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Abstract: In this article, we obtain some operator mean inequalities of sectorial matrices involving
operator monotone functions. Among other results, it is shown that if A, B ∈ Mn(C) are such that
W(A),W(B) ⊆ S α, f , g, h ∈ m are such that g′(1) = h′(1) = t for some t ∈ (0, 1) and 0 < mIn ≤

<A,<B ≤ MIn, then

<(Φ( f (A))σhΦ( f (B))) ≤ sec4(α)K<Φ( f (AσgB)),

where M,m are scalars and m is the collection of all operator monotone function ϕ : (0,∞) → (0,∞)
satisfying ϕ(1) = 1. Moreover, we refine a norm inequality of sectorial matrices involving positive
linear maps, which is a result of Bedrani, Kittaneh and Sababheh.
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1. Introduction

Let B(H) denote the C∗ algebra of all bounded linear operators acting on a Hilbert spaceH . When
the dimension ofH is finite, we identify B(H) withMn(C), denoting the set of n×n complex matrices.
I denotes the identity operator in B(H), while In denotes the identity matrix inMn(C). For A ∈ Mn(C),
the conjugate transpose of A is denoted by A∗, and the matrices<A = 1

2 (A + A∗) and =A = 1
2i (A − A∗)

are called the real part and imaginary part of A, respectively ( [6, p.6] and [12, p.7]). Moreover, A is
called accretive if<A > 0. For two Hermitian matrices A, B ∈ Mn(C), we write A ≥ B (resp. A > B)
if A − B is positive semidefinite(resp. positive definite). A linear map Φ : Mn(C) → Mk(C) is called
positive if it maps positive semi-definite matrices inMn(C) to positive semi-definite matrices inMk(C)
and is said to be unital if it maps the identity matrix in Mn(C) to the identity matrix in Mk(C). We
reserve M,m for scalars.
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The operator norm of A ∈ Mn(C) is defined by

‖A‖ = max {| 〈Ax, y〉 | : x, y ∈ Cn, ‖x‖ = ‖y‖ = 1} .

A ∈ Mn(C) is contractive if ‖A‖ ≤ 1. Let || · ||u denote any unitarily invariant norm on Mn(C), which
satisfies ||UAV ||u = ||A||u for any unitary matrices U,V ∈ Mn(C) and all A ∈ Mn(C).

For α ∈ [0, π2 ), S α denotes the sectorial region in the complex plane as follows:

S α =
{
z ∈ C : <z > 0, |=z| ≤ (<z) tanα

}
.

If W(A) ⊆ S 0, then A is positive definite, and if W(A),W(B) ⊆ S α for some α ∈ [0, π2 ), then W(A+ B) ⊆
S α, A is nonsingular and<(A) is positive definite. Moreover, W(A) ⊆ S α implies W(X∗AX) ⊆ S α for
any nonzero n × m matrix X, thus W(A−1) ⊆ S α. Recently, Tan and Chen [20] also proved that for
any positive linear map Φ, W(A) ⊆ S α implies that W(Φ(A)) ⊆ S α. Recent developments on sectorial
matrices can be found in [3, 4, 9, 10, 16, 18, 22, 23].

The numerical range of A ∈ Mn(C) is defined by

W(A) = {〈Ax, x〉 : x ∈ Cn, ‖x‖ = 1} .

The numerical radius of A is defined by ω(A) = sup {|λ| : λ ∈ W(A)} . We note that if A ≥ 0, then
ω(A) = ‖A‖. The following inequality holds true

ω(<A) ≤ ω(A) ≤ ‖A‖ (1.1)

for A ∈ Mn(C).
For two positive definite matrices A, B ∈ Mn(C) and 0 ≤ t ≤ 1, the weighted geometric mean,

weighted harmonic mean and weighted arithmetic mean are defined respectively as follows:

A]tB = A
1
2 (A−

1
2 BA−

1
2 )tA

1
2 ,

A!tB = ((1 − t)A−1 + tB−1)−1,

A∇tB = (1 − t)A + tB.

