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Abstract: In this paper, several bootstrap properties of m-generalized order statistics (m-GOSs) with
variable rank (central and intermediate) are revealed. We study the inconsistency, weak consistency
and strong consistency of bootstrapping central and intermediate m-GOSs when the normalizing
constants are assumed to be known or estimated from the re-sampled data using a proper re-sample
size. Furthermore, sufficient conditions for the weak and strong consistencies of the bootstrapping
distributions of central and intermediate m-GOSs based on the normalizing constant estimators are
given. Finally, a simulation study is conducted to determine the optimal bootstrap re-sample size
corresponding to the best fitting of the bootstrapping distribution.
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1. Introduction

Kamps [22] introduced the model of GOSs as a unified approach to a variety of ordered
random variables (RVs), including ordinary order statistics (OOSs), sequential order statistics (SOSs),
progressive type II censored order statistics (POSs), order statistics with a non-integer sample size,
record values, and Pfeifer’s record model. Since the GOSs model unifies the models of ordered RVs,
the practical importance of GOSs is evident. For example, in reliability theory, the rth extreme OOS
indicates the life-length of an (n − r + 1)-out-of-n system, whereas the model of SOSs is an extension
of the OOSs model that describes specific dependencies or interactions among system components
induced by component failures. Furthermore, the POSs model is a valuable tool for collecting
information in lifetime tests.

The uniform GOSs are defined via their joint probability density function (PDF) on a unit cone
of Rn. More specifically, let n ∈ N, k ≥ 1 and m1,m2, ...,mn−1 ∈ R be parameters such that γr =

k + n − r +
∑n−1

j=r m j > 0, r ∈ {1, 2, ..., n − 1}. If the RVs U(r, n, m̃, k) = U?
r:n, r = 1, 2, ..., n, possess a

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2022755


13705

PDF of the form

f U?
1:n,U

?
2:n,...,U

?
n:n(u1, u2, ..., un) = k

 n−1∏
j=1

γ j


 n−1∏

j=1

(1 − u j)m j

 (1 − un)γn−1 (1.1)

on the cone {(u1, u2, ..., un) : 0 ≤ u1 ≤ u2 ≤ ... ≤ un < 1} ⊂ Rn, then they are called uniform
GOSs. Furthermore, GOSs based on some distribution function (DF) F can be defined via the quantile
transformation X(r, n, m̃, k) = X?

r:n = F−1(U?
r:n), r = 1, 2, ..., n, where F−1 denotes the quantile function

of F. On the other hand, by choosing the parameters appropriately, we can obtain different models of
ordered RVs, such as m-GOSs (m1 = m2 = ... = mn−1 = m, γr = k+(n−r)(m+1), r = 1, 2, ..., n); OOSs,
a sub-model of m-GOSs (m = 0 and k = 1); order statistics with non-integral sample size, a sub-model
of m-GOSs (m = 0, k = α − n + 1 and n − 1 < α ∈ R); SOSs (mi = (n − i + 1)αi − (n − i)αi+1 − 1, i =

1, 2, ..., n − 1, 0 < αi ∈ R, k = αn); kth record values (m1 = m2 = ... = mn−1 = −1, k ∈ N); POSs with
censoring scheme (R1,R2, ...,RM)(mi = Ri, i = 1, 2, ...,M − 1, and mi = 0, i = M,M + 1, ..., n − 1 and
k = RM + 1); and Pfeifer’s record model (mi = βi − βi+1 − 1, i = 1, 2, ..., n − 1, 0 < βi ∈ R and k = βn).

The marginal DF, Ψ
(m,k)
r:n (x) = P(X?

r:n ≤ x), of the rth m-GOS is given in Kamps [22] by

Ψ(m,k)
r:n (x) = 1 −Cr−1F

γr (x)
r−1∑
i=0

1
i!Cr−i−1

gi
m(x),

where Cr−1 =
∏r

i=1 γi, r = 1, 2, ..., n, γn = k, and F(x) = 1−F(x). Moreover, if m , −1, (m+1)gm(x) =

Gm(x) = 1 − F
m+1

(x) is a DF, whereas g−1(x) = − log F(x). Under the condition m , −1, the possible
limit DFs of the maximum m-GOS and their domains of attraction under linear normalization were
derived by Nasri-Roudsari [27]. Moreover, the limit DFs of Ψ

(m,k)
n:n (x) under power normalization were

derived by Nasri-Roudsari [28]. The possible non-degenerate limit DFs and the rate of convergence
of the upper extreme m-GOSs were discussed by Nasri-Roudsari and Cramer [29]. The necessary and
sufficient conditions for weak convergence as well as the form of the possible limit DFs of extreme,
central and intermediate m-GOSs, were derived by Barakat [4].

The bootstrap method, which was first introduced by Efron [20] for independent RVs, is an efficient
procedure for solving many statistical problems based on re-sampling from the available data. It
enables statisticians to perform statistical inference on a wide range of problems without imposing
many structural assumptions on the data-generating random process (cf. [14, 21, 26]). For example,
the bootstrap method is used to find standard errors for estimators, confidence intervals for unknown
parameters, and p-values for test statistics under a null hypothesis.

There are several forms of the bootstrap method and additionally several other re-sampling methods
that are related to it, such as jackknifing, cross-validation, randomization tests, and permutation tests.
Let Xn = (X1, X2, ..., Xn) be a random sample of size n from an unknown DF F. The idea of the bootstrap
technique is to re-sample with replacement from the original sample Xn and form a bootstrapped
version of the original statistic. For B = B(n) → ∞, as n → ∞, assume that Y1,Y2, ...,YB are
conditionally independent and identically distributed (i.i.d) RVs with distribution

P(Y1 = X j|Xn) =
1
n
, j = 1, 2, ..., n.

Hence, (Y1,Y2, ...,YB) is a re-sample of size B from the empirical distribution Fn of F based on Xn. Let
P j, j = 1, 2, ..., n, be an independent RV with respective beta distribution Ix(γ j, 1), j = 1, 2, ..., n. Thus,
P j follows a power function distribution with exponent γ j = k + (B − j)(m + 1), j = 1, 2, ..., B. Now,
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in view of the results of Cramer [17], we can write the rth m-GOS based on the empirical DF Fn in the
form

Y?
r:B = Y(r, B,m, k) = F−1

n

1 − r∏
j=1

P j

 , r = 1, 2, ..., B.

Moreover, let

H(m,k)
r,n,B (x) = P

(
Y?

B−r+1:B − bB

aB

≤ x|Xn

)
, (1.2)

be the bootstrap distribution of a−1
n (X?

n−r+1:n − bn), for suitable normalizing constants an > 0 and bn,
where n and B are the sample size and re-sample size, respectively.

It has been shown, for many statistics, that the bootstrap method is asymptotically consistent (cf.
Efron [20]). That is, the asymptotic distribution of the bootstrap for a given statistic is the same as
the asymptotic distribution of the original statistic. Many results for the bootstrap method and its
applications can be found in the literature. For instance, the inconsistency, weak consistency and
strong consistency for bootstrapping the maximum OOSs under linear normalization were investigated
by Athreya and Fukuchi [2] and Fukuchi [21]. They showed that, in a full-sample bootstrap situation,
the maximum OOSs fails to be consistent. Later, Barakat et al. [10] extended the results of Fukuchi and
Athreya to the GOSs. Barakat et al. [12] obtained similar results for the OOSs with variable ranks as
well. Furthermore, bootstrapping OOSs with variable rank under power normalization was investigated
by Barakat et al. [13].

The main goal of this paper is to build on the findings of [10] by discussing the consistency of
bootstrap central and intermediate GOSs for determining an appropriate re-sample size for known
and unknown normalizing constants. Moreover, a simulation study is carried out to explain how the
bootstrap sample size can be chosen numerically. This paper is structured as follows. In Section 2,
we briefly review the main results concerning the asymptotic behaviour of the m-GOSs with variable
rank. Sections 3 and 4 are devoted, respectively, to bootstrapping the intermediate and central m-GOSs.
Finally, a simulation study is conducted in Section 5.

We end this section with some motivations that highlight the importance of our work.

Work motivation

The purpose of the bootstrap method is to construct an approximate sampling distribution for the
statistic of interest. So, if the statistic of interest S n follows a certain distribution, we would like our
bootstrap distribution S B to converge to the same distribution. If we do not have this, then we can not
trust the inferences made. For i.i.d. samples of size n, the ordinary bootstrap method is known to be
consistent in many situations, but it may fail in important examples (cf. [10,12,13,21]). Using bootstrap
samples of size B, where B → ∞ and B

n → 0, typically resolves the problem (cf. [10, 12, 13, 21]).
However, the choice of B is a key issue for the quality of the convergence (e.g., weak consistency
and strong consistency). In this paper, we investigate the strong consistency of bootstrapping central
and intermediate m-GOSs for an appropriate choice of re-sample size B for known and unknown
normalizing constants. The critical choice problem of B is theoretically addressed in this paper.
Furthermore, a simulation study is used to discuss it realistically.

