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Abstract: The reaction-diffusion process always behaves extremely magically, and any a differential
model cannot reveal all of its mechanism. Here we show the patterns behavior can be described
well by the fractional reaction-diffusion model (FRDM), which has unique properties that the integer
model does not have. Numerical simulation is carried out to elucidate the attractive properties of
the fractional (3+1)-dimensional Gray-Scott model, which is to model a chemical reaction with
oscillation. The Fourier transform for spatial discretization and fourth-order Runge-Kutta method for
time discretization are employed to illustrate the fractal reaction-diffusion process.
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1. Introduction

Reaction-diffusion equations have been widely used to describe various scientific phenomena in
mathematics, physics and chemistry. Patterns are non-uniform macrostructure with some regularity in
time or space, which can describe the pattern formation by a reaction-diffusion model [1–3]. Pattern
exists in nature universally. The stable state will be unstable under certain conditions and spontaneously
produce the spatial stationary pattern, namely Turing pattern. From the thermodynamic view, patterns
can be divided into two types. The first type of pattern exists in thermodynamic equilibrium
conditions, such as crystal structure in inorganic chemistry, organic polymer self-organizing pattern;
the second category of patter is the pattern generated under the condition of leaving the thermodynamic
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equilibrium state, such as the strip cloud in the sky, the wave on the water surface, the pattern
on the body surface of animals, etc. The second type of pattern generate under the condition of
thermodynamic equilibrium, such as the strip cloud in the sky, the wave on the water surface, the
pattern on the body surface of animals, etc. For the first type of spot pattern, people have a systematic
and in-depth understanding. Fractional calculus was recently introduced in many fields, including
applied mathematics, electrochemistry, image processing, viscoelasticity, control theory, biology, and
neurodynamics. In the last three decades, the theory of fractional calculus [4–9] has successfully been
applied to the study of anomalous diffusion motion, because fractional differential equations [10–14]
can better model discontinous problems than the traditional differential ones.

The fractional reaction diffusion system can describe anomalous diffusion motion. In this paper, we
solve the fractional-in-space 3D coupled Gray-Scott models is as

∂u
∂t

= −Ku(−∆
α
2 )u − uv2 + F(1 − u),

∂v
∂t

= −Kv(−∆
β
2 )v + uv2 − (F + k)v,

(1.1)

with the initial conditions

u(x, y, z, 0) = u0(x, y, z), v(x, y, z, 0) = v0(x, y, z). (1.2)

where (x, y, z, t) ∈ Ω × [0,T ] , Ω = (a, b) × (a, b) × (a, b) and 1 < α, β ≤ 2. F and k are
arbitrary constants. Ku, Kv are the diffusion coefficients. Fractional Laplacian operator defined by
Riesz fractional derivative has the following form

∆
α
2 u = Dα

x u + Dα
y u + Dα

z u. (1.3)

Definition 1.1. The Riesz potential and the conjugate Riesz potential [15, 16] of the order α ∈ (0, 1)
are the following integrals:

Rα
x u(x) =

1
2Γ(α) cos πα

2

∫ ∞

−∞

1
|x − τ|1−α

u(τ)dτ, x ∈ R. (1.4)

Hα
x u(x) =

1
2Γ(α) sin πα

2

∫ ∞

−∞

sgn(x − τ)
|x − τ|1−α

u(τ)dτ, x ∈ R. (1.5)

If α > 0, β > 0 and α + β < 1, then Riesz potential and the conjugate Riesz potential have the
following proposition.

Rα
x Rβ

xu(x) = Rα+β
x u(x), Hα

x Hβ
xu(x) = Hα+β

x u(x), x ∈ R (1.6)

Definition 1.2. The Riesz fractional derivative [17–19] of order α ∈ (0, 1) is given by

Dαu(x) =
d
dx

H1−α
x u(x) =

1
2Γ(1 − α) cos πα

2

d
dx

∫ ∞

−∞

sgn(x − τ)
|x − τ|α

u(τ)dτ, x ∈ R. (1.7)

The Fourier transforms of Rαg and Riesz fractional derivative for α ∈ (0, 1) are presented as

F [Rα
x u(x)](ω) =

1
|ω|α

û(ω), Fx[Dα
x u(x)](ω) = |ω|αû(ω) (1.8)
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where the Fourier transform and inverse Fourier transform of function u(x) about x definition as:

û(ω) = Fx[u(x)](ω) =

∫ ∞

−∞

u(x)e−iωx dx,

u(x) = F −1
x [û(ω)](x) =

1
2π

∫ ∞

−∞

û(ω)eiωx dω.
(1.9)

A representative bistable system is the coupled Gray-Scott model, and this model is a variant
of the autocatalytic Selkov model of glycolysis and is due to Gray and Scott [20, 21]. In [22],
authors used time finite element method to solve the two dimensional space fractional Gray-Scott
model. In [23, 24], authors used the Fourier spectral method to solve a class of fractional reaction-
diffusion equations. In [25], authors used weighted shifted Grünwald difference operator for spatial
discretization and the Crank-Nicolson scheme for time discretization to solve the space fractional Gray-
Scott model, and so on [26–29].

