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and public hygiene are helpful in fighting the pandemic, while awareness campaigns through social
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1. Introduction

In the last month of 2019, a ruthless contagious disease popularly known as COVID-19 or SARS-
CoV-2 (Severe Acute Respiratory Syndrome Coronavirus) unfolded in the Wuhan city of China’s Hubei
province and has transformed into a severe global crisis by spreading in more than 200 countries
of the Earth. The pandemic has taken almost 0.3 million people’s lives and infected more than 5.4
million people [1]. The World Health Organization (WHO) has declared it a public health emergency
worldwide [2]. This disease mainly transmits via respiratory droplets through close contact is indirectly
transmitted through fomites in the environment around the infected person [3–5].

Fever, fatigue, dry cough, and myalgia are the common symptoms of COVID-19, while some
patients suffer from headaches, abdominal pain, diarrhoea, nausea, and vomiting. From clinical
observation, within 1–2 days after patient symptoms, the patient becomes morbid after 4–6 days, and
the infection may clear within 18 days, depending on the immune system [6]. It is reported that the
average death rate of COVID-19 is about 3.4% [7].

One of the WHO’s strategies to control overwhelming infection spread is breaking the infection
cycle, e.g., minimizing human-to-human transmission by reducing secondary infections among close
contacts and health care workers. Thus, attention is paid on social distancing, lockdown, personal
hygiene measures, etc., In this serious phase, public awareness of the disease and its transmission
routes are the foundation of controlling the outbreak [8].

Mathematical modelling is one of the finest methods to precisely analyse the dynamics of an
infectious disease. There are a few mathematical models of COVID-19 developed and published that
have analysed various aspects of disease dynamics and possible containment [9, 10]. Kucharski et
al. [11] have analysed the dynamics of COVID-19 through modelling by considering all the positive
cases of Wuhan, China. In their research, Ndairou et al. [12] have proposed a mathematical model to
discuss the spread of COVID-19 transmission in Wuhan, China. Hellewell et al. [13] have
investigated the effective control measures of COVID-19 outbreak using isolation as a control
measure. A quarantine model of coronavirus contagion and data analysis have been reported by
Volpert [14]. Recently, Fanelli and Piazza have predicted the nature of the disease in the three most
affected countries (China, Italy and Iran) till March 2020, establishing a mathematical model using
ordinary differential equations [15]. A stochastic regression model was formulated by Ribeiro et
al. [16] to forecast the phenomena of almost ten affected states of Brazil.

Scientists are working day and night to discover proper treatments for the virus. Therefore, social
distancing is the only way to reduce the disease transmission rate and to break the chain. So, in this
situation, the impact of media coverage will play an important role to control the disease transmission
rate. A lot of works have been done mathematically and numerically covering the prediction of
COVID-19 outbreak, but mathematically none of the work has been focused on the media impacts on
this disease. So, our main aim in this work is to focus on the impact of media coverage on the spread
and control of infectious diseases in a given region. Public awareness affects the society in two ways:
Firstly, it can cause a panic of the society by covering the news; secondly, it can decrease the chance
of interaction among the notified people.

During the early stage of the epidemic, both public and media individuals were unaware of the
COVID-19 infections. As the knowledge of the disease is being publicized, people respond to it and
ultimately change their habits and daily life behaviour to reduce their vulnerability [17,18]. Mass media
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such as TV familiarize the people with the syndromes and the possible defensive means: namely, social
distancing, habits of healthier sanitation, use of preventive ointments, wearing protecting masks, and
self-quarantine. Individuals, who are aware of the risk of the infection, are minimizing the chance of
being infected, which is deeply influencing the pattern of the pandemic [10, 19].

Since the earliest time required in understanding the hazard of the COVID-19 transmission and
treatment, the reaction of the people is not immediate. It causes a time delay in the management of
the disease. Also, time lag may be raised in the reporting of infected cases by the hospitals. This
time delay should be taken into attention for an opposite modelling of the disease. This type of model
includes delay differential equations; see, for example, [19,20] and the references therein. It is seen that
time delay extremely influences the stability of steady states and solutions through periodic oscillations
when the time delay parameter crosses a certain threshold value [21].