The model of m-GOSs contains two practically important sub-models, OOSs and SOSs, on which
this study focuses. For central OOSs and SOSs, one can use the bootstrap method to obtain a confidence
interval for the pth population quantile. On the other hand, in many important applications such
as flood hazard assessment [18], seismic hazard assessment [1] and analysis of bank operational
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risk [16], we need an estimator (confidence interval estimate) of an intermediate OOSs (SOSs) quantile.
Moreover, it is well known that the asymptotic behavior of intermediate quantiles is one of the main
factors in choosing a suitable value of threshold in the peak over threshold (POT) approach and
constructing related estimators (the Hill estimators) of the tail index (cf. [9, 19]). Therefore, the study
of bootstrapping intermediate OOSs will pave the way to use and improve the modeling of extreme
values via the POT approach. This potential application of bootstrapping intermediate OOSs will be
the subject of future studies.

2. Auxiliary and preliminary results

In this section, we briefly review the main results concerning the asymptotic behaviour of the
intermediate and central m-GOSs, which are related to the present work.

2.1. Intermediate OOSs

The intermediate OOSs have a wide range of important applications. For instance, they can be
used to estimate the probabilities of future extreme observations and to estimate tail quantiles of the
underlying distribution that are extremes relative to the available sample size (cf. [30]). Furthermore,
Pickands [30] has revealed that intermediate OOSs can be applied to construct consistent estimators
for the shape parameter of the limiting extremal distribution in the parametric form. Teugels [32] and
Mason [25] have also found estimators that are in part based on intermediate OOSs. A sequence {Xrn:n}

is called a sequence of intermediate OOSs if rn −−→
n
∞ and rn

n −−→n
0 (lower intermediate) or rn

n −−→n
1

(upper intermediate), where the symbol (−−→
n

) stands for convergence as n −−→ ∞. Wu [33] (see also,
Leadbetter et al. [23]) revealed that, if {rn} is any nondecreasing intermediate rank sequence, and there
exist normalizing constants an > 0 and bn such that

Ψ
(0,1)
n−rn+1:n(anx + bn) = IF(an x+bn)(n − rn + 1, rn)

w
−−→

n
Ψ(0,1)(x), (2.1)

where
w
−−→

n
stands for weak convergence, as n → ∞, Ψ

(0,1)
n−rn+1:n(x) is the DF of the upper rnth OOS

(upper intermediate), and Ψ(0,1)(x) is a nondegenerate DF, then Ψ(0,1)(x) must be one and only one
of the types N(Ui;α(x)), i = 1, 2, 3, where N(.) denotes the standard normal DF, and α is a positive
constant. Moreover,

U1;α(x) =

{
−α log | x |, x ≤ 0,
∞, x > 0,

U2;α(x) =

{
−∞, x ≤ 0,
α log x, x > 0,

and U3;α(x) = U3(x) = x, ∀x. Furthermore, (2.1) is satisfied with Ψ(0,1)(x) = N(Ui;α(x)), i = 1, 2, 3, if
and only if

rn − nF(anx + bn)
√

rn
−−→

n
Ui;α(x). (2.2)

In this work we confine ourselves to a very wide intermediate rank sequence which is known as
Chibisov’s rank, where rn

nω −−→n
l2, 0 < ω < 1; for more details about Chibisov’s rank, see ( [6, 7, 15]).

When (2.1) is satisfied for this rank, we say that F belongs to the intermediate domain of attraction of
Ψ(0,1)(x) = N(Ui;α(x)) and write F ∈ D(l,ω)

(
N(Ui;α(x))

)
. The following lemma is needed for studying

the asymptotic distributions of the suitably normalized intermediate m-GOSs.
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Lemma 2.1. (cf. Barakat [4]) Let m > −1. Then, for any nondecreasing intermediate variable rank
rn, there exist normalizing constants an > 0 and bn such that

Ψ
(m,k)
n−rn+1:n(anx + bn)

w
−−→

n
Ψ(m,k)(x), (2.3)

if and only if

rn? − nF
m+1

(anx + bn)
√

rn?
−−→

n
U(x), (2.4)

where Ψ(m,k)(x) is a nondegenerate DF with Ψ(m,k)(x) = N(U(x)), and n? = n + k
m+1 − 1.

Theorem 2.1. (cf. Barakat [4]) Suppose that m > −1, and rn is a nondecreasing intermediate variable
rank. Moreover, let r?n be a variable rank defined by

r?n = rS −1(n?),

where S (n) = rn?/(rn?/n?)
1

m+1 . Then, there exist normalizing constants an > 0 and bn for which (2.3)
is satisfied for some nondegenerate DF Ψ(m,k)(x) if and only if there are normalizing constants αn > 0
and βn for which

Ψ
(0,1)
n−r?n +1:n(αnx + βn)

w
−−→

n
Ψ(0,1)(x), (2.5)

where Ψ(0,1)(x) is some nondegenerate DF. Equivalently,

r?n − nF(αnx + βn)√
r?n

−−→
n

Ui;α(x), (2.6)

with Ψ(0,1)(x) = N(Ui;α(x)), i = 1, 2, 3. In this case, the normalizing constants an and bn can be chosen
as an = αS (n) and bn = βS (n). Furthermore, U(x) in (2.4) takes the form (m + 1)Ui;α(x).

2.2. Central OOSs

When the rank sequence rn −−→
n
∞ satisfies the regular condition rn = λn+o(

√
n), where 0 < λ < 1,

rn is referred to as a central rank sequence, and Xrn:n is called central OOSs. There are numerous
distinct results for central OOSs and their applications in the literature. Smirnov [31] showed that, if
there exist normalizing constants cn > 0 and dn such that

Ψ
(0,1)
n−rn+1:n(cnx + dn) = IF(cn x+dn)(n − rn + 1, rn)

w
−−→

n
Ψ

(0,1)
λ (x), (2.7)

where Ψ
(0,1)
λ (x) is some nondegenerate DF, then Ψ

(0,1)
λ (x) must be one and only one of the types

N(Vi;α(x)), i = 1, 2, 3, 4. Moreover,

V1;α(x) =

{
−∞, x ≤ 0,
cxα, x > 0, c, α > 0,

V2;α(x) =

{
−c|x|α, x ≤ 0, c, α > 0,
∞, x > 0,

V3;α(x) =

{
−c|x|α, x ≤ 0, c, α > 0,
c1xα, x > 0, c1 > 0,

V4;0(x) =


−∞, x ≤ −1,
0, −1 < x ≤ 1,
∞, x > 1,
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where c = 1
√
λ(1−λ)

and c1 = c/A, A > 0. In that case, we say that the DF F
belongs to the domain of normal λ-attraction of the limit type Vi,α(x), i = 1, 2, 3, 4, written
F ∈ D(λ)(Vi;α(x)). Moreover, Smirnov [31] showed that (2.7) is satisfied if and only if

√
n
λ − F(cnx + dn)

Cλ

 −−→
n

Vi;α(x), (2.8)

where Cλ = 1/c =
√
λ(1 − λ). The following lemma, which is due to Barakat [4], is a cornerstone of

the asymptotic theory of central m-GOSs.

Lemma 2.2. (cf. Barakat [4]) Let m > −1. Moreover, let rn be a nondecreasing variable rank such
that rn = λn + o(

√
n). Then, there exist normalizing constants cn > 0 and dn such that

Ψ
(m,k)
n−rn+1:n(cnx + dn)

w
−−→

n
Ψ

(m,k)
λ (x), (2.9)

if and only if
√

n

λ − F
m+1

(cnx + dn)
Cλ

 −−→n V(x), (2.10)

where Ψ
(m,k)
λ (x) is a nondegenerate DF with Ψ

(m,k)
λ (x) = N(V(x)).

Theorem 2.2. (cf. Barakat [4]) Let m > −1, and let rn be a nondecreasing variable rank such that
rn = λn + o(

√
n). Then, there exist normalizing constants cn > 0 and dn for which (2.9) holds, for

some nondegenerate DF Ψ
(m,k)
λ (x), if and only if, for the same normalizing constants cn and dn, we have

F ∈ Dλ(m)(Vi;α(x)), i = 1, 2, 3, 4, where λ(m) = λ
1

m+1 . That is, in view of (2.10), we have

√
n
λ(m) − F(cnx + dn)

Cλ(m)

 −−→
n

Vi;α(x), i ∈ {1, 2, 3, 4}. (2.11)

Moreover, Ψ
(m,k)
λ (x) = N

(
(C?

λ(m)
/C?

λ )(m + 1)Vi(x)
)
, where C?

t = Ct/t.

3. Bootstrapping intermediate m-GOSs

In this section, we study the asymptotic behaviour of bootstrapping intermediate m-GOSs with
rank sequence rB . In other words, we are interested in the limiting distribution of H(m,k)

rB ,n,B
(x) =

P
(

Y?B−rB+1:B−bB

aB
≤ x|Xn

)
, for different choices of the re-sample size B = B(n), when the normalizing

constants an and bn are either known or unknown.

