I[q(x, t)].

By integrating more time relative to t.

u(x, t) − u(x, 0) − tg(x) + I[p(x)u(x, t)] − tp(x) f (x) = I2[q(x, t)]

u(x, t) = f (x) + tg(x) + tp(x) f (x) + I2[q(x, t)] − I[p(x)u(x, t)]

Here, we prove the equivalence between the (CIVP) (1.1) and (1.2) and the integral equation (1.3).
Now, we get

ut = g(x) + p(x) f (x) + I[q(x, t)] − p(x) u(x, t)

utt = q(x, t) − p(x) ut

utt + p(x) ut = q(x, t) − p(x) ut + p(x) ut = q(x, t)

u(x, 0) = f (x) + 0.g(x) + 0.p(x) f (x) +

∫ 0

0

∫ 0

0
q(x, t) dt = f (x)

ut(x, 0) = g(x) + p(x) f (x) +

∫ 0

0
q(x, t) dt − p(x) u(x, 0) = g(x)

Therefore the integral equation (1.3) is equivalent to the Cauchy initial value problem (1.1) and
(1.2), so the solution of the Cauchy initial value problem exists.

Now, consider the integral equation (1.3) with the following assumptions:

1. p, f , g : R −→ R are continuous functions and there exist M, M1, M2 such that |p(x)| ≤ M,
| f (x)| ≤ M1 and |g(x)| ≤ M2.

2. q : R × I −→ R is continuous function and there exists M3 such that |q(x, t)| ≤ M3 for all x ∈ R.
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Let C be the space of all real valued functions which are continuous, define the operator T as the
following

T (u(x, t)) = f (x) + tg(x) + tp(x) f (x) + I2[q(x, t)] − I[p(x)u(x, t)]

For the uniqueness of the solution of the integral equation (1.3) we have the following theorem.

Theorem 1. Let the assumptions 1 and 2 be satisfied. If MT < 1, then the integral equation
(1.3) has a unique solution u ∈ C.

Proof:
Now, we define S = {u ∈ C : |u(x, t)| ≤ r; r =

M1+T M2+T MM1+ T2
2 M3

1−T M }.
Then the operator T maps S into S , since for u ∈ S

|u(x, t)| = | f (x) + tg(x) + tp(x) f (x) + I2[q(x, t)] − I[p(x)u(x, t)]|

|u(x, t)| ≤ | f (x)| + |tg(x)| + |tp(x) f (x)| + I2|q(x, t)| + I|p(x)||u(x, t)|

|u(x, t)| ≤ | f (x)| + T |g(x)| + T |p(x)|| f (x)| + T 2

2 |q(x, t)| + T |p(x)||u(x, t)|

|u(x, t)| ≤ M1 + T M2 + T MM1 + T 2

2 M3 + T M|u(x, t)|

(1 − MT )|u| ≤ M1 + T M2 + T MM1 + T 2

2 M3

|u| ≤ M1+T M2+T MM1+ T2
2 M3

(1−MT ) = r.

Moreover, it is easy to see that S is a closed subset of C.

To show that T is a contraction mapping, let u, v be two solutions in S , then

Tu − Tv = I[p(x)v(x, t)] − I[p(x)u(x, t)]

|Tu − Tv| ≤ I[|p(x)||u(x, t) − v(x, t)|]

|Tu − Tv| ≤ MI[|u(x, t) − v(x, t)|]

||Tu − Tv|| ≤ MT ||u − v||.

Since MT < 1, then T is a contraction mapping and T has a unique fixed point in S .
Thus, there exists a unique solution for (1.3).
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3. Picard method

In [17] Hashem, H. H. G. treated with PM for coupled systems of Chandrasekhar quadratic integral
equations, studied the existence, the uniqueness and proved the uniform convergence for the solution.

Applying PM for the CIVP (1.1) and (1.2), the solution is constructed by the sequence

un(x, t) = u0 + I2
t [q(x, t) − P(x)(un−1(x, t))t], n = 1, 2, 3, ...... (3.1)

u0(x, t) = f (x) + tg(x) (3.2)

All functions un(x, t) are continuous functions and can be written as a sum of successive differences.

un(x, t) = u0(x, t) +

n∑
j=1

(u j − u j−1).

This means that convergence of the sequence {un} is equivalent to the convergence of the infinite series∑∞
j=1(u j − u j−1) and the solution will be u(x, t) = limn→∞ un(x, t).