In this article, a mathematical model has been proposed in order to predict the dynamics of COVID-
19 transmission in a region. In the proposed model, a time lag due to the reporting of infected cases
has been included. Stability of the equilibria of the proposed model is determined using the basic
reproduction number. A threshold value of the delay parameter has been determined for which the
system can show limit cycle oscillation.

The article is organised as follows: In section 2, the formulation of the mathematical model is
provided, and some basic properties of the model system are analysed. The dynamics of the system
with and without delay have been provided in section 3. Sensitivity of the model parameters has been
analysed in section 4. Numerical simulations, on the basis of the outcomes of section 3 and 4, have
been included in section 5. In section 6, the discussion on the main outcomes is made to conclude the
paper.

2. Model formulation

Here, we have formulated and analysed a compartmental differential equation model for COVID-19
infection. The model monitors the dynamics of six populations, which are as follows:

Total healthy population (susceptible population) is S (t), infected but not infectious population is
E(t), Q(t) is the quarantine population, the infected population is I(t), isolated individuals (those who
have developed clinical symptoms and isolated) is J(t), and the recovered population is R(t).

A simple mathematical model for COVID-19 transmission dynamics is formulated as follows:

dS
dt

= r − ηS I − µS ,

dE
dt

= ηS I − (c + µ)E,

dQ
dt

= cE − (γ + µ)Q, (2.1)

dI
dt

= pγQ − (λ + µ + d1)I,

dJ
dt

= λI − (d2 + µ)J,

dR
dt

= (1 − p)γQ + d1I + d2J − µR.
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The parameters used in the model (2.1) are defined in Table 1.

Table 1. Short description of the parameters of the model (2.1).

Parameter Short description
r the recruitment rate of susceptible population

including new birth and immigration
β the disease transmission rate
µ the natural death rate of the population
c the rate at which exposed population is quarantined
γ the rate at which quarantined people are infected
d1 the rate at which people are recovered from quarantine
λ the rate at which infected people are isolated
d disease induced mortality rate
d1 the disease induced mortality rate
d2 the rate at which isolated people are recovered
p portion of quarantine population who become infected

We now impose public awareness on the system (2.3) using the following discussion and example.
Spread of infectious disease is highly reliant on the public’s responses and habits. For example,

in 1973, the cholera outburst of Southeast Italy was possible to restrict within a few days since the local
residents maintained essential activities to avoid further risks of transmission, and the Capasso-Serio
epidemic model was established, in which individual behaviour was incorporated using the Monod-
Haldane functional response [22]. In [23, 24], the infection rate was assumed as a decreasing function
of infected individuals as the susceptible take essential measures to avoid being infected themselves.

Following [23, 24], we take the infection rate as a function of infected human, I(t) as follows:

η(I) = βS Ie−mI(t−τ) (2.2)

where τ is the time delay as described in the Introduction. Therefore, the above model (2.1) becomes,
dS
dt

= r − βe−mI(t−τ)S I − µS ,

dE
dt

= βe−mI(t−τ)S I − (c + µ)E,

dQ
dt

= cE − (γ + µ)Q, (2.3)

dI
dt

= pγQ − (λ + µ + d1)I,

dJ
dt

= λI − (d2 + µ)J,

dR
dt

= (1 − p)γQ + d1I + d2J − µR.

As living biological populations always have nonnegative values, the initial functions of model (2.3)
are introduced as follows:

S (0) = φ1(0), E(0) = φ2(0), Q(0) = φ3(0), I(ζ) = φ4(ζ), J(0) = φ5(0),
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R(0) = φ6(0), and φ4(ζ) ≥ 0, ζ ∈ (−τ, 0], φi(0) > 0, i = 1, 2, 3, 4, 5
(2.4)

where φ = (φ1, φ2, φ3, φ4, φ5, φ6) ∈ C((−τ, 0],R6), and C denotes the Banach space of continuous
functions φ : (−τ, 0]→ R6

+ equipped with the sup-norm

‖φ‖ = sup
−τ≤ζ≤0

{|φ1(ζ)|, |φ2(ζ)|, |φ3(ζ)|, |φ4(ζ)|, |φ5(ζ)|, |φ6(ζ)|}.

We now discuss some basic properties of the model (nonnegativity, boundedness, etc.) using the
above initial conditions.