3.1. Consistency of bootstrapping intermediate m-GOSs when the normalizing constants are known

This subsection investigates the inconsistency, weak consistency and strong consistency of the
bootstrap distribution H(m,k)

rB,n,B
(x) when the normalizing constants are known. More specifically, it is

proved in the next theorem that the full-sample bootstrap (i.e., B = n) of H(0,k)
rn,n,n(x) fails to be consistent

with Ψ(0,k)(x). Moreover, in the same theorem it is shown that if m > 0 and B = n, then H(m,k)
rn,n,n(x) is a

consistent estimator of Ψ(m,k)(x).

Theorem 3.1. Let the relation (2.3) be satisfied with Ψ(m,k)(x) = N((m + 1)Ui;α(x)), i = 1, 2, 3. Then,

H(0,k)
rn,n,n(x)

d
−−→

n
N(Z(x)), (3.1)
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where
d
−−→

n
stands for convergence in distribution as n → ∞, and Z(x) has a normal distribution with

mean Ui;β(x) and a variance of one. Moreover, if m > 0, then

sup
x∈R

∣∣∣H(m,k)
rn,n,n(x) − Ψ(m,k)(x)

∣∣∣ p
−−→

n
0, (3.2)

where
p
−−→

n
stands for convergence in probability as n→ ∞.

Proof. Since all of the limit types in (2.2) are continuous, the convergence in (2.3) is uniform in x.
Therefore, we can write

H(m,k)
rB ,n,B

(x) = N

r
B?
− BF

m+1
n (aBx + bB)
√r

B?

 + ξn(x), (3.3)

where ξn(x) −−→
n

0 uniformly with respect to x, and B? = B + k
m+1 − 1 −−→

n
∞. Suppose now that the

condition B = n holds true; then, (3.3) can be expressed as

H(m,k)
rn,n,n(x) = N

rn? − nF
m+1
n (anx + bn)
√

rn?

 + ξn(x). (3.4)

When m = 0, after some routine algebraic calculations we can obtain (3.1), which is the same result
of Theorem 4.2 in Barakat et al. [12]. Now, we have to prove (3.2) for m > 0 when B = n. Since
S (n) −−→

n
∞, (2.6) implies

r?S (n) − S (n)F(αS (n)x + βS (n))√
r?S (n)

−−→
n

Ui;α(x). (3.5)

Furthermore, from the central limit theorem we have

nF̄n(αS (n)x + βS (n)) − nF(αS (n)x + βS (n))√
nF(αS (n)x + βS (n))(1 − F(αS (n)x + βS (n)))

d
−−→

n
Z(x). (3.6)

On the other hand, from Chibisov [15] and Barakat [4], S (n) can be written in the form S (n) =

l
2m

m+1 n
1+ωm
m+1 (1 + o(1)), where 0 < ω < 1 and l > 0. Consequently, we get

S (n)
n

= l
2m

m+1 n
1+ωm
m+1 −1(1 + o(1)) −−→

n
0. (3.7)

Moreover, from Barakat [4], it is clear that r?S (n) ∼ S (n)F(αS (n)x + βS (n)). Thus, by (3.6) and (3.7), we
obtain

S (n)F̄n(αS (n)x + βS (n)) − S (n)F(αS (n)x + βS (n))√
r?S (n)

=
S (n)

n
nF̄n(αS (n)x + βS (n)) − nF(αS (n)x + βS (n))√

r?S (n)
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∼
S (n)

n
nF̄n(αS (n)x + βS (n)) − nF(αS (n)x + βS (n))√

S (n)F(αS (n)x + βS (n))(1 − F(αS (n)x + βS (n)))

=

√
S (n)

n
nF̄n(αS (n)x + βS (n)) − nF(αS (n)x + βS (n))√
nF(αS (n)x + βS (n))(1 − F(αS (n)x + βS (n)))

−−→
n

0. (3.8)

Therefore, from (3.5) and (3.8) we get

r?S (n) − S (n)F̄n(αS (n)x + βS (n))√
r?S (n)

=
r?S (n) − S (n)F(αS (n)x + βS (n))√

r?S (n)

−
S (n)F̄n(αS (n)x + βS (n)) − S (n)F(αS (n)x + βS (n))√

r?S (n)

−−→
n

Ui;α(x). (3.9)

From (3.9), we can write F̄n(αS (n)x + βS (n)) =

(
r?S (n)

S (n)

) (
1 − Ui;α(x)
√

r?S (n)

(1 + o(1))
)
, which implies

F̄n
m+1(αS (n)x + βS (n)) =

 r?S (n)

S (n)

m+1
1 − (m + 1)Ui;α(x)√

r?S (n)

(1 + o(1))

 . (3.10)

Furthermore, from Barakat [4], it can be noted that r?S (n) ∼ rn? and
r?S (n)

S (n) =
(

rn?

n

) 1
m+1

. Thus, by using (3.10),
we have

rn? − nF̄n
m+1(anx + bn)
√

rn?
= ωn + (m + 1)Ui;α(x)τn(1 + o(1)), (3.11)

where

ωn =

rn? − n
(

r?S (n)

S (n)

)m+1

√
rn?

=
rn? − n

(
rn?

n

)
√

rn?
= 0, (3.12)

and

τn =

n
(

r?S (n)

S (n)

)m+1

√
rn?

√
r?S (n)

=
n
(

rn?

n

)
√

r2
n?

= 1. (3.13)

Substituting from (3.12) and (3.13) into (3.11), we get

rn? − nF̄n
m+1(anx + bn)
√

rn?
−−→

n
(m + 1)Ui;α(x), (3.14)

which proves (3.2), and the proof is completed. �

Theorem 3.2. Assume that there exist normalizing constants an > 0 and bn from which the
relation (2.3) holds, with Ψ(m,k)(x) = N((m + 1)Ui;α(x)), i = 1, 2, 3. Let S (B) = o(n). Then

sup
x∈R

∣∣∣H(m,k)
rB,n,B

(x) − Ψ(m,k)(x)
∣∣∣ p
−−→

n
0. (3.15)
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Moreover, if B is chosen such that
∑∞

n=1 λ
√

n
S (B) < ∞, ∀ λ ∈ (0, 1), then

sup
x∈R

∣∣∣H(m,k)
rB,n,B

(x) − Ψ(m,k)(x)
∣∣∣ w.p.1
−−−→

n
0, (3.16)

where
w.p.1
−−−→

n
stands for convergence with probability one as n→ ∞ (almost sure convergence).

Proof. By noting that S (B) −−→
n
∞, (2.6) implies

r?S (B) − S (B)F(αS (B)x + βS (B))√
r?S (B)

−−→
n

Ui;α(x).

Define the statistic Kr?S (n),n,B
(x) by the relation

Kr?S (B),n,B
(x) =

r?S (B) − S (B)F̄n(αS (B)x + βS (B))√
r?S (B)

.

Therefore, we get

E
(
Kr?S (B),n,B

(x)
)

=
r?S (B) − S (B)F(αS (B)x + βS (B))√

r?S (B)

−−→
n

Ui;α(x), (3.17)

and

Var
(
Kr?S (B),n,B

(x)
)

=
S (B)

n
F(αS (B)x + βS (B))(1 − F(αS (B)x + βS (B)))

r̃?S (B)
∼

S (B)
n
∼o(1) −−→

n
0, (3.18)

where r̃?S (B) =
r?S (B)

S (B) ∼ F(αS (B)x+βS (B))(1−F(αS (B)x+βS (B))). By combining (3.17) and (3.18), we obtain

r?S (B) − S (B)F̄n(αS (B)x + βS (B))√
r?S (B)

p
−−→

n
Ui;α(x), (3.19)

which proves (3.15). In order to prove (3.16), it is sufficient to show that the convergence in (3.19) is
w.p.1. First note that

r?S (B) − S (B)F̄n(αS (B)x + βS (B))√
r?S (B)

=
r?S (B) − S (B)F(αS (B)x + βS (B))√

r?S (B)

−
S (B)F̄n(αS (B)x + βS (B)) − S (B)F(αS (B)x + βS (B))√

r?S (B)

,

and
r?S (B) − S (B)F(αS (B)x + βS (B))√

r?S (B)

−−→
n

Ui;α(x).
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Hence, the convergence in (3.19) becomes w.p.1 if we can show that

S (B)F̄n(αS (B)x + βS (B)) − S (B)F(αS (B)x + βS (B))√
r?S (B)

=

√
S (B)

n
nF̄n(αS (B)x + βS (B)) − nF(αS (B)x + βS (B))√

n r̃?S (B)

w.p.1
−−−→

n
0.

By the Borel-Cantelli lemma, it is sufficient to prove that

∞∑
n=1

P


√

S (B)
n

∣∣∣∣∣∣∣∣∣
nF̄n(αS (B)x + βS (B)) − nF(αS (B)x + βS (B))√

n r̃?S (B)

∣∣∣∣∣∣∣∣∣ > ε
 < ∞

for every ε > 0. For every θ > 0, we have

√
S (B)

n
log P


√

S (B)
n

nF̄n(αS (B)x + βS (B)) − nF(αS (B)x + βS (B))√
nr̃?S (B)

 > ε


=

√
S (B)

n
log P

nF̄n(αS (B)x + βS (B)) − nF(αS (B)x + βS (B))√
nr̃?S (B)

> ε

√
n

S (B)


=

√
S (B)

n
log P

(
eθPn,B(x) > eθε

√
n

S (B)

)
,

where

Pn,B(x) =
nF̄n(αS (B)x + βS (B)) − nF(αS (B)x + βS (B))√

n r̃?S (B)

.