In particular, when t = 1
2 , we denote the geometric mean, harmonic mean and arithmetic mean by A]B,

A!B and A∇B, respectively. Another interesting operator mean is the Heron mean, which is defined
by Ft(A, B) = t(A∇B) + (1 − t)(A]B) for positive definite matrices A, B ∈ Mn(C) and 0 ≤ t ≤ 1. The
weighted arithmetic-geometric-harmonic mean inequalities states that

A!tB ≤ A]tB ≤ A∇tB. (1.2)

For two accretive matrices A, B ∈ Mn(C), Drury [9] defined the geometric mean of A and B as
follows

A]B =

(
2
π

∫ ∞

0
(tA + t−1B)−1 dt

t

)−1

. (1.3)
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This new geometric mean defined by (1.3) possesses some similar properties compared to the
geometric mean of positive matrices. For instance, A]B = B]A, (A]B)−1 = A−1]B−1. Moreover, if
A, B ∈ Mn(C) with W(A),W(B) ⊂ S α, then W(A]B) ⊂ S α.

Later, Raissouli, Moslehian and Furuichi [19] defined the following weighted geometric mean of
two accretive matrices A, B ∈ Mn(C),

A]λB =
sin λπ
π

∫ ∞

0
tλ−1(A−1 + tB−1)−1 dt

t
, (1.4)

where λ ∈ [0, 1]. If λ = 1
2 , then the formula (1.4) coincides with the formula (1.3).

We say a real valued continuous function f : (0,∞)→ (0,∞) operator monotone (increasing) if for
any two positive operators A, B, A ≥ B implies f (A) ≥ f (B). If f (A) ≤ f (B) whenever A ≥ B > 0, we
say f is operator monotone decreasing.

For the sake of convenience, we will need the following notation.

m =
{
f (x), where f : (0,∞)→ (0,∞) is an operator monotone function with f (1) = 1

}
.

Lately, Bedrani, Kittaneh and Sababheh [3] defined a more general operator mean for two accretive
matrices A, B ∈ Mn(C),

AσgB =

∫ 1

0
((1 − s)A−1 + sB−1)−1 dvg(s), (1.5)

where g: (0,∞) → (0,∞) is an operator monotone function with g(1) = 1 and vg is the probability
measure characterizing σg. We note that !t ≤ σg ≤ ∇t for positive matrices if g ∈ m are such that
g′(1) = t for some t ∈ (0, 1).

In the same paper, they also characterize the operator monotone function for an accretive matrix:
let A ∈ Mn(C) be accretive and f ∈ m,

f (A) =

∫ 1

0
((1 − s)I + sA−1)−1 dv f (s), (1.6)

where v f is the probability measure satisfying f (x) =

∫ 1

0
((1 − s) + sx−1)−1 dv f (s). This is because

AσgB = A
1
2 g(A−

1
2 BA−

1
2 )A

1
2 for accretive matrices A, B.

Ando [1] proved that if A, B ∈ Mn(C) are positive definite, then for any positive linear map Φ,

Φ(Aσ f B) ≤ Φ(A)σ f Φ(B). (1.7)

Ando’s formula (1.7) is known as a matrix Hölder inequality.
The famous Choi’s inequality [5, p.41] states that if Φ is a positive unital linear map and A > 0,

then

Φt(A) ≤ Φ(At), t ∈ [−1, 0]. (1.8)

Φt(A) ≥ Φ(At), t ∈ [0, 1]. (1.9)

AIMS Mathematics Volume 7, Issue 6, 10778–10789.



10781

A general situation of inequality (1.9) is the following one [1]:

Φ( f (A)) ≤ f (Φ(A)), f is operator monotone. (1.10)

In a recent paper [13], The authors obtained some inequalities involving operator monotone
(increasing) functions and operator monotone decreasing functions for positive operators: Let A ∈
B(H) be such that 0 < mI ≤ A, B ≤ MI, !t ≤ σh, σh′ ≤ ∇t and t ∈ [0, 1]. Then for every positive unital
linear map Φ,

Φ( f (A))σhΦ( f (B)) ≤ KΦ( f (Aσh′B)), (1.11)

g(Φ(AσhB)) ≤ K(g(Φ(A))σh′g(Φ(B))), (1.12)

(g(Φ(A))σh′g(Φ(B))) ≤ Kg(Φ(AσhB)), (1.13)

here the operator means σh, σh′ are defined for positive semidefinite matrices, f : (0,∞) → (0,∞)
is operator monotone and g : (0,∞) → (0,∞) is operator monotone decreasing, K denotes the
Kantorovich constant K( M

m ) =
(M+m)2

4Mm throughout the paper. Since (1.11)–(1.13) are inequalities for
positive operator, whether we can obtain the accretive version of these inequalities partially triggers
the motivation of this article.