2.1. Non-negativity of solutions

Using the results in [25], it is easy to show that the solution of the system of Eq (2.3) exists in the
region R6

+. The next task is to show the non-negativity of the solutions. Biologically, non-negativity
means the survival of a population. We prove this using the methods as provided by Bodnar [26] and
Yang et al. [27]. In this respect we have the following theorem.

Theorem 1. All the solutions of (2.3) with the positive initial condition (2.4) are positive for all t > 0.

Proof. It is easy to check in system (2.3) that whenever choosing X(ζ) ∈ R+ such that S = 0, E =

0,Q = 0, I = 0, J = 0,R = 0, then
fi(X)|xi=0,X∈R6

+
≥ 0, (2.5)

where, x1(t) = S (t), x2(t) = E(t), x3(t) = Q(t), x4(t) = I(t), x5(t) = J(t), x6(t) = R(t) and fi are the right
sides of system (2.3), for example, f1 = r − βS Ie−mI(t−τ) − µS .
Now, using the results in [27] and [26], we conclude that any solution X(t) of (2.3) with X(ζ) ∈ C
(where C = ([−τ, 0],R6) is the Banach space of continuous functions with sup-norm), say X(t) =

X(t, X(λ)), is such that X(ζ) ∈ R6
+ for all t ≥ 0. Therefore, the set R6

+ is an invariant region for
system (2.3). �

We have derived the region of attraction for the model (2.3) and provided using the following set:

B =

{
(S , E,Q, I, J,R) ∈ C([−τ, 0],R6

+) : 0 ≤ S + E + Q + I + J + R ≤
r
µ

}
.

Remark 1. The recovery class has no impact on other model populations; therefore, we analyse the
dynamics such as stability of equilibriums and Hopf bifurcation of the system (2.3) without considering
the recovery class R(t).

2.2. Characteristic equation

Linearisation at any equilibrium E(S , E,Q, I, J) gives the following characteristic equation:

4(ξ) =| ξI − A − e−ξτB |= 0,
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where A = [ai j] and B = [bi j] are the following 5 × 5 matrices:

A =
[
ai j

]
=



−βe−mI I − µ 0 0 0 0

βe−mI I − (c + µ) 0 0 0

0 c −(γ + µ) 0 0

0 0 pγ − (λ + µ + d1) 0

0 0 0 λ − (d2 + µ)


,

and

B =
[
bi j

]
=


0 0 0 b14 0
0 0 0 −b14 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


,

where b14 = −βe−mIS + mβe−mIS I.

σ1 = −a11 − a22 − a33 − a44,

σ2 = a11a22 + a11a33 + a22a33 + a11a44 + a22a44 + a33a44,

σ3 = −a11a22a33 + b14a32a43 − a11a22a44 − a11a33a44 − a22a33a44,

σ4 = −a11b14a32a43 − b14a21a32a43 + a11a22a33a44,

σ5 = b14a32a43,

σ6 = −a11b14a32a43 − b14a21a32a43.

Finally, we get the characteristic equation as

[ξ + (d2 + µ)][ξ4 + σ1ξ
3 + σ2ξ

2 + σ3ξ + σ4 + e−ξτ(σ5ξ + σ6)] = 0. (2.6)

The stabilities of different equilibria are analysed using the root of this equation at a particular
equilibrium point. If the roots of the characteristic Eq (2.3) are negative or containing negative real
parts, at an steady point, then the point is stable; otherwise; it is unstable.

3. Equilibria and stability analysis

The system (2.3) has two equilibriums: namely, the disease-free equilibrium E0( r
µ
, 0, 0, 0, 0) and the

endemic equilibrium E∗(S ∗, E∗,Q∗, I∗, J∗), given by

Q∗ =
I∗(λ + µ + d1)

pγ
, J∗ =

λI∗

d2 + µ
, E∗ =

(γ + µ)Q∗

c
, S ∗ =

r − (c + µ)E∗

µ

where I∗ satisfies the equation
f (I) = r − βS Ie−mI − µS = 0. (3.1)

Remark 2. We have shown numerically that there exists a positive root of Eq (3.1). Also, the root is
biologically feasible and unique if R0 > 1 (see Figures 2 and 3).