From Markov’s inequality, we get√
S (B)

n
log P

(
eθPn,B(x) > eθε

√
n

S (B)

)
≤

√
S (B)

n
log

(
e−θε
√

n
S (B) E

(
eθPn,B(x)

))
∼

√
S (B)

n

(
−θε

√
n

S (B)
+ log MB(θ)

)
= −θε +

√
S (B)

n
log MB(θ) −−→

n
−θε,

where MB(θ) denotes the moment generating function of the standard normal distribution.
Consequently, for sufficiently large n, we get

∞∑
n=1

P


√

S (B)
n

nF̄n(αS (B)x + βS (B)) − nF(αS (B)x + βS (B))√
n r̃?S (B)

 > ε


=

∞∑
n=1

elog P
(√

S (B)
n Pn,B(x)>ε

)
≤

∞∑
n=1

e−θε
√

n
S (B) < ∞.
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By a similar argument, for every ε > 0, it can be shown that

∞∑
n=1

P


√

S (B)
n

nF̄n(αS (B)x + βS (B)) − nF(αS (B)x + βS (B))√
n r̃?S (B)

 < −ε
 < ∞.

Since the condition
∑∞

n=1 λ
√

n
S (B) < ∞, ∀ λ ∈ (0, 1), ensures the convergence of the series∑∞

n=1 exp
{
−θε

√
n

S (B)

}
for every ε > 0, we obtain

r?S (B) − S (B)F̄n(αS (B)x + βS (B))√
r?S (B)

w.p.1
−−−→

n
Ui;α(x). (3.20)

From (3.20), we can write

F̄n(αS (B)x + βS (B)) = F̄n(aBx + bB) =

 r?S (B)

S (B)


1 − Ui;α(x)√

r?S (B)

(1 + o(1))

 , w.p.1,

which implies

F̄n
m+1(aBx + bB) =

 r?S (B)

S (B)

m+1
1 − (m + 1)Ui;α(x)√

r?S (B)

(1 + o(1))

 , w.p.1.

Therefore, we get

rB? − BF
m+1

(aBx + bB)
√

rB?
= ηn + (m + 1)Ui;α(x)ϑn(1 + o(1)), w.p.1,

where

ηn =

rB? − B
(

r?S (B)

S (B)

)m+1

√
rB?

=
rB? − B

(
rB?

B

)
√

rB?
= 0,

and

ϑn =

B
(

r?S (B)

S (B)

)m+1

√
rB?

√
r?S (B)

=
B

(
rB?

B

)
√

r2
B?

= 1.

Consequently,

rB? − BF
m+1

(aBx + bB)
√

rB?

w.p.1
−−−→

n
(m + 1)Ui;α(x) = U(x).

Thus, (3.16) is proved. This completes the proof. �
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3.2. Bootstrap consistency of the intermediate m-GOSs with unknown normalizing constants

One of the most important problems in statistical modeling is to reduce the required knowledge
about the DF of the population from which the available data is obtained. In the bootstrap method, this
situation leads to the case of unknown normalizing constants. In the rest of this section, we investigate
the consistency property of the bootstrap intermediate m-GOSs when the normalizing constants are
unknown.

Suppose now that the normalizing constants an and bn are unknown, and they are estimated from
the sample data, Xn = (X1, X2, ..., Xn). Let âB and b̂B be the estimators of an and bn, based on Xn,
respectively, and

Ĥ(m,k)
rB,n,B

(x) = P

Y?
B−rB+1:B − b̂B

âB
≤ x|Xn

 (3.21)

be the bootstrap distribution of Ψ
(m,k)
n−rn+1:n(anx + bn) with the estimated normalizing constants, âB and b̂B.

The sufficient conditions for Ĥ(m,k)
rB,n,B

(x) to be consistent are explored in the next theorem. The idea of
this theorem was originally given in Theorem 2.6 for maximum OOSs in [21].

Theorem 3.3. Assume that âB, b̂B and B = B(n) are such that the following three conditions are
satisfied:

(C1) H(m,k)
rB,n,B

(x)
w.p.1
−−−→

n
Ψ(m,k)(x), (C2)

âB

aB

w.p.1
−−−→

n
1, and (C3)

b̂B − bB

aB

w.p.1
−−−→

n
0.

Then,

sup
x∈R

∣∣∣Ĥ(m,k)
rB,n,B

(x) − Ψ(m,k)(x)
∣∣∣ w.p.1
−−−→

n
0. (3.22)

Moreover, if we replace “
w.p.1
−−−→

n
” with “

p
−−→

n
” in the conditions (C1)–(C3), the convergence (3.22)

remains true.

Proof. First, we note that the condition (C1) is equivalent to

rB? − BF̄n
m+1(aBx + bB)
√

rn?
−−→

n
U(x).

Furthermore, ∀ ε > 0, the conditions (C2) and (C3) imply

(1 − ε)aB < âB < (1 + ε)aB, (3.23)

and
bB − εaB < b̂B < bB + εaB, (3.24)

respectively. By fixing x > 0, the relations (3.23) and (3.24) yield

BF̄n
m+1((1 + ε)x + ε)aB + bB

)
6 BF̄n

m+1(âBx + b̂B) 6 BF̄n
m+1((1 − ε)x − ε)aB + bB

)
.

Therefore,

lim sup
n→∞

rB? − BF̄n
m+1(âBx + b̂B)
√

rB?
6 U

(
(1 + ε)x + ε

)
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6 U
(
(1 − ε)x − ε

)
6 lim inf

n→∞

rB? − BF̄n
m+1(âBx + b̂B)
√

rB?
.

Since U(x) is continuous, we get

lim
n→∞

rB? − BF̄n
m+1(âBx + b̂B)
√

rB?
= U(x).

For x < 0, the same limit relation can be accomplished using a similar argument. Consequently, (3.22)
is proved. If the conditions (C1)–(C3) hold in probability, then for any subsequence {ni}

∞

i=1, there exists
a subsequence {ni∗}

∞

i∗=1, such that the conditions (C1)–(C3) hold w.p.1. An application of the first part
of the theorem, based on the new subsequence, yields

sup
x∈R

∣∣∣∣ĤrB(ni∗ ),ni∗ ,B(ni∗ )(x) − Ψ(m,k)(x)
∣∣∣∣ w.p.1
−−−→

n
0.

This completes the proof of the theorem. �

In the next theorem, an appropriate choice of estimators of the normalizing constants which satisfy
conditions (C2) and (C3) of Theorem 3.3 is accomplished for each domain of attraction. More
specifically, we get a specific choice of âB and b̂B from which (3.22) holds true.

Theorem 3.4. Assume that r?
′

n = n
S (B)r

?
S (B), r?

′′

n = n
S (B)

(
r?S (B) +

√
r?S (B)

)
, xo is the right endpoint of F,

and x̂o = Xr?n :n. The estimators âB and b̂B can be chosen, respectively, as

(i) âB = x̂o − F−1
n

(
r?S (B)

S (B)

)
= Xr?n :n − Xr?′n :n and b̂B = Xr?n :n, if F ∈ D(l,ω)

(
N((m + 1)U1;α(x))

)
,

(ii) âB = F−1
n

(
r?S (B)

S (B)

)
= Xr?′n :n and b̂B = 0, if F ∈ D(l,ω)

(
N((m + 1)U2;α(x))

)
,

(iii) âB = F−1
n

 r?
S (B)+
√

r?S (B)

S (B) −
r?S (B)

S (B)

 = Xr?′n :n − Xr?′′n :n and b̂B = F−1
n

(
r?S (B)

S (B)

)
= Xr?′n :n, if F ∈ D(l,ω)

(
N((m +

1)U3(x))
)
.

Moreover, If S (B) = o(n), then

sup
x∈R

∣∣∣Ĥ(m,k)
rB,n,B

(x) − Ψ(m,k)(x)
∣∣∣ p
−−→

n
0. (3.25)

Furthermore, if
∑∞

n=1 λ
√

n
S (B) < ∞ for each λ ∈ (0, 1), then (3.25) holds w.p.1.