From [2] we know that for a continuous nonnegative function f on (0,∞), f is operator monotone
if and only if 1

f (or f −1) is operator monotone decreasing. Thus we can treat f −1 as operator monotone
decreasing function when f is an operator monotone function.

In [3], the authors gave an comparison for sector matrices: Let A, B ∈ Mn with W(A),W(B) ⊂ S α

and 0 < mIn ≤ <(A),<(B) ≤ MIn. If g, h ∈ m are such that g′(1) = h′(1) = t for some t ∈ (0, 1), then
for every positive unital linear map Φ,∥∥∥∥Φ(<(AσgB))Φ−1(<(AσhB))

∥∥∥∥ ≤ sec6(α)K. (1.14)

Very recently, the authors in [11] gave the definition of Heron mean of sector matrices A, B ∈
Mn(C)(in particular, positive definite matrices): Ft(A, B) = t(A∇B) + (1 − t)(A]B), t ∈ [0, 1]. They also
gave numerical radius inequalities for Heron mean of two sector matrices: Let A, B ∈ Mn(C) be such
that W(A),W(B) ⊆ S α and t ∈ (0, 1). Then

cos2t+2(α)ω(A]B) ≤ ω(Ft(A, B)) ≤ sec4(α)(1 − t sin2(α)ω(A∇B). (1.15)

In this paper, we intend to give some refinements of inequalities (1.11)–(1.15). Furthermore, we
shall present more operator mean inequalities for sector matrices.

2. Main results

We begin this section with several lemmas which will be necessary for achieving our goals.

Lemma 2.1. (see [3]) Let A ∈ Mn(C) with W(A) ⊆ S α. If f ∈ m, then

f (<A) ≤ <( f (A)) ≤ sec2(α) f (<A).
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Lemma 2.2. (see [3, 14, 19, 21]) Let A, B ∈ Mn(C) be such that W(A),W(B) ⊆ S α and f ∈ m. Then

<Aσ f<B ≤ <(Aσ f B) ≤ sec2(α)(<Aσ f<B).

Lemma 2.3. (see [4]) Let A ∈ Mn be such that W(A) ⊂ S α. Then

cos(α)ω(A) ≤ ω(<A) ≤ ω(A).

The following lemma is a well-known result.

Lemma 2.4. (see [13], Lemma 2.2) If f : (0,∞) → (0,∞) is operator monotone, then f (αt) ≤ α f (t)
for α ≥ 1. The inequality is reversed when 0 ≤ α ≤ 1.

Lemma 2.5. (see [24]) Let A ∈ Mn(C) with W(A) ⊆ S α and let ‖ · ‖u be any unitarily invariant norm
onMn(C). Then

cos(α)‖A‖u ≤ ‖<A‖u ≤ ‖A‖u.

Lemma 2.6. (see [10, 15]) Let A ∈ Mn(C) with W(A) ⊆ S α. Then

<(A−1) ≤ <−1A ≤ sec2(α)<(A−1).

Lemma 2.7. (see [7]) Let A, B ∈ Mn(C) be positive semidefinite. Then

‖AB‖≤
1
4
‖A + B‖2.

Theorem 2.1. Let A, B ∈ Mn(C) be such that W(A),W(B) ⊆ S α and 0 < mIn ≤ <A,<B ≤ MIn. If
f , g, h ∈ m are such that g′(1) = h′(1) = t for some t ∈ (0, 1), then for every positive unital linear map
Φ,

<(Φ( f (A))σhΦ( f (B))) ≤ sec4(α)K<Φ( f (AσgB)).

Proof. We have the following chain of inequalities

<(Φ( f (A))σhΦ( f (B))) ≤ sec2(α)<Φ( f (A))σh<Φ( f (B)) (by Lemma 2.2)
≤ sec4(α)Φ( f (<A))σhΦ( f (<B)) (by Lemma 2.1)
≤ sec4(α)KΦ( f (<Aσg<B)) (by inequality (1.11))
≤ sec4(α)KΦ( f (<(AσgB))) (by Lemma 2.2)
≤ sec4(α)K<Φ( f (AσgB)), (by Lemma 2.1)

which completes the proof.
Note that when A, B ≥ 0 in Theorem 2.1, we get inequality (1.11).