If the infinite series
∑∞

j=1(u j − u j−1) converges, then the sequence {un} will converge to u(x, t).

To prove the uniform convergence of un(x, t), we shall consider the associated series

∞∑
n=1

(un − un−1)

For n = 1, we get from (3.1) and (3.2)

u1(x, t) − u0(x, t) = f (x) + tg(x) + I2
t [q(x, t) − P(x)(u0(x, t))t] − f (x) + tg(x)

|u1(x, t) − u0(x, t)| = |I2
t [q(x, t) − P(x)(u0(x, t))t]|

|u1(x, t) − u0(x, t)| ≤
T 2

2
M∗ (3.3)

such that M∗ = M3 − MM2

Now, we shall obtain an estimation for un − un−1, n ≥ 2

|un(x, t) − un−1(x, t)| = |I2
t [q(x, t) − P(x)(un−1(x, t))t] − I2

t [q(x, t) − P(x)(un−2(x, t))t]|

|un(x, t) − un−1(x, t)| = |I2
t [P(x)(un−2(x, t))t − P(x)(un−1(x, t))t]|

|un(x, t) − un−1(x, t)| ≤ MT |un−1(x, t) − un−2(x, t)|

Putting n = 2, then using (3.3)

u2(x, t) − u1(x, t) = I2
t [q(x, t) − P(x)(u1(x, t))t] − I2

t [q(x, t) − P(x)(u0(x, t))t]
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|u2(x, t) − u1(x, t)| ≤ M|I2
t [(u1(x, t))t − (u0(x, t))t]|

|u2(x, t) − u1(x, t)| ≤ MT |u1(x, t) − u0(x, t)|

|u2(x, t) − u1(x, t)| ≤ MT
M∗T 2

2
u3(x, t) − u2(x, t) = I2

t [q(x, t) − P(x)(u2(x, t))t] − I2
t [q(x, t) − P(x)(u1(x, t))t]

|u3(x, t) − u2(x, t)| ≤ M|I2
t [(u2(x, t))t − (u1(x, t))t]|

|u3(x, t) − u2(x, t)| ≤ MT |u2(x, t) − u1(x, t)|

|u3(x, t) − u2(x, t)| ≤ M2T 2 M∗T 2

2
Repeating this technique, we obtain the general estimate for the terms of the series:

|un(x, t) − un−1(x, t)| ≤ Mn−1T n−1 M∗T 2

2
.

Since MT < 1, then the uniform convergence of
∑∞

n=1(un − un−1) is proved and so the sequence un(x, t)
is uniformly convergent.

u(x, t) = limn→∞ f (x) + tg(x) + I2
t [q(x, t) − p(x)(un−1(x, t))t]

= f (x) + tg(x) + I2
t [q(x, t) − p(x)(u(x, t))t].

Thus, the existence of a solution is proved.
To prove the uniqueness, let v(x, t) be a continuous solution of (1.3). Then

v(x, t) = f (x) + tg(x) + I2
t [q(x, t) − P(x)(v(x, t))t]

v(x, t) − un(x, t) = f (x) + tg(x) + I2
t [q(x, t) − p(x)(v(x, t))t] − f (x) + tg(x)

+I2
t [q(x, t) − P(x)(un−1(x, t))t]

|v(x, t) − un(x, t)| ≤ M|I2
t [(un−1(x, t))t − (v(x, t))t]|

|v(x, t) − un(x, t)| ≤ MT |v(x, t) − un−1(x, t)|

We shall obtain v(x, t) − un−1(x, t), n = 1, 2, 3, ....

v(x, t) − u0(x, t) = f (x) + tg(x) + I2
t [q(x, t) − p(x)(v(x, t))t] − f (x) + tg(x)

|v(x, t) − u0(x, t)| = |I2
t [q(x, t) − p(x)(v(x, t))t]|

|v(x, t) − u0(x, t)| ≤
t2

2
M3 + M|I2

t (v(x, t))t|

|v(x, t) − u0(x, t)| ≤
T 2

2
M3 + MT |v(x, t) − f (x) − tg(x) + tg(x)|

|v(x, t) − u0(x, t)| ≤
T 2

2
M3 + MT |v(x, t) − u0(x, t)| + MT |tg(x)|
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(1 − MT )|v(x, t) − u0(x, t)| ≤
T 2