Proof. Let F ∈ D(l,ω)
(
N((m + 1)U1;α(x))

)
. In order to prove conditions (C2) and (C3), we have to show

that
âB

aB
=

Xr?n :n − Xr?′n :n

aB
−−→

n
1, (3.26)

and
b̂B − bB

aB
=

Xr?n :n − xo

aB
−−→

n
0, (3.27)

both in probability or w.p.1. Firstly, let us consider the case of convergence in probability. Clearly,

âB

aB
=

Xr?n :n − xo

αn
×
αn

aB
−

Xr?′n :n − xo

aB
.
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Hence, (3.26) and (3.27) are proved if we can show that

αn

aB
−−→

n
0, (3.28)

and
Xr?′n :n − xo

aB

p
−−→

n
−1. (3.29)

On the other hand, for any γ > 0, Lemma 3.1 in Barakat et al. [11] reveals that

αn

aB
=

αn

αS (B)
∼

µ
−1
γ (r?n )

µ
−1
γ (r?S (B))

=
e
−1
γ n

ω
2

e
−1
γ (S (B))

ω
2

= e
−1
γ n

ω
2
(
1−

(
S (B)

n

)ω
2
)
−−→

n
0,

where µ(n) = exp(
√

n). Thus, (3.28) is proved. Turning now to prove (3.29), it can be noted that

r?
′

n − nF(aBx + bB)√
r?′n

=
r?
′

n − nF(aBx + xo)√
r?′n

=

n
S (B)r

?
S (B) − nF(aBx + xo)√

n
S (B)r

?
S (B)

=

√
n

S (B)

r?S (B) − S (B)F(aBx + xo)√
r?S (B)

 −−→n
∞, if x > −1,
−∞, if x < −1.

(3.30)

For every ε > 0, (3.30) implies P
(X

r?
′

n :n
−xo

aB
< ε − 1

)
−−→

n
N(∞) = 1, or equivalently,

P
(Xr?′n :n − xo

aB
> ε − 1

)
−−→

n
0. (3.31)

Similarly,

P
(Xr?′n :n − xo

aB
< −ε − 1

)
−−→

n
N(−∞) = 0. (3.32)

By combining (3.31) and (3.32), we get

P
(∣∣∣∣∣∣Xr?′n :n − xo

aB
+ 1

∣∣∣∣∣∣ > ε
)
−−→

n
0, (3.33)

which proves (3.29). Now, let F ∈ D(l,ω)
(
N((m + 1)U2;α(x))

)
. Condition (C3) of Theorem 2.4 is clearly

proved (since b̂B = 0). Consequently, it is sufficient to prove only condition (C2). Thus, we have to
show that

âB

aB
=

Xr?′n :n

aB
−−→

n
1, (3.34)

in probability or w.p.1. We start by proving the convergence in probability. It is clear that,

r?
′

n − nF(aBx + bB)√
r?′n

=

n
S (B)r

?
S (B) − nF(aBx)√

n
S (B)r

?
S (B)
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=

√
n

S (B)

r?S (B) − S (B)F(aBx)√
r?S (B)

 −−→n
∞, if x > 1,
−∞, if x < 1.

(3.35)

For every ε > 0, (3.35) implies P
(X

r?
′

n :n

aB
< ε + 1

)
−−→

n
N(∞) = 1, which is equivalent to

P
(Xr?′n :n

aB
> ε + 1

)
−−→

n
0. (3.36)

Arguing similarly, we get

P
(Xr?′n :n

aB
< −ε + 1

)
−−→

n
N(−∞) = 0. (3.37)

Based on the relations (3.36) and (3.37), we get

P
(∣∣∣∣∣∣Xr?′n :n

aB
− 1

∣∣∣∣∣∣ > ε
)
−−→

n
0, (3.38)

which proves (3.34). Finally, assume that F ∈ D(l,ω)(N((m + 1)U3(x))). By Theorem 2.4, in order to
prove conditions (C2) and (C3), it suffices to show that

âB

aB
=

Xr?′n :n − Xr?′′n :n

aB
−−→

n
1, (3.39)

and
b̂B − bB

aB
=

Xr?′n :n − bB

aB
−−→

n
0, (3.40)

both in probability or w.p.1. We start with the convergence in probability. Write

âB

aB
=

Xr?′n :n − Xr?′′n :n

aB
=

Xr?′n :n − bB

aB
−

Xr?′′n :n − bB

aB
. (3.41)

Consequently, to prove (3.39) and (3.40), we need to show that

Xr?′′n :n − bB

aB
−−→

n
−1, (3.42)

and
Xr?′n :n − bB

aB
−−→

n
0. (3.43)

First, we are going to prove (3.42). Since we have

r?
′′

n − nF(aBx + bB)√
r?′′n

=

n
S (B)

(
r?S (B) +

√
r?S (B)

)
− nF(aBx + bB)√

n
S (B)

(
r?S (B) +

√
r?S (B)

)

=

√
n

S (B)


r?S (B) +

√
r?S (B) − S (B)F(aBx + bB)√

r?S (B)

(
1 + 1/

√
r?S (B)

)

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=

√
n

S (B)


r?S (B) +

√
r?S (B) − S (B)F(aBx + bB)√

r?S (B)(1 + o(1))


=

√
n

S (B)

r?S (B) − S (B)F(aBx + bB)√
r?S (B)(1 + o(1))

+

√
r?S (B)√

r?S (B)(1 + o(1))

 ,
from the assumption of the theorem, we have

r?S (B) − S (B)F(aBx + bB)√
r?S (B)(1 + o(1))

−−→
n

x.

Consequently,
r?
′′

n − nF(aBx + bB)√
r?′′n

−−→
n

∞, if x > −1,
−∞, if x < −1.

(3.44)

Thus, for every ε > 0, we get P
(X

r?
′′

n :n
−bB

aB
< ε − 1

)
−−→

n
N(∞) = 1, and this implies

P
(Xr?′′n :n − bB

aB
> ε − 1

)
−−→

n
0. (3.45)

Further, we have

P
(Xr?′′n :n − bB

aB
< −ε − 1

)
−−→

n
0. (3.46)

Hence, (3.45) and (3.46) lead to

P
(∣∣∣∣∣∣Xr?′′n :n − bB

aB
+ 1

∣∣∣∣∣∣ > ε
)
−−→

n
0,

which proves (3.42). Secondly, we are going to prove (3.43). Clearly,

r?
′

n − nF(aBx + bB)√
r?′n

=

n
S (B)r

?
S (B) − nF(aBx + bB)√

n
S (B)r

?
S (B)

=

√
n

S (B)

r?S (B) − S (B)F(aBx + bB)√
r?S (B)

 −−→n
∞, if x > 0,
−∞, if x < 0.

(3.47)

For every ε > 0, Eq (3.47) leads to P
(X

r?
′

n :n
−bB

aB
< ε

)
−−→

n
N(∞) = 1, which yields

P
(Xr?′n :n − bB

aB
> ε

)
−−→

n
0. (3.48)

In the same way, we get

P
(Xr?′n :n − bB

aB
< −ε

)
−−→

n
0. (3.49)
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Thus, relations (3.48) and (3.49) imply

P
(∣∣∣∣∣∣Xr?′n :n − bB

aB

∣∣∣∣∣∣ > ε
)
−−→

n
0,

which proves (3.43). Finally, in the proof of Parts (i)–(iii), in order to switch to the convergence w.p.1,
we argue in the same way that we did at the end of Theorem 3.3’s proof. This completes the proof of
the theorem. �

4. Bootstrapping central m-GOSs

In this section, the asymptotic behaviour of the bootstrap distribution for central m-GOSs,

H∗(m,k)
rB,n,B

(x) = P
(

Y?B−rB+1:B−dB

cB
≤ x|Xn

)
, is considered for different choices of the re-sample size B = B(n)

when the normalizing constants cn and dn are assumed to be known or unknown.

4.1. Bootstrap consistency of the central m-GOSs with known normalizing constants

The next theorem discusses the consistency of the bootstrap distribution H∗(m,k)
rB,n,B

(x) in the case of
full-sample bootstrap. It is revealed that the full-sample bootstrap distribution fails to be a consistent
estimator of the DF Ψ

(m,k)
λ (x).

Theorem 4.1. Assume that the relation (2.9) is satisfied, where the weak limits are of the form

Ψ
(m,k)
λ (x) = N

C?
λ(m)

C?
λ

(m + 1)Vi,α(x)

 , for i = 1, 2, 3, 4. (4.1)

Then,

H∗(m,k)
rn,n,n (x)

d
−−→

n
N(Λ(x)), (4.2)

where Λ(x) has a normal distribution with mean
C?
λ(m)

C?
λ

(m + 1)Vi;α(x) and variance
C?
λ(m)

C?
λ

(m + 1).

Proof. Although the convergence in (2.9) does not yield continuous types in general, under the
condition rn = λn + o(

√
n), Barakat and El-Shandidy [5] showed that the convergence is uniform.

