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Abstract: In this research article, we develop a powerful algorithm for numerical solutions to
variable-order partial differential equations (PDEs). For the said method, we utilize properties of
shifted Legendre polynomials to establish some operational matrices of variable-order differentiation
and integration. With the help of the aforementioned operational matrices, we reduce the considered
problem to a matrix type equation (equations). The resultant matrix equation is then solved by using
computational software like Matlab to get the required numerical solution. Here it should be kept
in mind that the proposed algorithm omits discretization and collocation which save much of time
and memory. Further the numerical scheme based on operational matrices is one of the important
procedure of spectral methods. The mentioned scheme is increasingly used for numerical analysis
of various problems of differential as well as integral equations in previous many years. Pertinent
examples are given to demonstrate the validity and efficiency of the method. Also some error analysis
and comparison with traditional Haar wavelet collocations (HWCs) method is also provided to check
the accuracy of the proposed scheme.
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1. Introduction

Fractional calculus has got great popularity among the researchers of different areas of science and
engineering. It has been reported that dynamical systems typically undergo two stages of development,
one is from integer-order dynamical systems to fractional-order systems and techniques in the domains
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of solid mechanics [1], physics [2], finance [3], population growth [4], physiology [5], electro-
mechanical [6], statistical mechanics [7], systems of fractional differential equations(FDEs) of different
kinds appear frequently. Many engineering, physical and biological problems can be modeled using
the applications of fractional calculus for more better results than classical calculus. The results of
FDEs and integral equations are more accurate and precise as compared to conventional differential
equations, see examples [8–12]. On the basis of uniqueness and existence, plenty of research articles
have been published (we refer [13–17]).

Here we state that the area where fractional derivative of constant real or complex order has been
explored very well. Further huge amount of research work in the said area have been published. As in
fractional calculus, the order of differentiation and integration is arbitrary or it can also be a function.
Hence the generalization of Reimann-Liouville fractional order to variable-order was founded by Ross
and Samko in 1993. Thus Ross and Samko gave the spearheading and initiative work on variable-
order operator of differentiation and integration (see [18]). A while later, several contributions have
been reported including applications of variable-order operators in mathematical models of various
phenomenons (we refer [19–21]). Consequent studies explored that variable-order fractional calculus
can be exceptionally valuable in areas like viscous flows, mechanics and modeling many phenomenons.
In this regards various articles have been written to investigate the aforesaid area from different aspects
including existence theory, numerical and analytical results (see [22–25]). Due to these facts said
derivatives have the ability to describe real problems in more comprehensive ways. To the best of
our knowledge the numerical results based on operational matrices for variable order FDEs have very
rarely investigated.

The theory of numerical approximation for solving differential equations of variable order is getting
to be increasingly imperative. Since spectral methods based on polynomial basis have been considered
in previous time significantly for the computation of numerical results of various problems. The
aforesaid methods are stable and powerful as compared to other numerical methods like finite element
and residual power series methods, radial base function methods, etc. Also the mentioned methods
applied to any linear problems are stable and having faster convergence rate (see some detail in [26]).
Here we remark that spectral method based on polynomials basis including Legendre, Jacobi and
Bernstein polynomials , etc have been reported stable apply to any linear problems (see detail in [27]).
Further the said methods have been considered very well due to the following points of interest like

• simple to utilize and having clear and evident form;
• offer a suitable framework to approximate the solution of a problem;
• avoiding complex calculations due to simpler weight functions;
• spectral methods use the idea of global representations to find greater order approximations;
• can be easily applied to any differential equations of variable and constant order.
• as compared to finite difference methods, spectral methods are global techniques.

Here it is interesting to say that there is significant difference between difference and spectral
methods. The spectral methods utilize basis functions which are nonzero over the entire domain,
while difference methods use basis functions that are nonzero only on very small sub domains. So far
we know the aforesaid methods have been applied for PDEs with constant real or complex order. But
never use in computation of numerical solutions of variable-order PDEs.