Theorem 2.2. Let A, B ∈ Mn(C) be such that W(A),W(B) ⊆ S α and 0 < mIn ≤ <A,<B ≤ MIn. If
f , g ∈ m are such that g′(1) = t for some t ∈ (0, 1), then

‖ f (A)σg f (B)‖u
‖AσgB‖u

≤ sec5(α)K
∥∥∥∥ f (AσgB)

AσgB

∥∥∥∥
u
.
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Proof. Compute

‖ f (A)σg f (B)‖u
‖AσgB‖u

≤ sec(α)
‖<( f (A)σg f (B))‖u

‖AσgB‖u
(by Lemma 2.5)

≤ sec5(α)K
‖<( f (AσgB))‖u
‖AσgB‖u

(by Theorem 2.1)

≤ sec5(α)K
‖ f (AσgB)‖u
‖AσgB‖u

(by Lemma 2.5)

≤ sec5(α)K
∥∥∥∥ f (AσgB)

AσgB

∥∥∥∥
u
,

which completes the proof.

Theorem 2.3. Let A, B ∈ Mn(C) be such that W(A),W(B) ⊆ S α and 0 < mIn ≤ <A,<B ≤ MIn. If
f , g, h ∈ m are such that g′(1) = h′(1) = t for some t ∈ (0, 1), then for every positive unital linear map
Φ,

< f −1
(
Φ(AσgB)

)
≤ sec4(α)K<( f −1(Φ(A))σh f −1(Φ(B))).

Proof. We have

< f −1
(
Φ(AσgB)

)
≤

(
< f (Φ(AτtB))

)−1 (by Lemma 2.6)

≤
(

f (<(Φ(AσgB))
)−1

(by Lemma 2.1)

≤
(

f (Φ(<Aσg<B))
)−1

(by Lemma 2.2)

≤ K f −1(Φ(<A))σh f −1(Φ(<B)) (by inequality (1.12))
≤ sec2(α)K<−1 f (Φ(A))σh<

−1 f (Φ(B)) (by Lemma 2.1)
≤ sec4(α)K< f −1(Φ(A))σh< f −1(Φ(B)) (by Lemma 2.6)
≤ sec4(α)K<( f −1(Φ(A))σh f −1(Φ(B))), (by Lemma 2.2)

which completes the proof.
Note that when A, B ≥ 0 in Theorem 2.3, we get inequality (1.12).

Theorem 2.4. Let A, B ∈ Mn(C) be such that W(A),W(B) ⊆ S α and 0 < mIn ≤ <A,<B ≤ MIn. If
f , g, h ∈ m are such that g′(1) = h′(1) = t for some t ∈ (0, 1), then for every positive unital linear map
Φ,

<( f −1(Φ(A))σh f −1(Φ(B))) ≤ sec8(α)K< f −1
(
Φ(AσgB)

)
.

Proof. Compute

<( f −1(Φ(A))σh f −1(Φ(B))) ≤ sec2(α)<( f −1(Φ(A)))σh<( f −1(Φ(B))) (by Lemma 2.2)
≤ sec2(α)<−1( f (Φ(A)))σh<

−1( f (Φ(B))) (by Lemma 2.6)
≤ sec2(α) f −1(<(Φ(A)))σh f −1(<(Φ(B))) (by Lemma 2.1)
≤ sec2(α)K f −1(Φ(<Aσg<B)) (by inequality (1.13))
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≤ sec2(α)K f −1(cos2(α)Φ(<(AσgB))) (by Lemma 2.2)
≤ sec4(α)K f −1(Φ(<(AσgB))) (by Lemma 2.4)
≤ sec6(α)K<−1( f (Φ(AσgB))) (by Lemma 2.1)

≤ sec8(α)K< f −1
(
Φ(AσgB)

)
, (by Lemma 2.6)

which completes the proof.
Note that when A, B ≥ 0 in Theorem 2.4, we get inequality (1.13).

Theorem 2.5. Let A ∈ Mn(C) be such that W(A) ⊆ S α and f ∈ m. Then for any positive unital linear
map Φ,

f (Φ(A]A∗)) ≥ cos2(α)< (Φ f (A)) .