Consequently,

H∗(m,k)
rn,n,B

(x) = N

√B
λ − F̄n

m+1(cBx + dB)
Cλ

 + ξn(x),

where ξn(x) −−→
n

0 uniformly with respect to x. Now, consider that the condition B = n holds.
Since (2.8) is satisfied, we have

√
n
λ(m) − F(cnx + dn)

Cλ(m)

 −−→
n

Vi;α(x). (4.3)

An application of the central limit theorem yields

nF̄n(cnx + dn) − nF(cnx + dn)√
nF(cnx + dn)(1 − F(cnx + dn))

d
−−→

n
Z(x), (4.4)
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where Z(x) is the standard normal RV. On the other hand, it is clear from relation (4.3) that F(cnx +

dn) −−→
n

λ(m), which implies

√
nF(cnx + dn)(1 − F(cnx + dn))

√
nCλ(m)

−−→
n

1. (4.5)

The two limit relations (4.3) and (4.5) enable us to apply Khinchin’s type theorem on the relation (4.4)
to get

√
n
(
λ(m) − F̄n(cnx + dn)

Cλ(m)

)
=
√

n
λ(m) − F(cnx + dn)

Cλ(m)


−

nF̄n(cnx + dn) − nF(cnx + dn)
√

nCλ(m)
−−→

n
Vi;α(x) − Z(x).

(4.6)

As a result of (4.6), we get

F̄n
m+1(cnx + dn) = λ

(
1 −

Cλ(m)(Vi,α(x) − Z(x))
λ(m)

√
n

(1 + o(1))
)m+1

= λ

(
1 −

(m + 1)Cλ(m)(Vi;α(x) − Z(x))
λ(m)

√
n

(1 + o(1))
)
.

(4.7)

Consequently,

√
n

λ − F̄n
m+1(cnx + dn)

Cλ

 −−→n (m + 1)λCλ(m)

λ(m)Cλ

(Vi;α(x) − Z(x))

=
C?
λ(m)

C?
λ

(m + 1)(Vi;α(x) − Z(x)).

Hence, the theorem is proved. �

Theorem 4.2. Under the same conditions of Theorem 4.1, if B = o(n), then

sup
x∈R

∣∣∣H∗(m,k)
rB,n,B

(x) − Ψ
(m,k)
λ (x)

∣∣∣ p
−−→

n
0. (4.8)

Furthermore, if B is such that
∑∞

n=1 P
√

n
B < ∞, ∀ P ∈ (0, 1), then

sup
x∈R

∣∣∣H∗(m,k)
rB,n,B

(x) − Ψ
(m,k)
λ (x)

∣∣∣ w.p.1
−−−→

n
0. (4.9)

Proof. Write H∗(m,k)
rB,n,B

(x) = N
(
Sn,B(x)

)
+ ξn(x), where, Sn,B(x) =

√
B

λ(m) − F̄n(cBx + dB)

Cλ(m)

 , and

ξn(x) −−→
n

0 uniformly with respect to x. It can be noted that

E
(
Sn,B(x)

)
=
√

B

λ(m) − F̄(cBx + dB)

Cλ(m)

 −−→n Vi;α(x), (4.10)
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and

Var
(
Sn,B(x)

)
=

BF(cBx + dB)(1 − F(cBx + dB))
nC2

λ(m)

−−→
n

0. (4.11)

Accordingly,
√

B
(
λ(m) − F̄n(cBx + dB)

Cλ(m)

)
p
−−→

n
Vi;α(x). (4.12)

We’ll now show that the convergence in (4.12) is w.p.1. For this purpose, write

√
B

(
λ(m) − F̄n(cBx + dB)

Cλ(m)

)
=
√

B
λ(m) − F(cBx + dB)

Cλ(m)


−

√
B
n

nF̄n(cBx + dB) − nF(cBx + dB)
√

nCλ(m)

 .
On the other hand, the assumptions of the theorem ensure that F(cBx + dB) −−→

n
λ(m), and

√
B

(
λ(m)−F(cBx+dB)

Cλ(m)

)
−−→

n
Vi;α(x). To prove the limit relation

√
B

(
λ(m)−F̄n(cBx+dB)

Cλ(m)

)
w.p.1
−−−→

n
Vi;α(x), it is

sufficient to show that√
B
n

nF̄n(cBx + dB) − nF(cBx + dB)
√

nCλ(m)

=

√
B
n

 nF̄n(cBx + dB) − nF(cBx + dB)√
nF(cBx + dB)(1 − F(cBx + dB)

 w.p.1
−−−→

n
0.

According to the Borel-Cantelli lemma, we need to show that, for every ε > 0,

∞∑
n=1

P


√

B
n

∣∣∣∣∣∣∣∣∣
nF̄n(cBx + dB) − nF(cBx + dB)√
nF(cBx + dB)(1 − F(cBx + dB)

∣∣∣∣∣∣∣∣∣ > ε
 < ∞.

For every θ > 0, we have√
B
n

log P


√

B
n

 nF̄n(cBx + dB) − nF(cBx + dB)√
nF(cBx + dB)(1 − F(cBx + dB)

 > ε


=

√
B
n

log P

 nF̄n(cBx + dB) − nF(cBx + dB)√
nF(cBx + dB)(1 − F(cBx + dB)

> ε

√
n
B


=

√
B
n

log P
(
eθTn,B > eθε

√
n
B

)
,

where Tn,B is defined by

Tn,B =
nF̄n(cBx + dB) − nF(cBx + dB)√
nF(cBx + dB)(1 − F(cBx + dB)

.

From Markov’s inequality, we get√
B
n

log P
(
eθTn,B > eθε

√
n
B

)
≤

√
B
n

log
(
e−θε
√

n
B E

(
eθTn,B

))
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∼

√
B
n

(
−θε

√
n
B

+ log MB(θ)
)

= −θε +

√
B
n

log MB(θ) −−→
n
−θε.

Consequently, for sufficiently large n, we get

∞∑
n=1

P


√

B
n

 nF̄n(cBx + dB) − nF(cBx + dB)√
nF(cBx + dB)(1 − F(cBx + dB)

 > ε


∼

∞∑
n=1

elog P
(√

B
nTn,B>ε

)
≤

∞∑
n=1

e−θε
√

n
B < ∞.

By using the same method, we can show that, for every ε > 0,

∞∑
n=1

P


√

B
n

 nF̄n(cBx + dB) − nF(cBx + dB)√
nF(cBx + dB)(1 − F(cBx + dB)

 < −ε
 < ∞.

Since the condition,
∑∞

n=1 P
√

n
B < ∞, ∀ P ∈ (0, 1), assures the convergence of the series∑∞

n=1 exp
{
−θε

√ n
B

}
for every ε > 0, we have

√
B

(
λ(m) − F̄n(cBx + dB)

Cλ(m)

)
w.p.1
−−−→

n
Vi;α(x). (4.13)

Therefore,

F̄n
m+1(cBx + dB) = λ

(
1 −

Cλ(m)Vi;α(x)
λ(m)

√
n

(1 + o(1))
)m+1

= λ

(
1 −

(m + 1)Cλ(m)Vi;α(x)
λ(m)

√
n

(1 + o(1))
)
, w.p.1.

(4.14)

Accordingly,

√
n

λ − F̄n
m+1(cBx + dB)

Cλ

 w.p.1
−−−→

n

(m + 1)λCλ(m)

λ(m)Cλ

Vi;α(x) =
C?
λ(m)

C?
λ

(m + 1)Vi;α(x),

which was to be proved, and this completes the proof of the theorem. �

4.2. Bootstrap consistency of the central m-GOSs for unknown normalizing constants

Assume that the normalizing constants cn and dn are unknown and that they must be estimated using
the sample data Xn = (X1, X2, ..., Xn). Let ĉB and d̂B be the estimators of cn and dn based on Xn and

Ĥ∗(m,k)
rB,n,B

(x) = P
(

Y?B−rB+1:B−d̂B

ĉB
≤ x|Xn

)
be the bootstrap distribution for appropriately normalized central

m-GOSs. The next theorem gives sufficient conditions for Ĥ∗(m,k)
rB,n,B

(x) to be consistent, where we restrict
ourselves to the first three non-degenerate types, corresponding to Vi;α(x), i = 1, 2, 3. Clearly, each of
these three limit laws has at most one discontinuity point of the first type.

Theorem 4.3. Suppose that the conditions of Theorem 4.2 are satisfied. Moreover, suppose that ĉB,

d̂B, and B = B(n) satisfy the following three conditions:

(K1) H∗(m,k)
rB,n,B

(x)
w.p.1
−−−→

n
Ψ

(m,k)
λ (x), (K2)

ĉB

cB

w.p.1
−−−→

n
1, and (K3)

d̂B − cB

dB

w.p.1
−−−→

n
0.
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Then, sup
x∈Rc

∣∣∣∣Ĥ∗(m,k)
rB,n,B(x) − Ψ

(m,k)
λ (x)

∣∣∣∣ w.p.1
−−−→

n
0, where Rc ∈ R is the set of all continuity points of Ψ

(m,k)
λ (x).

Moreover, this theorem holds if “
w.p.1
−−−→

n
” is replaced by “

p
−−→

n
”.

Proof. The proof of the theorem is similar to the proof of Theorem 3.3. �

Now, for the consistency of the bootstrap distribution Ĥ∗(m,k)
rB,n,B

(x), the next theorem gives a proper
choice for the normalizing constants ĉB and d̂B satisfying conditions (K2) and (K3) in Theorem 4.3 for

each domain of attraction of N
(

C?
λ(m)

C?
λ

(m + 1)Vi;α(x)
)
, i = 1, 2, 3.