AIMS Mathematics Volume 7, Issue 7, 12091–12105.



12097

3.1. Stability analysis without delay (i.e. τ = 0)

Using the the characteristic Eq (2.6), we derive that at the disease-free equilibrium E0, the Jacobian
matrix has all eigenvalues negative if and only if

β(1 − m)rcpγ − µ(c + µ)(γ + µ)(λ + µ + d1) < 0 (3.2)

holds. We derive the basic reproduction number as

R0 =
β(1 − m)rcpγ

µ(c + µ)(γ + µ)(λ + µ + d1)
.

Then, we have the following theorem.

Theorem 2. The disease-free steady state E0 is stable if R0 < 1 and unstable if R0 > 1. A forward
transcritical bifurcation occurs at R0 = 1.

Remark 3. It is important to note that R0 depends on m (the impact of awareness), and hence it is
important how efficiently humans change their behaviour. In light of the fact that R0 is monotonically
decreasing with increasing m, this suggests that eradication of disease, as represented by a stable
disease-free steady state E0, is possible if R0 < 1. The available means to achieve this are quarantine,
hand washing, social distancing, etc. [17, 18].

At the endemic equilibrium E∗, the characteristic equation takes the form

[ξ + (d2 + µ)][ξ4 + σ1ξ
3 + σ2ξ

2 + (σ3 + σ5)ξ + σ4 + σ6] = 0, (3.3)

i.e., one eigenvalue is −(d2 + µ), which is always negative, and the rest of the eigenvalues satisfy,

ξ4 + σ1ξ
3 + σ2ξ

2 + (σ3 + σ5)ξ + (σ4 + σ6) = 0.

If the Routh-Hurwitz criterion [28] is satisfied at E∗, then all the roots of the characteristic equation
will be negative or include negative real parts. Using this, we get the stability condition for E∗ as:

σ1 > 0, (σ4 + σ6) > 0, σ1σ2 − (σ3 + σ5) > 0,
[σ1σ2 − (σ3 + σ5)](σ3 + σ5) − σ2

1(σ4 + σ6) > 0. (3.4)

From the above discussion, we can write the following theorem.

Theorem 3. The endemic equilibrium point E∗ is stable if the conditions (3.4) are satisfied.

3.2. Stability analysis of the system with delay

Suppose that the endemic equilibrium E∗ is stable, i.e., the conditions in (3.4) are satisfied. Now, a
necessary condition that E∗ will change its stability is that Eq (2.6) possesses a purely imaginary roots.

Let iθ, θ ∈ R, be a purely imaginary root of Eq (2.6). Putting ξ = iθ, θ ∈ R, in (2.6) and splitting
the real and imaginary portions, one can obtain

σ5 cos θτ − σ6 sin θτ = σ1θ
3 − σ3θ, (3.5)
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σ5 sin θτ + σ6 cos θτ = −θ4 + σ2θ
2 − σ4. (3.6)

First, squaring and adding the above equations and then taking θ2 = l, we obtain

l4 + ω1l3 + ω2l2 + ω3l + ω4 = 0, (3.7)

where,

ω1 = σ1
2 − 2σ2, ω2 = σ2

2 + 2σ4 − 2σ1σ3,

ω3 = −2σ2σ4 + σ2
3 − σ

2
5, ω4 = σ2

4 − (σ2
5 + σ2

6).

If the coefficients of (3.7) satisfy the Routh-Hurwitz criterion [28], then the roots of Eq (3.7) will
contains negative real parts. In that case, the characteristic Eq (2.6) does not possess purely imaginary
roots.

We summarise the above discussion as a proposition.

Proposition 1. Suppose that the system (2.3) without delay (i.e. τ = 0) is stable. Now, if conditions

ω1 > 0, ω4 > 0, ω1ω2 − ω3 > 0, (ω1ω2 − ω3)ω3 − ω
2
1ω4 > 0.

are satisfied, then E∗ is locally asymptotically stable (LAS) for all τ > 0.