Proof. Compute

f (Φ(A]A∗)) = f (Φ(<(A]A∗)))
≥ Φ f (<(A]A∗)) (by inequality (1.10))
≥ Φ f (<A]<A∗) (by Lemma 2.2)
= Φ f (<A)
≥ cos2(α)< (Φ f (A)) , (by Lemma 2.1)

which completes the proof.

Corollary 2.1. Let A ∈ Mn(C) be accretive. Then

A]A∗ ≥ <A.

Corollary 2.2. Let A ∈ Mn(C) be contractive. Then

In − A∗A ≤ (In − A∗)(In + A)](In + A∗)(In − A).

In particular, if A = U is unitary, then 0 ≤ (U − U∗)](U∗ − U).

In [17], the authors obtained that (In − A∗B)](In − B∗A) ≥ (In − A∗A)](In − B∗B) for contractions
A, B ∈ Mn(C). Imposing Φ on both sides implies Φ((In − A∗B)](In − B∗A)) ≥ Φ((In − A∗A)](In − B∗B)).
We note that a stronger result holds Φ((In − A∗B)](In − B∗A)) ≥ Φ(In − A∗A)]Φ(In − B∗B).

Theorem 2.6. Let A ∈ Mn(C) be such that W(A) ⊆ S α and f ∈ m. Then for any positive unital linear
map Φ,

f −1(Φ(A]A∗)) ≤ sec4(α)<(Φ f −1(A)).

Proof. We have

f −1(Φ(A]A∗)) ≤ Φ−1( f (A]A∗)) (by inequality (1.10))
≤ Φ( f −1(A]A∗)) (by inequality (1.8))
≤ Φ( f −1(<A)) (by Corollary 2.1)
≤ sec2(α)Φ(<−1 f (A)) (by Lemma 2.1)
≤ sec4(α)<(Φ f −1(A)), (by Lemma 2.6)

which completes the proof.
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Theorem 2.7. Let A, B ∈ Mn(C) be such that W(A),W(B) ⊆ S α and 0 < mIn ≤ <A,<B ≤ MIn. If
f ∈ m and t ∈ (0, 1), then for every positive unital linear map Φ,

<(Φ( f (A!tB))) ≤ sec4(α)<( f (Φ(A))!t f (Φ(B))).

Proof. Compute

<(Φ( f (A!tB))) ≤ sec2(α)Φ f (<(A!tB)) (by Lemma 2.1)
≤ sec2(α)Φ f (sec2(α)<A!t<B) (by Lemma 2.2)
≤ sec4(α)Φ f (<A!t<B) (by Lemma 2.4)
≤ sec4(α) f (Φ(<A!t<B)) (by inequality (1.10))
≤ sec4(α) f (Φ(<A)!tΦ(<B)) (by inequality (1.7))
= sec4(α) f (<(Φ(A))!t<(Φ(B)))
≤ sec4(α) f (<(Φ(A)))!t f (<(Φ(B))) (by Theorem 4 in [8])
≤ sec4(α)< f (Φ(A))!t< f (Φ(B)) (by Lemma 2.1)
≤ sec4(α)<( f (Φ(A))!t f (Φ(B))), (by Lemma 2.2)

which completes the proof.

Theorem 2.8. Let A, B ∈ Mn(C) be such that W(A),W(B) ⊆ S α and 0 < mIn ≤ <A,<B ≤ MIn. If
f ∈ m and t ∈ (0, 1), then

< f −1(A∇tB) ≤ sec4(α)<( f −1(A)!t f −1(B)).

Proof. Compute

< f −1(A∇tB) ≤ (< f (A∇tB))−1 (by Lemma 2.6)
≤ f −1(<A∇t<B) (by Lemma 2.1)
≤ f −1(<A)!t f −1(<B) (by Remark 2.6 in [2])
≤ sec2(α)<−1( f (A))!t<

−1( f (B)) (by Lemma 2.1)
≤ sec4(α)< f −1(A)!t< f −1(B) (by Lemma 2.6)
≤ sec4(α)<( f −1(A)!t f −1(B)), (by Lemma 2.2)

which completes the proof.