Theorem 4.4. Let r
′

n = [λ(m)n] + 1, r
′′

n =
[

n
√

B
+ n

]
+ 1, and r

′′′

n =
[
λ(m)n − n

√
B

]
+ 1. Then,

i. ĉB = F−1
n

(
λ(m) + 1

√
B

)
− F−1

n
(
λ(m)

)
= Xr′′n :n − Xr′n:n, and d̂B = F−1

n
(
λ(m)

)
= Xr′n:n, if F ∈

Dλ(m)(N(V1;α(x)));

ii. ĉB = F−1
n

(
λ(m)

)
− F−1

n

(
λ(m) −

1
√

B

)
= Xr′n:n − Xr′′′n :n, and d̂B = F−1

n
(
λ(m)

)
= Xr′n:n, if F ∈

Dλ(m)(N(V2;α(x)));

iii. ĉB = F−1
n

(
λ(m) + 1

√
B

)
− F−1

n
(
λ(m)

)
= Xr′′n :n − Xr′n:n, and d̂B = F−1

n
(
λ(m)

)
= Xr′n:n, if F ∈

Dλ(m)(N(V3;α(x))).

Moreover, if B = o(n), then

sup
x∈R

∣∣∣Ĥ∗(m,k)
rB,n,B

(x) − Ψ
(m,k)
λ (x)

∣∣∣ p
−−→

n
0. (4.15)

Finally, if
∑∞

n=1 P
√

n
B < ∞ for each P ∈ (0, 1), then the convergence in (4.15) holds w.p.1.

Proof. Let F ∈ Dλ(m)(N(V1;α(x))). In view of Theorem 4.3, we need to show that

ĉB

cB
=

Xr′′n :n − Xr′n:n

cB
−−→

n
1, (4.16)

and
d̂B − dB

cB
=

Xr′n:n − dB

cB
−−→

n
0, (4.17)

both in probability or w.p.1. We start with the convergence in probability. Clearly,

ĉB

cB
=

Xr′′n :n − Xr′n:n

cB
=

Xr′′n :n − dB

cB
−

Xr′n:n − dB

cB
.

To prove (4.16) and (4.17), it is sufficient to show that

Xr′′n :n − dB

cB

p
−−→

n
1, (4.18)

and
Xr′n:n − dB

cB

p
−−→

n
0. (4.19)
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We will start by proving (4.18). In view of the relations
[

n
√

B
+ λ(m)n

]
= n
√

B
+ λ(m)n − δ and 1

√
B

+ λ(m) +
1−δ

n ∼ λ(m) for 0 ≤ δ < 1, we get

(n − r
′′

n ) − nF(cBx + dB)√
r′′n (1 − r′′n

n )
=
√

n

(
1 − 1

√
B
− λ(m) −

1−δ
n

)
− F(cBx + dB)√(

1
√

B
+ λ(m) + 1−δ

n

) (
1 −

(
1
√

B
+ λ(m) + 1−δ

n

))
∼

√
n
B

√B
(1 − λ(m)) − F(cBx + dB)

Cλ(m)

−
1 +

√
B

n (1 − δ)
Cλ(m)

 −−→n
∞, if x > 1,
−∞, if x < 1.

(4.20)

Relation (4.20) is a direct consequence of the obvious relations,

1 +
√

B
n (1 − δ)
Cλ(m)

−−→
n

1
Cλ(m)

= c and
√

B
(1 − λ(m)) − F(cBx + dB)

Cλ(m)

−−→
n

cxα.

The relation (4.20) yields P
(X

r
′′
n :n
−dB

cB
< ε + 1

)
−−→

n
N(∞) = 1, which is equivalent to

P
(Xr′′n :n − dB

cB
> ε + 1

)
−−→

n
0. (4.21)

Similarly, we get

P
(Xr′′n :n − dB

cB
< −ε + 1

)
−−→

n
N(−∞) = 0. (4.22)

From (4.21) and (4.22), we get P
(∣∣∣∣∣X

r
′′
n :n
−dB

cB
− 1

∣∣∣∣∣ > ε) −−→n 0, which proves (4.18). Now, we are going to

prove (4.19). It is simple to derive that

(n − r
′

n) − nF(cBx + dB)√
r′n(1 − r′n

n )
=
√

n

(
1 − λ(m) −

1−δ
n

)
− F(cBx + dB)√(

λ(m) + 1−δ
n

) (
1 −

(
λ(m) + 1−δ

n

))
=

√
n
B

√B

(
1 − λ(m) −

1−δ
n

)
− F(cBx + dB)√(

λ(m) + 1−δ
n

) (
1 −

(
λ(m) + 1−δ

n

))
 −−→n

∞, if x > 0,
−∞, if x < 0.

(4.23)

Thus, from (4.23), we have P
(X

r
′
n:n
−dB

cB
< ε

)
−−→

n
N(∞) = 1, which is equivalent to

P
(Xr′n:n − dB

cB
> ε

)
−−→

n
0. (4.24)

Similarly, we get

P
(Xr′n:n − dB

cB
< −ε

)
−−→

n
0. (4.25)

Therefore, by combining the relations (4.24) and (4.25), we get P
(∣∣∣∣∣X

r
′
n:n
−dB

cB

∣∣∣∣∣ > ε) −−→n 0, which

proves (4.19). This completes the proof of Part i. Now, let F(cnx + dn) ∈ Dλ(m)(N(V2;α(x))). It is
sufficient to establish from Theorem 4.3 that

ĉB

cB
=

Xr′n:n − Xr′′′n :n

cB
−−→

n
1, (4.26)
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and
d̂B − dB

cB
=

Xr′n:n − dB

cB
−−→

n
0, (4.27)

both in probability or w.p.1. We begin with the situation of probability convergence, and we begin with

ĉB

cB
=

Xr′n:n − Xr′′′n :n

cB
=

Xr′n:n − dB

cB
−

Xr′′′n :n − dB

cB
.

Hence, to prove (4.26) and (4.27), it is sufficient to show that

Xr′′′n :n − dB

cB

p
−−→

n
−1, (4.28)

and
Xr′n:n − dB

cB

p
−−→

n
0. (4.29)

We are going to prove (4.28). By applying the relations [λ(m)n − n
√

B
] = λ(m)n − n

√
B
− δ, 0 ≤ δ < 1, and

λ(m) −
1
√

B
+ 1−δ

n ∼ λ(m), as n→ ∞, we can deduce that

(n − r
′′′

n ) − nF(cBx + dB)√
r′′′n (1 − r′′′n

n )
=
√

n

(
n − λ(m) + 1

√
B
− 1−δ

n

)
− F(cBx + dB)√(

λ(m) −
1
√

B
+ 1−δ

n

) (
1 −

(
λ(m) −

1
√

B
+ 1−δ

n

))
∼

√
n
B

√B
(1 − λ(m)) − F(cBx + dB)

Cλ(m)

−
−1 +

√
B

n (1 − δ)
Cλ(m)

 −−→n
−∞, if |x| > 1,
∞, if |x| < 1.

(4.30)

Thus, on account of (4.30), we get P
(X

r
′′′
n :n
−dB

cB
< ε − 1

)
−−→

n
N(∞) = 1, which implies

P
(Xr′′′n :n − dB

cB
> ε − 1

)
−−→

n
0. (4.31)

In a similar vein, we have

P
(Xr′′′n :n − dB

cB
< −ε − 1

)
−−→

n
N(−∞) = 0. (4.32)

From (4.31) and (4.32), we get P
(∣∣∣∣∣X

r
′′′
n :n
−dB

cB
+ 1

∣∣∣∣∣ > ε) −−→n 0. Hence, (4.28) is proved. We turn now to

prove (4.29). We start with the obvious limit relation

(n − r
′

n) − nF(cBx + dB)√
r′n(1 − r′n

n )
=
√

n

(
1 − λ(m) −

1−δ
n

)
− F(cBx + dB)√(

λ(m) + 1−δ
n

) (
1 −

(
λ(m) + 1−δ

n

)) =

√
n
B

√B

(
1 − λ(m) −

1−δ
n

)
− F(cBx + dB)√(

λ(m) + 1−δ
n

) (
1 −

(
λ(m) + 1−δ

n

))
 −−→n

∞, if x > 0,
−∞, if x < 0,

(4.33)
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which in turn implies that P
(X

r
′
n:n
−dB

cB
< ε

)
−−→

n
N(∞) = 1, and hence

P
(Xr′n:n − dB

cB
> ε

)
−−→

n
0. (4.34)

Moreover, the limit relation (4.33) yields

P
(Xr′n:n − dB

cB
< −ε

)
−−→

n
0. (4.35)

By combining (4.34) and (4.35), we get P
(∣∣∣∣∣X

r
′
n:n
−dB

cB

∣∣∣∣∣ > ε) −−→n 0, which proves (4.29).