Numerical methods for solving nonlinear space fractional reaction-diffusion equation have finite
difference predictor-corrector method [30, 31], finite difference method [32], reproducing kernel
method [33–40], matrix approach method [41], spectral method [42–44], and so on [45, 46]. Accurate
and time-saving numerical methods are needed for the study of fractional order dynamical systems and
their related phenomena, such as patterns and chaos.

In this manuscript, we use Fourier spectral method for spatial discretization and the Runge-Kutta
method for time discretization to solve the space fractional 3D coupled Gray-Scott models with the
Riesz fractional derivative. It is found that the results of numerical experiments are consistent with
those of other scholars, which verifies the accuracy of the method. We observe some new numerical
solutions of space fractional 3D coupled Gray-Scott models which are unlike any that have been
previously obtained in numerical or theoretical studies. The present theory can be extened to the
fractal-fractional differential equations.

This paper is organized as follows. In Section 2, we introduce numerical method. Numerical
experiments are provided in Section 3. Section 4 is conclusion.

2. Numerical method

In order to normalize the space interval [a, b] to [0, 2π], we let x → 2π(x−a)
L , y → 2π(y−a)

L , z → 2π(z−a)
L

and L = b − a, xk = k∆x = 2πLk
N , yk = k∆y = 2πLk

N , zk = k∆z = 2πLk
N , N > 0 and N is an integer,

k = 0, 1, · · · · · · ,N − 1.
Using the following discrete Fourier transform (2.1) for u, v in spatial domain.

û(lx, ly, lz, t) = F (u) =
1

N3

N−1∑
i=0

N−1∑
i=0

N−1∑
i=0

u(xi, yi, zi, t)e−ilx xi−ilyyi−ilzzi ,

v̂(lx, ly, lz, t) = F (v) =
1

N3

N−1∑
i=0

N−1∑
i=0

N−1∑
i=0

v(xi, yi, zi, t)e−ilx xi−ilyyi−ilzzi ,

(2.1)
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where −N
2 ≤ lx, ly, lz ≤

N
2 −1. Equation (1.1) can be transformed into the following ordinary differential

equations about t. 
∂û
∂t

= −Ku
(
|lx|

α + |ly|
α + |lz|

α)û + F (−uv2 + F(1 − u)),
∂v̂
∂t

= −Kv
(
|lx|

β + |ly|
β + |lz|

β)v̂ + F (uv2 − (F + k)v),

û(x, y, z, 0) = û0(x, y, z), v̂(x, y, z, 0) = v̂0(x, y, z).

(2.2)

The fourth-order Runge-Kutta method is used to solve the ordinary differential equation (2.2). Then,
we use the following inverse discrete Fourier transform (2.3), and can obtain the numerical solution.

u(xi, yi, zi, t) = F −1(û) =

N
2 −1∑

lx=− N
2

N
2 −1∑

ly=− N
2

N
2 −1∑

lz=− N
2

û(lx, ly, lz, t)eilx xi+ilyyi+ilzzi ,

v(xi, yi, zi, t) = F −1(v̂) =

N
2 −1∑

lx=− N
2

N
2 −1∑

ly=− N
2

N
2 −1∑

lz=− N
2

v̂(lx, ly, lz, t)eilx xi+ilyyi+ilzzi ,

(2.3)

where 0 ≤ i ≤ N − 1. If α = β, Eq (2.2) can be reduced the following form:{
∂W
∂t = R(t,W),

W(Kα, 0) = W0.
(2.4)

where

φ̂ =

(
û
v̂

)
, r(t, φ̂) =

(∂û
∂t
∂v̂
∂t

)
, Kα = −(|lx|

α + |ly|
α + |lz|

α),

W = (φ̂0(Kα, t), φ̂1(Kα, t), · · · , φ̂N−1(Kα, t))T ,

R(t,W) = (r0(t, φ̂0(t)), r1(t, φ̂0(t)), · · · , rN−1(t, φ̂N−1(t)))T ,

W0(Kα) = (φ̂00(Kα), φ̂01(Kα), · · · , φ̂0(N−1)(Kα))T ,

(2.5)

τ is step-size and n = 1, · · · , T
τ
.

Definition 2.1. A class of single-step method for solving ordinary differential equation in the form of:

Wn+1 = Wn + τψ(Wn, tn, τ), (2.6)

where incremental function ψ(Wn, tn, τ) is determined by R(t,U).

Theorem 2.2. If ψ(W, t, τ) satisfies the Lipschitz condition in W, then numerical method which given
by Eq (2.6) is stable.