Theorem 2.9. Let A, B ∈ Mn with W(A),W(B) ⊂ S α and 0 < mIn ≤ <(A),<(B) ≤ MIn. If g, h ∈ m
are such that g′(1) = h′(1) = t for some t ∈ (0, 1), then for every positive unital linear map Φ,∥∥∥∥Φ(<(AσgB))Φ−1(<(AσhB))

∥∥∥∥ ≤ sec2(α)K. (2.1)

Proof. From 0 < mIn ≤ <(A),<(B) ≤ MIn we have

(1 − t)(M −<(A))(m −<A)A−1 ≤ 0,

AIMS Mathematics Volume 7, Issue 6, 10778–10789.
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which is equivalent to

(1 − t)<(A) + (1 − t)Mm<−1(A) ≤ (1 − t)(M + m)In. (2.2)

Similarly, we have

t<(B) + tMm<−1(B) ≤ t(M + m)In. (2.3)

Summing up inequalities (2.2) and (2.3), we get

< (A∇tB) + Mm(<−1(A)∇t<
−1(B)) ≤ (M + m)In. (2.4)

By computation, we have∥∥∥∥ sec2(α)MmΦ(<(AσgB))Φ−1(<(AσhB))
∥∥∥∥

≤
1
4

∥∥∥∥Φ(<(AσgB)) + sec2(α)MmΦ−1(<(AσhB))
∥∥∥∥2

(by Lemma 2.7)

≤
1
4

∥∥∥∥Φ(<(AσgB)) + sec2(α)MmΦ(<−1(AσhB))
∥∥∥∥2

(by inequality (1.8))

≤
1
4

∥∥∥∥Φ(<(AσgB)) + sec2(α)MmΦ((<Aσh<B)−1)
∥∥∥∥2

(by Lemma 2.2)

≤
1
4

∥∥∥∥Φ(<(AσgB)) + sec2(α)MmΦ((<A!t<B)−1)
∥∥∥∥2

=
1
4

∥∥∥∥Φ(<(AσgB)) + sec2(α)MmΦ(<−1A∇t<
−1B)

∥∥∥∥2

≤
1
4

∥∥∥∥ sec2(α)Φ(<(A∇tB)) + sec2(α)MmΦ(<−1A∇t<
−1B)

∥∥∥∥2
(by Theorem 5.2 in [3])

=
1
4

∥∥∥∥ sec2(α)Φ(<(A∇tB) + Mm(<−1A∇t<
−1B))

∥∥∥∥2

≤
1
4

sec4(α)(M + m)2. (by inequality (2.4))

That is, ∥∥∥∥Φ(<(AσgB))Φ−1(<(AσhB))
∥∥∥∥ ≤ sec2(α)K.

This completes the proof.
We remark that Theorem 2.9 is an improvement of inequality (1.14).

Theorem 2.10. Let A, B ∈ Mn(C) be such that W(A),W(B) ⊆ S α and t ∈ (0, 1). Then for every positive
unital linear map Φ,

<F−1
t (Φ(A),Φ(B)) ≤ sec2(α)<Ft

(
Φ(A−1),Φ(B−1)

)
.

Proof. We have the following chain of inequalities

<F−1
t (Φ(A),Φ(B)) = <(tΦ(A)∇Φ(B) + (1 − t)Φ(A)]Φ(B))−1

≤ <−1(tΦ(A)∇Φ(B) + (1 − t)Φ(A)]Φ(B)) (by Lemma 2.6)
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= (tΦ(<A)∇Φ(<B) + (1 − t)<(Φ(A)]Φ(B)))−1

≤ t(Φ(<A)∇Φ(<B))−1 + (1 − t)<−1(Φ(A)]Φ(B))
≤ tΦ((<A∇<B)−1) + (1 − t)(<Φ(A)]<Φ(B))−1 (by Lemma 2.2 and (1.8))
= tΦ((<A∇<B)−1) + (1 − t)Φ−1(<A)]Φ−1(<B)
≤ tΦ((<A∇<B)−1) + (1 − t)Φ(<−1A)]Φ(<−1B) (by (1.8))
≤ tΦ((<A∇<B)−1) + (1 − t) sec2(α)Φ(<A−1)]Φ(<B−1) (by Lemma 2.6)
≤ tΦ(<−1A∇<−1B) + (1 − t) sec2(α)<(Φ(A−1)]Φ(B−1)) (by Lemma 2.2)
≤ t sec2(α)Φ(<(A−1)∇<(B−1)) + (1 − t) sec2(α)<(Φ(A−1)]Φ(B−1)) (by Lemma 2.6)
= t sec2(α)<(Φ(A−1)∇Φ(B−1)) + (1 − t) sec2(α)<(Φ(A−1)]Φ(B−1))
= sec2(α)<Ft

(
Φ(A−1),Φ(B−1)

)
,

which completes the proof.
We note that by letting Φ(X) = X for every X ∈ Mn(C) in Theorem 2.10, we get the right hand side

of inequalities in Theorem 3 in [11].