If ω4 < 0 holds for a set of parameters, then Eq (3.7) will have at least one positive root. Suppose
that θ2

0 is the smallest positive root of (3.7). This implies that ±iθ0 is a purely imaginary root related
to τ = τ0. Using Butler’s lemma [29], there is a threshold value of τ, denoted as τ∗ below, for which
the equilibrium E∗ will remain stable and unstable for τ > τ∗, and the stability change occurs through
Hopf bifurcation. We have calculated the critical value τ∗ using Eq (3.5) as

τ∗ =
1
θ0

cos−1
[
σ6(−θ4

0 + σ2θ
2
0 − σ4) + σ5σ1θ

3
0

σ2
5 + σ2

6

]
+

2πn
θ0

, n = 0, 1, 2, 3, . . .

The following theorem can be written using the above discussion.

Theorem 4. Suppose that the conditions in (3.4) hold, and ω4 < 0 is satisfied; then, for τ < τ∗, the
endemic equilibrium E∗ is stable and unstable for τ > τ∗. Moreover, Hopf bifurcation occurs at τ = τ∗,
providing 4θ6

0 + A1θ
4
0 + A2θ

2
0 + A3 , 0, where

A1 = 3σ1 − 6σ2, A2 = 2σ2 + 4σ4 − 4σ1σ3, A3 = σ2
3 − 2σ2σ4 − σ

2
5.

Proof. The proof of the first part of the theorem follows from the above arguments. Thus, we only
provide the proof of the last part of the theorem, as follows:
Differentiating (2.6) with respect to τ, one can get

dτ
dξ

=
4ξ3 + 3σ1ξ

2 + 2σ2ξ + σ3

σ5ξ2 + σ6
eξτ +

σ5

σ5ξ2 + σ6ξ
−
τ

ξ
.

Using Eq (3.5), after some simple calculation, we finally get[
d(Reξ)

dτ

]
τ=τ∗

=

Re
(
dξ
dτ

)−1
ξ=iθ0

=

[
4θ6

0 + A1θ
4
0 + A2θ

2
0 + A3

σ5θ
2
0 + σ2

6

]
θ=θ0

. (3.8)
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Since 4θ6
0 + A1θ

4
0 + A2θ

2
0 + A3 , 0, we have[

d(Reξ
dτ

]
τ=τ∗
, 0.

Thus, the transversality condition is satisfied and consequently Hopf bifurcation occurs at τ = τ∗. �

4. Sensitivity analysis

This section provides the sensitivity analysis of the parameters of the system (2.3). Sensitivity
analysis tells about the importance of a parameter on the dynamics of a system. The methodology
provided in [30, 31] is followed for this analysis. A short description of this method is as follows [32].

Suppose that we want to analyse whether the generic parameter ς is significant with respect to the
population X. For this we use the original system (2.3) with the additional differential equations for the
sensitivities. We differentiate partially the original differential equations with respect to the parameter
ς to get the auxiliary equations. The partial derivative of each model population with respect to the
desired parameter, i.e., ∂X

∂ς
, is known as the sensitivity index of that parameter.

5. Numerical results and discussion

To study the dynamic behavior, extensive numerical simulations were carried out for no time delay
and then for various values of τ. The numerical experiments were performed on the systems (with
delay and without delay) to confirm our theoretical findings. Parameters values were taken as follows:

r = 40, β = 0.0025, m = 0.2, µ = 0.01, d1 = 0.1, d2 = 0.1,
c = 0.6, p = 0.6, γ = 0.02, λ = 0.1. (5.1)
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Figure 1. Numerical simulation of model (2.3) is plotted taking the set of parameters as
in (5.1).

AIMS Mathematics Volume 7, Issue 7, 12091–12105.



12100

A time series solution of system (2.3) has been shown in Figure 1 taking parameters as in (5.1).
For this set of parameters, the system solution converges to the endemic equilibrium E∗. Also, the
conditions of Theorem 3.4 are satisfied, i.e., endemic equilibrium is stable. Figures 2 and 3 show that
system (2.3) possesses a unique endemic equilibrium, as at R0 = 1 forword bifurcation occurs.

40 50 60 70 80

I

-0.04

-0.02

0

0.02

0.04

f(I)

Figure 2. f (I) is plotted versus I. I is varied between 40 and 80. Parameters’ values are as
given in Figure 1.
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4
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8

10

12

I
∗

Endemic

Stable

Disease-free,

E0

Figure 3. Forward bifurcation at R0 = 1. Force of infection β has been varied, and all other
parameters’ values are as given in Figure 1.