2
M3 + MT 2M2

|v(x, t) − u0(x, t)| ≤
T 2

2 M3 + MT 2M2

(1 − MT )

|v(x, t) − u1(x, t)| = |I2
t [p(x)((u0(x, t))t − (v(x, t))t)]|

|v(x, t) − u1(x, t)| ≤ MT |v(x, t) − u0(x, t)|

|v(x, t) − u1(x, t)| ≤ MT
T 2

2 M3 + MT 2M2

(1 − MT )

|v(x, t) − u2(x, t)| = |I2
t [p(x)((u1(x, t))t − (v(x, t))t)]|

|v(x, t) − u2(x, t)| ≤ MT |v(x, t) − u1(x, t)|

|v(x, t) − u2(x, t)| ≤ M2T 2
T 2

2 M3 + MT 2M2

(1 − MT )
By repeating this technique, we obtain

|v(x, t) − un(x, t)| ≤ MnT n
T 2

2 M3 + MT 2M2

(1 − MT )
.

Since MT < 1. Hence limn→∞ un(x, t) = v(x, t) = u(x, t) which completes the proof.

4. Suggested method

Here, we obtain an iterative form of the integral equation (1.3), the solution is constructed by the
sequence

un(x, t) = f (x) + tg(x) + tP(x) f (x) + I2[q(x, t)] − I[P(x)un−1(x, t)], n = 1, 2, 3, ...... (4.1)

u0(x, t) = f (x) + tg(x) (4.2)

All functions un(x, t) are continuous and can be written as the sum of successive differences.

un(x, t) = u0(x, t) +

n∑
j=1

(u j − u j−1).

This means that the convergence of the sequence {un} is equivalent to the convergence of the infinite
series

∑∞
j=1(u j − u j−1) and the solution will be

u(x, t) = lim
n→∞

un(x, t)

.
If the infinite series

∑∞
j=1(u j − u j−1) converges, then the sequence {un} will converge to u(x, t). To prove

the uniform convergence of un(x, t), we shall consider the associated series
∞∑

n=1

(un − un−1)
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For n = 1, we get from (4.1) and (4.2)

u1(x, t) − u0(x, t) = tp(x) f (x) + I2[q(x, t)] − I[p(x)( f (x) + tg(x))]

= tp(x) f (x) + I2[q(x, t)] − tp(x) f (x) −
t2

2
g(x)

|u1(x, t) − u0(x, t)| ≤
T 2

2
M3 +

T 2

2
M2

|u1(x, t) − u0(x, t)| ≤
T 2

2
M∗ (4.3)

such that M∗ = M3 + M2

Now, we shall obtain an estimation for un − un−1, n ≥ 2

|un(x, t) − un−1(x, t)| = |I[p(x)un−2(x, t)] − I[p(x)un−1(x, t)]|

|un(x, t) − un−1(x, t)| ≤ MT |un−1(x, t) − un−2(x, t)|

For n = 2 and using (4.3)

u2(x, t) − u1(x, t) = I[p(x)u0(x, t)] − I[p(x)u1(x, t)]

|u2(x, t) − u1(x, t)| ≤ MI[|u1(x, t) − u0(x, t)|]

|u2(x, t) − u1(x, t)| ≤ MT
T 2

2
M∗

|u2(x, t) − u1(x, t)| ≤ MT
M∗T 2

2
u3(x, t) − u2(x, t) = I[p(x)u1(x, t)] − I[p(x)u2(x, t)]

|u3(x, t) − u2(x, t)| ≤ MT [|u2(x, t) − u1(x, t)|]

|u3(x, t) − u2(x, t)| ≤ M2T 2 M∗T 2

2
By repeating this technique, we obtain the general estimation for the terms of the series:

|un(x, t) − un−1(x, t)| ≤ Mn−1T n−1 M∗T 2

2
.

Since MT < 1, then the uniform convergence of
∑∞

n=1(un − un−1) is proved and so the sequence un(x, t)
is uniformly convergent.

u(x, t) = limn→∞ f (x) + tg(x) + tP(x) f (x) + I2[q(x, t)] − I[P(x)un−1(x, t)]

= f (x) + tg(x) + tP(x) f (x) + I2[q(x, t)] − I[P(x)u(x, t)].