Motivated and inspired from the mentioned work above, the objective of this manuscript is devoted
to form a scheme for the computation of numerical solutions to a class of variable-order PDEs. To
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achieve this goal, we utilize operational matrices of integration and differentiation based on shifted
Legendre polynomials. We extend operational matrices of differentiation and integration using shifted
Legendre polynomials from simple real or complex order to any variable -order. Hence an algorithm
is established for a class of multi-terms variable- order PDEs to compute numerical solutions. These
operational matrices are based on shifted Legendre polynomials of two variables. Based on these
matrices, we reduce the proposed variable order PDE to some algebraic equation. Keeping in mind,
that the proposed method omits discretization and collocation which save much more time and memory.
We investigate the class of linear multi terms variable order PDE studied earlier in [28] under variable
order derivative as

c1
∂α(t)U(t, x)
∂tα(t) + c2

∂α(t)U(t, x)

∂t
α(t)

2 ∂x
α(t)

2

+ c3
∂α(t)U(t, x)
∂xα(t) + c4

∂β(t)U(t, x)
∂tβ(t) + c5

∂β(t)U(t, x)
∂xβ(t)

+ c6U(t, x) = g(t, x),
(1.1)

with initial conditions
U(0, x) = θ(x), Ut(0, x) = φ(x), (1.2)

where c1, c2, c3, c4, c5 and c6 are constants

U(t, x), g(t, x) ∈ C([0, 1] × [0, 1]) and α(t) ∈ (1, 2], β(t) ∈ (0, 1].

Also
α, β ∈ C[0, 1]

If we select α(t) = 2 and β(t) = 1 in (1.1), it becomes integer order PDEs. Further, the problem (1.1)
represents various classes of PDEs, by selecting difference values for coefficient and taking α(t) = 2
and β(t) = 1 as:

• If (c2)2 − 4(c1)(c2) > 0, then problem (1.1) becomes a class of hyperbolic PDEs.
• If (c2)2 − 4(c1)(c2) = 0, then problem (1.1) becomes a class of parabolic PDEs.
• If (c2)2 − 4(c1)(c2) ≤ 0, then the problem (1.1) becomes a class of elliptic PDEs.
• If c1 = 1, c2 = 0, c3 = −c2, c4 = c5 = c6 = 0, g(t, x) = x, the problem (1.1) becomes the famous

wave PDE with source term in space variable been studied in [35] by using HWCs method.

In same way fixing the coefficients and orders, the famous Poisson PDE and Laplace PDE become
special cases of the problem (1.1). The mentioned PDEs have wide range applications in the field of
mechanics and electro-magnetics, solitons and turbulent flow theory. We utilize our adopted procedure
to present the numerical results graphically. Also comparison with HWCs method is given. Further,
absolute errors are recorded accordingly. For some recent work in numerical analysis of various
problems, we refer [31, 33] and the references therein.

This article is organized as: In Section 2, basics results are recalled from literature of fractional
calculus. Section 3 is devoted to the development of operational matrices for variable order integration
and differentiation. Section 4 is devoted to the establishment of the proposed method for variable-order
PDEs and also supporting examples along with the graphs are provided. Last section is devoted to brief
conclusion.
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2. Basic results

In this section, we recall some basic results which can be found in [18, 29, 30].

Definition 2.1. Let α > 0 be continues and bounded function, then the variable- order Riemann–
Liouville integral of a function h ∈ L[0, 1] is defined by

0Iα(t)
t h(t) =

1
Γ(α(t))

∫ t

0
(t − ς)α(ς)−1h(ς)dς, t > 0,

provided that integral exists on right side.

Definition 2.2. The Caputo derivative of a function h ∈ C[0, 1] with variable- order n − 1 < α(t) ≤ n
can be defined as

CDα(t)h(t) =
1

(Γn − α(t))

∫ t

0
(t − ς)n−α(ς)−1h(n)(ς)dς. (2.1)

From (2.1), the following results hold

C
0 Dα(t)

t tm =

0, m < α(t),
Γ(m+1)

Γ(m+1−α(t)) t
m−α(t), otherwise,

(2.2)

Definition 2.3. [32] The Legendre polynomials on the interval [−1, 1] are recalled as below

Łr+1(x) =
2r + 1
r + 1

xŁr x −
r

r + 1
Łr−1(x), (2.3)

where Ł0(x) = 1 and Łx(x) = x.