Theorem 2.11. Let A, B ∈ Mn(C) be such that W(A),W(B) ⊆ S α and t ∈ (0, 1). Then

cos2t+1(α)ω(A]B) ≤ ω(Ft(A, B)) ≤ sec3(α)(1 − t sin2(α)ω(A∇B).

Proof. Compute

ω(A]B) ≤ ‖A]B‖ (by inequality (1.1))
≤ sec(α)‖<(A]B)‖ (by Lemma 2.5)
≤ sec2t+1(α)‖<Ft(A, B)‖ (by Theorem 1 in [11])
= sec2t+1(α)ω(<Ft(A, B))
≤ sec2t+1(α)ω(Ft(A, B)) (by inequality (1.1))

and

ω(Ft(A, B)) ≤ ‖Ft(A, B)‖ (by inequality (1.1))
≤ sec(α)‖<(Ft(A, B))‖ (by Lemma 2.5)
≤ sec3(α)(1 − t sin2(α))‖<(A∇B)‖ (by Theorem 1 in [11])
= sec3(α)(1 − t sin2(α))ω(<(A∇B))
≤ sec3(α)(1 − t sin2(α))ω(A∇B), (by inequality (1.1))

which completes the proof.
We remark that Theorem 2.11 is an improvement of inequality (1.15) when taking the bound on

both sides into consideration.

Acknowledgements

The author is grateful to the referees and editor for their helpful comments and suggestions. This
project was funded by China Postdoctoral Science Foundation(No.2020M681575).

AIMS Mathematics Volume 7, Issue 6, 10778–10789.



10788

Conflict of interest

The author declares no conflict of interest in this paper.

References

1. T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard
products, Linear Algebra Appl., 26 (1979), 203–241. https://doi.org/10.1016/0024-3795(79)90179-
4

2. T. Ando, F. Hiai, Operator log-convex functions and operator means, Math. Ann., 350 (2011),
611–630. https://doi.org/10.1007/s00208-010-0577-4

3. Y. Bedrani, F. Kittaneh, M. Sababheh, From positive to accretive matrices, Positivity, 25 (2021),
1601–1629. https://doi.org/10.1007/s11117-021-00831-8

4. Y. Bedrani, F. Kittaneh, M. Sababheh, Numerical radii of accretive matrices, Linear Multilinear
A., 69 (2021), 957–970. https://doi.org/10.1080/03081087.2020.1813679

5. R. Bhatia, Positive definite matrices, Princeton: Princeton University Press, 2007.
https://doi.org/10.1515/9781400827787

6. R. Bhatia, Matrix analysis, New York: Springer-Verlag, 1997. https://doi.org/10.1007/978-1-4612-
0653-87

7. R. Bhatia, F. Kittaneh, Notes on matrix arithmetic-geometric mean inequalities, Linear Algebra
Appl., 308 (2000), 203–211. https://doi.org/10.1016/S0024-3795(00)00048-3

8. P. Chansangiam, Adjointations of operator inequalities and characterizations of
operator monotonicity via operator means, Commun. Math. Appl., 7 (2016), 93–103.
https://doi.org/10.26713/cma.v7i2.372

9. S. Drury, Principal powers of matrices with positive definite real part, Linear Multilinear A., 63
(2015), 296–301. https://doi.org/10.1080/03081087.2013.865732

10. S. Drury, M. Lin, Singular value inequalities for matrices with numerical ranges in a sector, Oper.
Matrices, 8 (2014), 1143–1148. https://dx.doi.org/10.7153/oam-08-64

11. A. Ghazanfari, S. Malekinejad, Heron means and Pólya inequality for sector matrices, Bull. Math.
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