Thus, the existence of a solution is proved.
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To prove the uniqueness, let v(x, t) be a continuous solution of (4.1) and (4.2). Then

v(x, t) = f (x) + tg(x) + tP(x) f (x) + I2[q(x, t)] − I[P(x)v(x, t)]

v(x, t) − un(x, t) = I[p(x)un−1(x, t)] − I[p(x)v(x, t)]

|v(x, t) − un(x, t)| ≤ MT |v(x, t) − un−1(x, t)|

We shall obtain v(x, t) − un−1(x, t), n = 1, 2, 3, ....

v(x, t) − u0(x, t) = tp(x) f (x) + I2[q(x, t)] − I[p(x)v(x, t)] +
t2

2
p(x)g(x) −

t2

2
p(x)g(x)

v(x, t) − u0(x, t) = I[p(x)( f (x) + tg(x))] − I[p(x)v(x, t)] + I2[q(x, t)] −
t2

2
p(x)g(x)

|v(x, t) − u0(x, t)| ≤ MT |v(x, t) − u0(x, t)| +
t2

2
M3 + MM2

t2

2

|v(x, t) − u0(x, t)| ≤
T 2

2 (M3 + MM2)
1 − T M

|v(x, t) − u1(x, t)| ≤ |I[p(x)u0(x, t)] − I[p(x)v(x, t)]|

|v(x, t) − u1(x, t)| ≤ T M|v(x, t) − u0(x, t)|

|v(x, t) − u1(x, t)| ≤ T M
T 2

2 (M3 + MM2)
1 − T M

|v(x, t) − u2(x, t)| ≤ |I[p(x)u1(x, t)] − I[p(x)v(x, t)]|

|v(x, t) − u2(x, t)| ≤ T M|v(x, t) − u1(x, t)|

|v(x, t) − u2(x, t)| ≤ T 2M2
T 2

2 (M3 + MM2)
1 − T M

By repeating this technique, we obtain

|v(x, t) − un(x, t)| ≤ T nMn
T 2

2 (M3 + MM2)
1 − T M

.

Since MT < 1. Hence limn→∞ un(x, t) = v(x, t) = u(x, t) which completes the proof.

5. Example

As an application, assume that a coach into a certain team wishes to keep a football player away his
team in the time interval t ∈ [0, 1]. we consider (1.1) and (1.2) with p(x) = x, f (x) = sinx, g(x) = sinx
and q(x, t) = et(1 + x)sinx.
Assume that coach’s plan against the football player u(x,t) satisfies the Cauchy initial value problem
(CIVP):

utt + xut = et(1 + x)sinx, t ∈ [0, 1], x ∈ R (5.1)
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13786

with respect to the initial conditions

u(x, 0) = sinx, ut(x, 0) = sinx (5.2)

has a unique solution u(x, t) = etsinx.
By Picard formula (3.1) and (3.2), we have

un(x, t) = u0 + I2
t [et(1 + x)sinx − x(un−1(x, t))t], n = 1, 2, 3, ...... (5.3)

u0(x, t) = sinx + tsinx (5.4)

Putting n = 1, then
u1(x, t) = sinx + tsinx + I2

t [et(1 + x)sinx − x(u0)t]
= sinx + tsinx + I2

t [et(1 + x)sinx − x(sinx + tsinx)t]
= et(1 + x)sinx − xsinx − txsinx − t2

2 xsinx.
= etsinx + xetsinx − xsinx(1 + t + t2

2 ).

n = 2, then
u2(x, t) = sinx + tsinx + I2

t [et(1 + x)sinx − x(u1)t]
= sinx + tsinx + I2

t [et(1 + x)sinx − x(etsinx + xetsinx − xsinx(1 + t + t2
2 ))t]

= etsinx − x2etsinx + x2sinx + x2tsinx + x2 t2
2! sinx + x2 t3

3! sinx
= etsinx − x2etsinx + x2sinx[1 + t

1! + t2
2 + t3

3! ]

n = 3, then
u3(x, t) = sinx + tsinx + I2

t [et(1 + x)sinx − x(u2)t]
= sinx + tsinx + I2

t [et(1 + x)sinx − x(etsinx − x2etsinx + x2sinx[1 + t
1! + t2

2 + t3
3! ])t]

= etsinx + x3etsinx − x3sinx[1 + t
1! + t2

2! + t3
3! + t4

4! ].

n = 4, then
u4(x, t) = sinx + tsinx + I2

t [et(1 + x)sinx − x(u3)t]
= sinx + tsinx + I2

t [et(1 + x)sinx − x(etsinx + x3etsinx − x3sinx[1 + t
1! + t2

2! + t3
3! + t4

4! ])t]
= etsinx − x4etsinx + x4sinx[1 + t

1! + t2
2! + t3

3! + t4
4! + t5

5! ].