By the use of transformation x = 2t+1
L − 1, we obtain the recursive relation for shifted Legendre

polynomials denoted by ŁL,r(t) on t ∈ [0, L] as

ŁL,r+1(t) =
2r + 1
r + 1

(2t
L
− 1

)
ŁL,r(t) −

r
r + 1

ŁL,r+1(t), r = 1, 2, 3, . . . . (2.4)

Further the shifted Legendre polynomial of degree n in [0, 1] is expressed as

Łn(t) =

n∑
r=0

(−1)n+r
[

Γ(n + r + 1)
Γ(n − r + 1)Γ2(r + 1)

]
tr, where r = 0, 1, 2, ..., n.

Further, the orthogonality condition for shifted Legendre polynomials over [0, 1] is given by

∫ 1

0
ŁL,q(t)ŁL,r(t)ds =


1

2r + 1
, r = q,

0, otherwise.
(2.5)

Further in two variables, the said polynomials are expressed as

Łn(x, t) = Łr(x)Łq(t), n = M + 1, r, q = 0, 1, 2, ..., n.
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The orthogonality is computed as∫ 1

0

∫ 1

0
Łr(x)Łq(t)Łr(x)Łq(t)dxdt =

{
1

(2r + 1)(2q + 1)
, r = q, 0, otherwise.

Let B = C([0, 1]× [0, 1]) be the Banach space of square integrable functions. Then any function U ∈ B
can be approximated in terms of two variables shifted Legendre polynomials as

U(x, t) ≈
n∑

r=0

n∑
q=0

Cr,qŁr(x)Łq(t), (2.6)

where

Cr,q = (2r + 1)(2q + 1)
∫ 1

0

∫ 1

0
U(x, t)Łr(x)Łq(t)dxdt.

On using Cr,q = Cn, then in analytical form of the said polynomial (2.6) can be written in matrix form
as

ΥL,M(t) ≈
M2∑
n=1

CnŁr(x, t)

= XMφM2(x, t),

where XM is the coefficient vector of dimension 1 × M2 and φM2(x, t) function vector of dimension
M2 × 1.

2.1. Convergence and error bounds

Here we can prove the convergence of the proposed method in same line as done in [36].

Theorem 2.4. Suppose that U(t, x) and Un(t, x) are the exact and the approximated solution
respectively computed by the proposed algorithm, then

‖Un(t, x) − U(x, t)‖ ≤
1
4

(1
n

)n+1[
Ω1 + Ω2 +

Ω3

4

(1
n

)n+1]
, (2.7)

where Ω1,Ω2,Ω3 are terminated constants given by

Ω1 = max
(x,t)∈X

∣∣∣∣∣∂n+1U(x, t)
∂xn+1

∣∣∣∣∣,
Ω2 = max

(x,t)∈X

∣∣∣∣∣∂n+1U(x, t)
∂tn+1

∣∣∣∣∣,
Ω3 = max

(x,t)∈X

∣∣∣∣∣∂2n+2U(x, t)
∂xn+1∂tn+1

∣∣∣∣∣. (2.8)

Proof. Let Un(x, t) is the approximate solution computed in terms of interpolated polynomial for U(x, t)
at point (xi, ti) by means of aforesaid method such that xi = i

n and ti = i
n . Then using (2.8) and after

computation, briefly we can write the error bounds as

‖Un(x, t) − U(x, t)‖ ≤
1
4

(1
n

)n+1[
Ω1 + Ω2 +

Ω3

4

(1
n

)n+1]
.

AIMS Mathematics Volume 7, Issue 6, 10422–10438.



10427

Therefore

‖Un(x, t) − U(x, t)‖ ≤
1
4

(1
n

)n+1[
Ω1 + Ω2 +

Ω3

4

(1
n

)n+1]
. (2.9)

Now from (2.9), the error bound for the maximum absolute value

1
4

(1
n

)n+1[
Ω1 + Ω2 +

Ω3

4

(1
n

)n+1]
.

Since the space B bounds and the absolute error bound coincides, Therefore when n → ∞, the right
side of (2.9) goes to zero. Hence one has

‖Un(x, t) − U(x, t)‖ → 0, for all (x, t) ∈ B as n→ ∞.

This show the convergence of the procedure. �

3. Operational matrices

This section is devoted to the construction of operational matrices of variable- order differentiation
and integration based on shifted Legendre polynomials. For the required purpose we follow the same
rules as followed in [34].