In Figure 4, it is observed that if the rate of awareness (i.e., m) increases, the equilibrium numbers
of infected, exposed, etc. individuals decreased, except for susceptible ones. When it crosses some
threshold value, the system becomes disease-free. Basic reproduction number R0 is a decreasing
function of m. As m increases, R0 decreases. For some higher value of m, R0 is below unity. Thus,
awareness in the form of lockdowns, social distancing, use of masks, etc., has the ability to yield a
disease-free system.
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Figure 4. Effect of awareness, m, on the steady states of the model populations. Parameters’
values are taken as in Figure 1.

Effects of time delay τ have been shown in Figures 5 and 6, showing that as the value of delay
τ exceeds its critical value τ∗, all variables bifurcate into periodic solutions at the endemic equilibria
E∗. This specifies that the number of infective cases will be oscillating, which makes difficulties in
forecasting the size of the epidemic. The endemic equilibrium takes a longer time to become steady.
These figures indicate that equilibrium E∗ of model system (2.3) is stable for τ < τ∗ and unstable if the
inequality is reversed.
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Figure 5. Numerical solutions of the system with different values of delay τ. Parameters’
values are the same as in Figure 2.
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Figure 6. Bifurcation diagram of endemic system taking τ as main parameter. The
minimum/maximum values of the periodic oscillations are plotted whenever they exist. Solid
lines indicate stable endemic equilibrium.

The sensitivity indices of the model parameters are plotted in Figure 7 with respect to the population
J(t). We have seen that each parameter is significant for the dynamics of the system. Some are
positively, sensitive and some are negatively sensitive for the isolated population. For example, the
awareness parameter m and infection rate β are negatively sensitive, but λ (rate of isolation) is positively
sensitive throughout the time interval.

0 20 40 60 80 100
0

0.1

0.2 r

0 20 40 60 80 100
0

2000

4000
β

0 20 40 60 80 100

-40

-20

0

20 m

0 20 40 60 80 100

-400

-200

0 µ

0 20 40 60 80 100
0

0.2

0.4 c

0 20 40 60 80 100
0

200

400 γ 

0 20 40 60 80 100
0

10

20 p

0 20 40 60 80 100
0

50

100 λ

0 20 40 60 80 100
-40

-20

0
d2

0 20 40 60 80 100

Time (days)

-100

-50

0

S
e

n
s
it
iv

it
y
 i
n

d
e

x

d3

Figure 7. Sensitivity indices of the model parameters are plotted with time.
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6. Conclusions

In this article, a mathematical model has been proposed and analysed using a set of delay differential
equations with an aim to study the dynamics of COVID-19 transmission in a region. Impact of media
awareness and a time delay due to the lag in reporting the infected cases are included in the model by
considering the infection transmission rate as a function of the infected human population I(t) and by
further assuming that the progress of public awareness depends on the number of infected people.

The proposed model possesses two equilibria, namely, the disease-free and the coexisting equilibria.
We have derived the basic reproduction number R0 for this pandemic. We have seen that it depends
on the awareness rate m. The disease-free equilibrium is stable when R0 is below unity (Remark 3).
Numerical simulation shows that the endemic equilibrium exists when R0 crosses unity and is stable
depending on the parameters of the model system. We have also seen the effects of time delay in
the system. The coexisting equilibrium is stable when the delay τ is below its critical value τ∗. The
sensitivity analysis of the model parameters demonstrates that each parameter is sensitive for this
pandemic, but the media impact rate m and the force of infection β are the most important ones.

In summary, media awareness in the form of social distancing, lockdown, testing, etc., can reduce
the pandemic with sufficiently tolerable time lag. A rapid social awareness can help us currently fight
back this highly contagious disease. Good knowledge on COVID-19 transmission is associated with
hopeful attitudes and appropriate practices towards it. On the other hand, health education programs
for improving knowledge are helpful for encouraging a positive attitude and maintaining safe
practices. In this way, scientists will be able to have some time in discovering the appropriate
medicine. Optimistically, with everyone’s combined efforts, we will win the fight against COVID-19
in the near future.
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