Since the sequence un(x, t) is uniformly convergent. then un(x, t) = etsinx + (−1)n−1xnetsinx +

(−1)nxnsinx[1 + t
1! + t2

2! + t3
3! + t4

4! + ........ + tn+1

(n+1)! ],

Hence u(x, t) = limn→∞ un(x, t) = etsinx, which is the exact solution.

Now, we Apply our iterative method (4.1) and (4.2), we have

un(x, t) = u0 + txsinx + I2
t [et(1 + x)sinx] − It[xun−1(x, t)], n = 1, 2, 3, ...... (5.5)

u0(x, t) = sinx + tsinx (5.6)

Putting n = 1, then
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u1(x, t) = sinx + tsinx + txsinx + I2
t [et(1 + x)sinx] − It[xu0(x, t)]

= sinx + tsinx + I2
t [et(1 + x)sinx] − It[x(sinx + tsinx)]

= etsinx + xetsinx − xsinx(1 + t + t2
2 ).

n = 2, then
u2(x, t) = sinx + tsinx + txsinx + I2

t [et(1 + x)sinx] − It[xu1(x, t)]
= sinx + tsinx + I2

t [et(1 + x)sinx] − I2
t [etsinx + xetsinx − xsinx(1 + t + t2

2 )]
= etsinx − x2etsinx + x2sinx[1 + t

1! + t2
2! + t3

3! ]

n = 3, then
u3(x, t) = sinx + tsinx + txsinx + I2

t [et(1 + x)sinx] − It[xu2(x, t)]
= sinx + tsinx + I2

t [et(1 + x)sinx] − I2
t [etsinx − x2etsinx + x2sinx[1 + t

1! + t2
2! + t3

3! ]]
= etsinx + x3etsinx − x3sinx[1 + t

1! + t2
2! + t3

3! + t4
4! ].

Put n = 4, then
u4(x, t) = sinx + tsinx + txsinx + I2

t [et(1 + x)sinx] − It[xu3(x, t)]
= sinx + tsinx + I2

t [et(1 + x)sinx] − I2
t [etsinx + x3etsinx − x3sinx[1 + t

1! + t2
2! + t3

3! + t4
4! ]]

= etsinx − x4etsinx + x4sinx[1 + t
1! + t2

2! + t3
3! + t4

4! + t5
5! ].

Since the sequence un(x, t) is uniformly convergent, then
un(x, t) = etsinx + (−1)n−1xnetsinx + (−1)nxnsinx[1 + t

1! + t2
2! + t3

3! + t4
4! + ........ + tn+1

(n+1)! ].
Hence u(x, t) = limn→∞ un(x, t) = etsinx, which is the exact solution.
In Figure 1, we presented a comparison between the approximated solutions at different times to

the problem. We noticed that, when the time is increased, the football player’s chances to participate in
the match until reaching highest participation and it will be the maximum (the top of the waves). After
increasing the football player’s mistakes, the participation started to decrease until vanishing (u ≤ 0).

t=0.1

t=0.2

t=0.3

t=0.4

t=0.5

-10 -5 0 5 10

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

x

U
(x
,t)

Figure 1. Comparison between the solutions at different times.

At t = 0.1, we found from the graph (red wave) u = 1.10512 is maximum at x = 1.58, u =

1.10483 at x = 7.86, at t = 0.2, we found from the graph (blue wave) u = 1.22133 is maximum at x =

1.58, u = 1.21085 at x = 7.86.
Now, we showed the participant chances for player 2 as the following
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x = 1.58 x = 7.86

t = 0.1
u = 1.10512 u = 1.10483

t = 0.2
u = 1.22133 u = 1.21085

t = 0.3
u = 1.34947 u = 1.26727

6. Conclusions

The main concern of this work is to construct a method for solving the problem (1.1) with initial
conditions (1.2), relied on the analysis described the proposed numerical method is very efficient which
save time and efforts, we obtained the solution quickly and it helped us in the theoretical and application
studies for this problem and its like it.
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