Theorem 3.1. If φM2(x, t) be the function vector, then variable- order integration with respect to t of
φM2(x, t) yields

0Iα(t)
t [φM2(x, t)] ≈ P(α(t),x)

M2×M2φM2(x, t), (3.1)

where

Pα(t),x
M2×M2 =



ζ1,1,z ζ1,2,z · · · ζ1,r,z · · · ζ1,M2,z

ζ2,1,z ζ2,2,z · · · ζ2,r,z · · · ζ2,M2,z
...

...
...

...
...

...

ζv,1,z ζv,2,z · · · ζv,r,z · · · ζv,M2,z
...

...
...

...
...

...

ζM2,1,z ζM2,2,z · · · ζM2,r,z · · · ζM2,M2,z


(3.2)

where r = Mi + j + 1, v = Ma + b + 1, ζv,r,z = σi, j,b,z for i, j, a, b = 0, 1, 2, · · · ,m

σi, j,b,z =

a∑
n=0

∇a,z,α(t)∇i, j,b.

∇i, j,b = ς j,b

i∑
p=0

(−1)i−p(2i + 1)Γ(n + p + 1)
Γ(p + 1)Γ(p + 1)Γ(n + α(t) + p + 2)

(3.3)

and

∇a,z,α(t) =
(−1)a−zΓ(a + z + 1)

Γ(a − z + 1)Γ(z + 1)Γ(1 + z + α(t))
. (3.4)
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Theorem 3.2. The variable-order differentiation of φM2(x, t) with respect to t is given as

∂α(t)

∂tα(t) [φM2(x, t)] ≈ Rα(t),t
M2×M2φM2(x, t), (3.5)

where Rα(t),t
M2×M2 is the operational matrix of differentiation and is given as

Rα(t),t
M2×M2 =



Φ1,1,z Φ1,2,z · · · Φ1,r,z · · · Φ1,M2,z

Φ2,1,z Φ2,2,z · · · Φ2,r,z · · · Φ2,M2,z
...

...
...

...
...

...

Φv,1,z Φv,2,z · · · Φv,r,z · · · Φv,M2,z
...

...
...

...
...

...

ΦM2,1,z ΦM2,2,z · · · ΦM2,r,z · · · ΦM2,M2,z


(3.6)

r = Mi + j + 1 , v = Ma + b + 1 ,Φv,r,z = Πi, j,a,b,z, for i, j, b, z = 0, 1, 2, · · · , n

Πi, j,a,b,z =

a∑
z=0

Λa,z,α(t)Λi, j,b, (3.7)

Λi, j,b = ς j,b

i∑
p=0

(−1)i−1(2i + 1)Γ(i + 1)Γ(z + p + 1)
Γ(p + 1)Γ(p + 1)Γ(z − α(t) + p + 2)

(3.8)

and

Λa,z,α(t) =
(−1)a−zΓ(a + z + 1)

Γ(a − z + 1)Γ(z + 1)Γ(1 + z − α(t))
. (3.9)

Theorem 3.3. The fractional order derivative of φM2(x, t) w.r.t x and t is given by

∂α(t)

∂t
α(t)

2 ∂x
α(t)

2

φM2(x, t) ≈ R(α(t),x,t)
M2×M2 φM2(x, t) (3.10)

and

Rα(t),x,t
M2×M2 =



Ω1,1,z Ω1,2,z · · · Ω1,r,z · · · Ω1,M2,z

Ω2,1,z Ω2,2,z · · · Ω2,r,z · · · Ω2,M2,z
...

...
...

...
...

...

Ωv,1,z Ωv,2,z · · · Ωv,r,z · · · Ωv,M2,z
...

...
...

...
...

...

ΩM2,1,z ΩM2,2,z · · · ΩM2,r,z · · · ΩM2,M2,z


, (3.11)

where r = Mi + j + 1 , v = Ma + b + 1, Ωv,r,z = ∅i, j,a,b, for , a, b, i, j = 0, 1, 2, · · · , k

∅i, j,a,b =

a∑
z=0

$a,z,α(t)$i, j,b (3.12)

$i, j,b = ς j,b

i∑
p=0

(−1)i−l(2i + 1)Γ(i + p + 1)Γ(z − α(t) + p + 1)
Γ(p + 1)Γ(p + 1)Γ(i − p + 1)Γ(z − α(t) + p + 2)

Lα(t) (3.13)
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and
$a,z,α(t) =

(−1)a−zΓ(a + z + 1)
Γ(a − z + 1)Γ(z + 1)Γ(1 + z − α(t))Lz . (3.14)

Remark 1. Operational matrices based on shifted Legendre polynomials play important roles in
numerical analysis.