Proof. We refer the reader to [42–44] for the details of the proof. �

Lemma 2.3. If ‖en+1‖ ≤ (1 + τL1)‖en‖ + C, then

‖en‖ ≤ (1 + τL1)n‖e0‖ +
C(1 + τL1)n

τL
≤

C
τL1

+ eL1T ‖e0‖ − (eL1T − 1). (2.7)

where en = Wn −W(tn) and C is constant.
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Proof. For the details of the proof, one may refer to [42–44]. �

Equation (2.6) is fourth order one-step method and the error estimate is as follows

|en| ≤ eL1T (|e0| + L1τe + cTτ4), (2.8)

where L1 is lipschitz constant and e = max(|e0| , |e1| , · · · , |en−1|). Noting that φ0 = φ(t0), we can obtain
the global truncation error is O(τ4).

3. Simulation results

In this part, we use the present method to numerically solve the 3D coupled Gray-Scott models,
the numerical simulation results are shown in Figures 1–9. All computations of simulation results are
performed by the MatlabR2017b software.

Experiment 1. We experiment (1.1) with the diffusion coefficients in space is given as Ku = 4 × 10−5,
Kv = 1 × 10−5, F = 0.015, k = 0.045, N = 128, τ = 0.01. Initially, the entire system was placed in the
trivial state (u, v) = (1, 0), and a 32× 32× 32 cube point area located symmetrically about the centre of
the cube was perturbed to (u, v) = ( 1

2 ,
1
4 ) and the domain is [−1, 1]3. The numerical simulation results

are shown in Figures 1–6.

(a)t = 5000. (b)t = 10000. (c)t = 15000. (d)t = 20000.

Figure 1. The patterns of u at α = β = 1.8 and different time t for Experiment 1.

(a)t = 5000. (b)t = 10000. (c)t = 15000. (d)t = 20000.

Figure 2. The patterns of u at α = 1.8, β = 1.9 and different time t for Experiment 1.
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(a)t = 5000. (b)t = 10000. (c)t = 15000. (d)t = 20000.

Figure 3. The patterns of u at α = β = 2 and different time t for Experiment 1.

(a)t = 5000. (b)t = 10000. (c)t = 15000. (d)t = 20000.

Figure 4. The patterns of v at α = β = 1.8 and different time t for Experiment 1.

(a)t = 5000. (b)t = 10000. (c)t = 15000. (d)t = 20000.

Figure 5. The patterns of v at α = 1.8, β = 1.9 and different time t for Experiment 1.

(a)t = 5000. (b)t = 10000. (c)t = 15000. (d)t = 20000.

Figure 6. The patterns of v at α = β = 2 and different time t for Experiment 1.

Experiment 2. We experiment (1.1) with the diffusion coefficients in space is given as Ku = 3 × 10−5,
Kv = 1 × 10−5, F = 0.015, k = 0.045, N = 128, τ = 0.01, and on the domain size [−1, 1] × [−1, 1] ×
[−1, 1]. When the initial conditions is the entire system was placed in the trivial state (u, v) = (1, 0),
and a 32× 32× 32 cube point area located symmetrically about the centre of the cube was perturbed to
(u, v) = ( 1

2 ,
1
4 ), the patterns in Figure 7 are obtained at different time t and different fractional derivative

α. We experiment (1.1) with the diffusion coefficients in space is given as Ku = 4×10−5, Kv = 1×10−5,
F = 0.015, k = 0.045, N = 128, τ = 0.01, and on the domain size [−1, 1] × [−1, 1] × [−1, 1]. When
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the initial conditions is the entire system was placed in the trivial state (u, v) = (1, 0), the patterns in
Figures 8 and 9 are obtained at different time t and different fractional derivative α. At different values
of the fractional order α, we observe some the different patterns.

(a)t = 1000. (b)t = 5000. (c)t = 10000. (d)t = 20000.

Figure 7. The patterns of u at α = β = 1.8 and different time t for Experiment 2.

(a)t = 4000. (b)t = 10000. (c)t = 14000. (d)t = 20000.

Figure 8. The patterns of u at α = β = 2 and different time t for Experiment 2.

(a)t = 4000. (b)t = 10000. (c)t = 14000. (d)t = 20000.

Figure 9. The patterns of v at α = β = 2 and different time t for Experiment 2.

4. Conclusions

In this paper, Fourier spectral method is used to solve the space fractional (3+1)-dimensional
coupled Gray-Scott models. It is found that the results of numerical experiments are consistent with
those of other scholars, which verifies the accuracy of the method. We show some patterns of space
fractional 3D coupled Gray-Scott models are different from any previously obtained in numerical or
theoretical studies. the influence of fractional order and long time diffusion behavior and of the space
fractional (3+1)-dimensional coupled Gray-Scott models is observed. Numerical results show that
this method has strong competitiveness, reliability and solving ability for solving 3D FRDM. Fourier
spectral method can also be used to study other (n+1)-dimensional space variable FRDM.

AIMS Mathematics Volume 7, Issue 6, 10234–10244.
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