Finally, consider the case F ∈ Dλ(m)(N(V3;α(x))). From Theorem 4.3, it suffices to show that

ĉB

cB
=

Xr′′n :n − Xr′n:n

cB
−−→

n
1, (4.36)

and
d̂B − dB

cB
=

Xr′n:n − dB

cB
−−→

n
0, (4.37)

both in probability or w.p.1. We first focus on the case of the convergence in probability, and we start
with

ĉB

cB
=

Xr′′n :n − Xr′n:n

cB
=

Xr′′n :n − dB

cB
−

Xr′n:n − dB

cB
.

Therefore, to prove (4.36) and (4.37), it is sufficient to show that
Xr′′n :n − dB

cB

p
−−→

n
1, (4.38)

and
Xr′n:n − dB

cB

p
−−→

n
0. (4.39)

By proceeding in the same manner that we did in Parts i and ii, we can easily show that

(n − r
′′

n ) − nF(cBx + dB)√
r′′n (1 − r′′n

n )
−−→

n

∞, if x > 1,
−∞, if x < 1.

(4.40)

Relation (4.40) yields P
(X

r
′′
n :n
−dB

cB
< ε + 1

)
−−→

n
N(∞) = 1, which is equivalent to

P
(Xr′′n :n − dB

cB
> ε + 1

)
−−→

n
0. (4.41)

Similarly, we get

P
(Xr′′n :n − dB

cB
< −ε + 1

)
−−→

n
N(−∞) = 0. (4.42)

The two limit relations (4.41) and (4.42) yield

P
(∣∣∣∣∣∣Xk′′n :n − dB

cB
− 1

∣∣∣∣∣∣ > ε
)
−−→

n
0,

which in turn proves (4.38). On the other hand, the proof of the relation (4.37) follows also by
proceeding as we did in Parts i and ii. Finally, in order to transfer to the convergence w.p.1 in Parts i–ii,
we argue in the same way we did at the end of the proof of Theorem 3.3. The proof of the theorem is
now completed. �
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5. Simulation study

In this section, a simulation study is conducted to explain how we can choose the bootstrap re-
sample size B numerically, relying on the best fit of the bootstrapping DF of central and intermediate
quantiles for different ranks. More specifically, we apply the Kolmogorov-Smirnov (K-S) goodness of
fit test to test the null hypothesis H0 : The central (intermediate) quantiles follow a normal distribution
at a 5% significance level. Moreover, we repeat the K-S test many times for different values of B and
then select the value of B that corresponds to the largest average p-value for the fit. See Tables 1–3.

In this simulation, three m-GOSs sub-models based on the standard normal distribution are
considered. Namely, these are OOSs (γi = n − i + 1), SOSs with m = 1 (i.e. γi = 2(n − i) + 1)
and SOSs with m = 2 (i.e., γi = 3(n − i) + 1). Moreover, the full sample size is n = 20, 000 (if
we enlarge the sample size, the running time becomes very long, especially for the SOSs model), the
number of replicates is M = 1000, the central ranks are λ = 0.25 and λ = 0.5, for the re-sample
bootstrap, B = 100 − 400(50), and we choose the intermediate rank to be rn =

√
n. The results are

presented in Tables 1 and 2.
This study relies on the fact that the sample central and intermediate quantiles based on the standard

normal distribution weakly converge to the normal distribution. Moreover, according, to the results of
Sections 3 and 4, we expect that the bootstrapping DFs of central and intermediate quantiles converge
to the normal distribution provided that B � n (i.e., B = o(n)) for central ranks and S (B) � n
(i.e., S (B) = o(n)) for intermediate ranks. Moreover, based on the K-S test for normality and the
corresponding p-values, the best value of B for central ranks (that corresponds to the largest p-value)
should be chosen such that

∑∞
n=1 λ

√
n
B < ∞, ∀ λ ∈ (0, 1), while the best value of B for intermediate

ranks should chosen such that
∑∞

n=1 λ
√

n
S (B) < ∞, ∀ λ ∈ (0, 1) (see Remark 5.3).

The simulation study is implemented by Mathematica 12.3 via the following algorithm:

Step 1. Select the m-GOSs model. That is, choose the values of γi.

Step 2. Generate an ordered sample of size n = 20000, say Xn, based on the standard normal
distribution by the algorithm of Barakat et al. [8].

Step 3. Choose the central or intermediate rank.

Step 4. Select the bootstrap re-sample size B.

Step 5. Select M random samples, each of which is size B, from Xn with replacement.

Step 6. Compute the quantile of each sample, and store them in QB.

Step 7. By using the K-S test, check the normality of the data sets QB to the normal distribution and
then compute the p-value.

Step 8. Repeat Steps 5–7 many times (100 times) for each chosen value of B and then compute the
average p-value.

Step 9. Repeat Steps 4–8 for different values of B, and then pick the largest average p-value and the
corresponding value of B.

Remark 5.1. In the earlier version of this paper, in order to implement Step 7 of the previous algorithm,
we fitted the data sets QB to the normal DF by using the K-S test after calculating the sample mean
and standard deviation. However, we noted an important issue that the K-S test can be used to fit the
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normal distribution only when parameters are not estimated from the data (cf. [24]). Since our focus
here is only on checking the normality of the bootstrap samples, we apply the K-S test to check the
normality of the given sample bootstrapping statistics without estimating any parameters.

Remark 5.2. According to the results presented in Tables 1 and 2, it is noted that for n = 20000,
the largest average p-values for selected central ranks are always achieved at B, which falls in the
interval [100–200]. Moreover, the best average p-values for selected intermediate ranks are achieved
at B falling in the interval [200–300]. However, it is shown that the accuracy of the goodness of fit
depends on both the selected GOSs model and the selected ranks. Moreover, in view of the results
given in Table 3, the average p-value for intermediate OSs increases as the sample size increases with
the same bootstrap re-sample size.

Remark 5.3. Based on the results of Sections 3 and 4, the best performance of the bootstrapping DFs
of the central m-GOSs occurs at the values of B for which

∑∞
n=1 λ

√
n
B < ∞, ∀ λ ∈ (0, 1). On the other

hand, according to [2], the condition
√

B = o( 2
√

n
log n ) is a sufficient condition for

∑∞
n=1 λ

√
n
B < ∞, ∀

λ ∈ (0, 1), which implies that the best performance of the bootstrapping DFs of the central OSs occurs
when B � 800. Moreover, in the case of intermediate m-GOSs, the condition

√
S (B) = o( 2

√
n

log n ) is a

sufficient condition for
∑∞

n=1 λ
√

n
S (B) < ∞, ∀ λ ∈ (0, 1), which implies that the best performance of the

bootstrapping DFs of intermediate m-GOSs occurs when S (B) � 800. Since in our study we choose
the intermediate rank rn =

√
n, this implies B � 7500. Therefore, the simulation output endorses this

anticipated result.

Table 1. The average p-values (p) for fitting different bootstrap central quantiles of the
SOSs and OOSs models to a normal distribution with various values of B.

k = 1, m = 1 (SOSs) k = 1, m = 2 (SOSs) k = 1, m = 0 (OOSs)
λ = 0.5 λ = 0.25 λ = 0.5 λ = 0.25 λ = 0.5 λ = 0.25

B p p p p p p

100 0.25239 0.31176 0.34101 0.22219 0.35895? 0.26554
150 0.29968? 0.24726 0.36257? 0.22550 0.31619 0.31344?
200 0.17472 0.32276? 0.34588 0.22552? 0.32378 0.21946
250 0.21397 0.24931 0.31296 0.18478 0.27626 0.24845
300 0.19569 0.29015 0.26269 0.18825 0.29849 0.18454
350 0.19635 0.26083 0.24576 0.18935 0.27687 0.16976
400 0.15829 0.26653 0.26114 0.17181 0.24873 0.17627

Table 2. The average p-values for fitting bootstrap intermediate quantiles of the OOSs and
SOSs models to a normal distribution with various values of B.

Intermediate (OOSs) Intermediate (SOSs)

B p (rn =
√

n) p (r?n =
√

n)
100 0.12289 0.02019
150 0.20122 0.07148
200 0.28733? 0.14383
250 0.18223 0.18207
300 0.12546 0.21568?
350 0.08254 0.17340
400 0.05879 0.12973
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Table 3. The average p-values for fitting bootstrap intermediate quantiles of OOSs to a
normal distribution with various values of B when M = 1000 and n = 200, 000.

Intermediate (OOSs)

B p (rn =
√

n)
100 0.30920
150 0.22490
200 0.25541
250 0.36622
300 0.43944?

350 0.39108
400 0.38285

6. Conclusions

The bootstrap method is an efficient procedure for solving many statistical problems based on re-
sampling from the available data. For example, the bootstrap method is used to find standard errors for
estimators, confidence intervals for unknown parameters, and p-values for test statistics under a null
hypothesis. One of the desired properties of the bootstrapping method is consistency, which guarantees
that the limit of the bootstrap distribution is the same as the distribution of the given statistic. In
this paper, we investigated the strong consistency of bootstrapping central and intermediate m-GOSs
for an appropriate choice of re-sample size for known and unknown normalizing constants. Finally,
a simulation study was conducted to to explain how we can choose the bootstrap re-sample size B
numerically, relying on the best fit of the bootstrapping DF of central and intermediate quantiles for
different ranks.
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