4. General algorithm

On the bases of operational matrices developed previously, our considered problem (1.1) is reduced
into simple Sylvester type equation. Then the algebraic equation is solved for the unknown coefficient
matrix to compute the required numerical result for U(x, t). Consider the approximation as

∂α(t)U(t, x)
∂tα(t) = HT

M2φM2(t, x). (4.1)

By using 3.1), one has
U(t, x) − l1 − l2t = HT

M2 0Iα(t) [φM2(t, x)
]
. (4.2)

Now to find the values of l1 and l2, we use initial conditions U(0, x) = θ(x) and Ut(0, x) = φ(x) in (4.2).
Hence one has l1 = θ(x) and l2 = φ(x). By inserting these values in (1.1), one has

U(t, x) = HT
M2 P(α(t),t)

M2×M2φM2(t, x) + θ(x) + tφ(x).

We can write as
U(t, x) = HT

M2 P(α(t),t)
M2×M2φM2(t, x) + GM2φM2(t, x),

where
θ(x) + tφ(x) = GM2φM2(t, x)

and
U(t, x) =

[
HT

M2 Pα(t),t
M2×M2 + GM2

]
φM2(t, x). (4.3)

Now, from (4.3), we calculate the approximation of remaining terms of (1.1) as

∂α(t)U(t, x)
∂xα(t) =

[
HT

M2 Pα(t),t
M2×M2 + GM2

]
Rα(t),x

M2×M2φM2(t, x)

∂β(t)U(t, x)
∂tβ(t) =

[
HT

M2 Pα(t),x
M2×M2 + GM2

]
Rβ(t),t

M2×M2φM2(t, x)

∂β(t)U(t, x)
∂xβ(t) =

[
HT

M2 Pβ(t),x
M2×M2 + GM2

]
Rβ(t),x

M2×M2φM2(t, x) (4.4)

∂α(t)U(t, x)

∂t
α(t)

2 ∂x
α(t)

2

=
[
HT

M2 Pα(t),t
M2×M2 + GM2

]
Rα(t),t,x

M2×M2φM2(t, x)

g(t, x) = QM2φM2(t, x). (4.5)

So our considered class of variable -order PDEs (1.1) by using (4.3) and (4.4) reduces to the following
form

c1HT
M2φ

2
M(t, x) + c2

[
HT

M2 Pα(t),t
M2×M2 + G2

M

]
R(α(t),t,x)

M2×M2 φ
2
M(t, x)

+ c3

[
HT

M2 Pα(t),t
M2×M2 + G2

M

]
R(α(t),x)

M2×M2φ
2
M(t, x) + c4

[
HT

M2 Pα(t),t
M2×M2 + G2

M

]
R(β(t),t)

M2×M2φ
2
M(t, x)

+ c5

[
HT

M2 Pα(t),t
M2×M2 + G2

M

]
R(β(t),x)

M2×M2φ
2
M(t, x) + c6

[
HT

M2 Pα(t),t
M2×M2 + G2

M

]
φ2

M(t, x) = QM2φ2
M(t, x).

(4.6)
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By further simplification, (4.6) yields

c1HT
M2 + HM2 P(α(t),t)

M2×M2[c2R(α(t),t,x)
M2×M2 + c3Rα(t),x

M2×M2 + c4R(β(t),t)
M2×M2 + c5R(β(t),x)

M2×M2

+ c6IM2×M2] + GM2×M2[c2R(α(t),t,x)
M2×M2 + c3R(α(t),x)

M2×M2 + c4R(β(t),t)
M2×M2 + c5R(β(t),x)

M2×M2

+ c6R(α(t),t,x)
M2×M2 ] − QM2 = OM2 .

(4.7)

Further simplification of (4.7) yields

A = P(α(t),t)
M2×M2

[
c2Rα(t),t,x

M2×M2 + c3Rα(t),x
M2×M2 + c4Rβ(t),t

M2×M2 + c5Rβ(t),x
M2×M2 + c6IM2×M2

]
. (4.8)

Using B = GM2 A − QM2 and (4.8) in (4.7), one has

c1HT
M2 + HM2

T A + B = 0. (4.9)

Hence (4.9) is of the form X + XA + B = 0. Which can be solved using Matlab by Gauss elimination
method to get X for the required numerical solution.

5. Numerical examples

The following examples are provided to demonstrate the method.

Example 1.
∂α(t)U(t, x)
∂tα(t) −

9∂α(t)U(t, x)
∂xα(t) −

4∂β(t)U(t, x)
∂xβ(t) − 9U(t, x) = −12 exp(t) sin(x)

− 13 exp(t) sin(t), 1 < α(t) ≤ 2, 0 < β(t) ≤ 1,
U(0, x) = sin(x), Ut(0, x) = sin(x)

(5.1)

At α(t) = 2 , β(t) = 1, the exact solution is given by

U(t, x) = exp(t) sin(x).

Now we are approximating the solution through the suggested method and also represented graphically
in Figure 1 respectively. Now in Table 1, we give absolute errors at α(t) = 1 + exp(−t), β = 1

Example 2. 

∂α(t)U(t, x)
∂tα(t) −

2∂α(t)U(t, x)

∂t
α(t)

2 ∂x
α(t)

2

+
∂α(t)U(t, x)
∂xα(t) +

4∂β(t)U(t, x)
∂tβ(t) +

4∂β(t)U(t, x)
∂xβ(t)

− 9U(t, x) = g(t, x), 1 < α(t) ≤ 2, 1 < β(t) ≤ 2,
U(0, x) = sin(x), Ut(0, x) = cos(x).

(5.2)

For α(t) = 2 and β(t) = 1, the integer order solution is given by U(t, x) = sin(x + t) and g(t, x) =

8 cos(x + t)− 9 sin(x + t). Now we approximate the solution through the suggested method and presents
graphically in Figure 4 respectively. Now in Table 2, we give absolute errors at various fractional
order.

AIMS Mathematics Volume 7, Issue 6, 10422–10438.



10431

0

0.5

1

0

0.5

1
0

2

4

6

8

10

12

tx

S
ol

ut
io

n

0

0.5

1

0

0.5

1
0

0.005

0.01

0.015

0.02

0.025

t
x

A
bs

ol
ut

e 
er

ro
r

Figure 1. Graphical presentation of approximate solutions and absolute error of Example 1
at α(t) = 1 + exp(−t), β(t) = 1 and Scale level 6.
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Figure 2. Graphical presentation of approximate solutions and absolute error of Example 1
at α(t) = 2, β(t) = 1 − exp(−t) and Scale level 6.

Table 1. Maximum absolute error at various values of (x, t) and scale level for Example 1.

(x, t) Scale level Absolute error
(0.1, 0.1) 6 2 × 10−2

(0.1, 0.2) 8 2.5 × 10−2

(0.2, 0.3) 10 2 × 10−3

(0.3, 0.4) 12 4 × 10−4

(0.5, 0.5) 14 5 × 10−5

(0.6, 0.7) 16 6 × 10−6

(0.9, 0.9) 14 4 × 10−6

(1.0, 1.0) 16 7 × 10−7

AIMS Mathematics Volume 7, Issue 6, 10422–10438.
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Figure 3. Graphical presentation of approximate solutions and absolute error of Example 2
at various values of α = 2 − sin(t), β(t) = 1 − exp(−t), and scale level 6.
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Figure 4. Graphical presentation of approximate solutions and absolute error of Example 2
at various values of α = t2+1.5

2 , with 0 < t <≤ 1, β(t) = 1 − t2
2 , and scale level 6.

Table 2. Maximum absolute error at various values of (x, t) and scale level for Example 2.

(x, t) Scale level Absolute error
(0.1, 0.1) 6 1.0 × 10−2

(0.1, 0.2) 8 2.0 × 10−2

(0.2, 0.3) 10 3.0 × 10−3

(0.3, 0.4) 12 4.0 × 10−4

(0.5, 0.5) 14 3.9 × 10−4

(0.6, 0.7) 16 4.0 × 10−5

(0.9, 0.9) 14 5.0 × 10−6

(1.0, 1.0) 16 7.0 × 10−7
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Table 3. Maximum absolute error at various values of (x, t) and scale level for Example 2, at
α = 2, β = 1.

(x, t) Scale level Absolute error
(0.1, 0.1) 6 2.9 × 10−3

(0.1, 0.2) 8 2.5 × 10−3

(0.2, 0.3) 10 3.8 × 10−4

(0.3, 0.4) 12 3.4 × 10−4

(0.5, 0.5) 14 4.8 × 10−5

(0.6, 0.7) 16 4.5 × 10−5

(0.9, 0.9) 14 5.6 × 10−7

(1.0, 1.0) 16 1.9 × 10−10

Example 3. Let choose the values of constants in (1.1) such that c1 = 1, c2 = 0, c3 = −c2, c4 =

c5 = c6 = 0 and g(t, x) = x, we get the following wave equation with source term or in-homogeneous
differential equation [35]

∂α(t)U(x, t)
∂αtt

− c2∂
βtU(x, t)
∂βx

= x, 0 < x < 1, t > 0, (5.3)

with
U(x, 0) = 0, Ut(x, 0) = 0, 0 < x < 1 (5.4)

and
U(0, t) = 0, U(1, t) = 0, t > 0. (5.5)

For α = β = 2 (3) gives exact solution of the following form

U(x, t) =
2
π3c2

∑
k=1

(−1)k−1

k3 [1 − cos(kπct)] sin(kπx). (5.6)

Now in Table 3, we give absolute errors at various fractional order. Further in Table 4, we compared
the maximum absolute error at various fractional order of our solution and compared with HWCs
method [35]. Let the maximum absolute error be ‖U − Ū‖∞, then Also we compared the exact solution
with the given approximate solution in Figures 5 and (6) respectively. We have compared our results
with the results of HWCs method for the Example 3 by taking scale level 10 and for HWCs method
taking collocation points 32. We see that the adopted spectral method is much more better than the
HWCs method. Here if we increase the scale level further, the accuracy can be further enhanced.

6. Conclusion and discussion

We have presented an algorithm for the numerical solution of variable- order PDEs by using the
concept of operational matrices. The concerned matrices have been created by using shifted Legendre
polynomials under variable -order Caputo derivative and Riemann-Liouville integration. The aforesaid
matrices have the ability to reduce the proposed problem to some algebraic equation. With the help of
Matlab, we have evaluated the mentioned equation to compute numerical results. Three test problems

AIMS Mathematics Volume 7, Issue 6, 10422–10438.
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Table 4. Maximum absolute error at various values of (x, t) and scale level M = 10 for
Example 3 at α = 2, β = 1.

(x, t) Value of ‖U − Ū‖∞ at given method for M = 10 ‖U − Ū‖∞ in [35] M = 32
(0.1, 0.1) 5.56 × 10−6 9.9 × 10−6

(0.1, 0.2) 4.78 × 10−6 2.9 × 10−5

(0.2, 0.3) 2.9 × 10−7 4.9 × 10−5

(0.3, 0.4) 3.9 × 10−8 6.7 × 10−5

(0.5, 0.5) 4.7 × 10−8 1.9 × 10−4

(0.6, 0.7) 6.6 × 10−9 2.0 × 10−4

(0.9, 0.9) 5.3 × 10−10 2.96 × 10−4

(1.0, 1.0) 8.6 × 10−12 1.9 × 10−5
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Figure 5. Graphical presentation of approximate solutions and absolute error of Example 3
at various values of α = 1 + exp(−πt), β(t) = 1, and scale level 6.
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Figure 6. Graphical presentation of approximate solutions and absolute error of Example 3
at various values of α = 2 − cos(t), β(t) = 1, and scale level 6.

have been investigated by using different kinds of variable orders. We see that the proposed method
provides more better results. The concerned differential and integral operators have greatest degree
of freedom as compared to classical fractional order. We have also used different spaces points and
computed the maximum absolute error for various scale levels. By increasing the scale level, the
efficiency of the method can be enhanced and the accuracy be improved further. Further, we have
compared our results in Example 3 with the results of HWCs. We see that spectral method adopted in
this work provides much more better results than the aforementioned numerical method. Further the
procedure can be extended to other nonlinear problems also. Further variable -order PDEs can also be
used as power full tools to investigate various real world problems like diffusion, blood flow, etc. For
the mentioned problems such type numerical methods are more powerful and helpful.
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