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Abstract: This paper investigates robust equilibrium investment-reinsurance strategy for a mean
variance insurer. With a larger market share, a reinsurer has a greater say in negotiating reinsurance
contracts and makes the decision to propose the preferred level of reinsurance and charges extra fees
as a penalty for losses that deviate from the preferred level of reinsurance. Once the insurer receives a
decision from the reinsurer, the insurer weighs its risk-bearing capacity against the cost of reinsurance
in order to find the optimal investment-reinsurance strategy under the mean-variance criterion. The
insurer who is ambiguity averse to jump risk and diffusion risk obtains a robust optimal investment-
reinsurance strategy by dynamic programming principle. Moreover, the reinsurance strategy is no
longer excess-of-loss reinsurance or proportional reinsurance. In particular, the insurer may purchase
proportional reinsurance for different ranges of loss and the proportion depends on the extra charge
rate, which is more consistent with market practice than the standard excess-of-loss reinsurance and
proportional reinsurance. The optimal reinsurance policy depends on the degree of ambiguous aversion
to jump risk and not on the degree of ambiguous aversion to diffusion risk. Finally, several numerical
experiments are presented to illustrate the impacts of key parameters on the value function and the
optimal reinsurance contracts.
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1. Introduction

Reinsurance and investment are the main ways for the insurers to manage risk. In recent
years, optimal reinsurance and investment have become a hot topic in the actuarial field. The
research on optimal reinsurance can date back to [2, 7], etc. Many scholars extend these notable
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works under different objective functions. [10] and [3] obtained optimal investment and reinsurance
strategy that maximizes the expected exponential utility of terminal surplus. [23] derived optimal
investment and proportional reinsurance policy to minimize the ruin probability. [19] investigated the
optimal reinsurance policy that minimizes the discounted probability of exponential parisian ruin. [6]
investigated the optimal portfolio select problem under mean-variance criterion. Furthermore, [16]
researched equilibrium investment strategy under mean-variance criterion with a random horizon. [26]
researched a mean-variance investment-reinsurance problem under the 4/2 stochastic volatility model.
[12] studied the optimal dividend and reinsurance strategy to maximize the expected accumulated
discounted dividends paid up to ruin under thinning dependence structure.

As an important way to increase their own wealth, insurers and reinsurers typically invest their
surpluses in risky assets and risk-free assets. Therefore, the return on risky assets is of key concern.
However, it is a disreputable fact that the return on risky assets is difficult to be estimated precisely.
Thus, investor should take parameter uncertainty into account. Moreover, most of the literature on
optimal reinsurance and investment assumes that the decision-makers knows precisely what the true
probability measure is. Is the probability measure we choose necessarily a true representation of the
real world? In fact, it is not known which probability measure in reality can describe the real world.
For these reasons, it makes sense for investors to consider model ambiguity, or model uncertainty.
To ensure decision validity under model uncertainty, one possible option is to adopt a robust method,
in which alternative models close to the reference model are introduced. Model uncertainty can date
back to [1] that formulates alternative models for the optimal control problem. Distinguished from
[1], [25] allowed for different levels of ambiguity in the probability laws of returns for different assets.
[20] and [21] derived closed-form of the optimal consumption and portfolio strategies for a robust
investor. However, the above mentioned literature only considers the ambiguity of the diffusion risk.
In the complete market, [9] declared that ignoring ambiguity of jump risk leads to large utility losses,
while ignoring ambiguity of diffusion risk is not as severe. [24] derived robust optimal investment
and proportional reinsurance strategies with default risk. [18] investigated the optimal investment and
excess of loss reinsurance contracts under model uncertainty. More literature on ambiguity of the
diffusion and jump risk can see [15,28,29] and references therein. Therefore, in the context of optimal
reinsurance and investment, it is essential to consider the ambiguity of diffusion and jump risk (arising
from claims).

Most of the existing works focus on optimal reinsurance and investment issues only from the
insurer’s perspective. However, the insurer and reinsurer jointly enter into reinsurance contracts in
reality. As [8] noted: “There are two parties to a reinsurance contract, and an arrangement which
is very attractive to one party may be quite unacceptable to the other.” [7] researched the optimal
policies in reciprocal treaties from the perspective of both parties. [11] investigated optimal premium
and reinsurance strategies under the framework of Stackelberg game, in which the reinsurance premium
is determined by the reinsurer and the reinsurance strategy is controlled by the insurer. [13] derived the
optimal premium and reinsurance contracts in a static optimal insurance model, in which the insurer
aims to maximize the expected utility of final surplus and the reinsurer devotes to maximizing the
expected profit. However, in practice, the reinsurance contract is often negotiated by both parties.
The insurer or reinsurer chooses different objective functions based on their own risk preferences.
Since reinsurance accounts for a large share of the insurance market, we assume that the reinsurer
imposes the preferred reinsurance level that is acceptable to itself from its own perspective, while it
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may not be acceptable to the insurer. As mentioned by [14], “A risk-averse re-insurer may impose
additional service charge on firms seeking services beyond the target level, other re-insurer may
demand additional charges for those seeking services with risk level lower than its preferred level
as an aggressive move to gain market shares”. In this situation, the problem of optimal reinsurance and
investment is very interesting and worth exploring.

In this paper, we research a robust optimal reinsurance and investment problem considering the
interests of the insurer and reinsurer. To be specific, the surplus processes of the insurer and reinsurer
are modeled by the Cramér–Lundberg model, which can be invested in a risk-free asset and a risky
asset. Inspired by [14], we assume that the reinsurance strategy is determined in the following two
steps, taking into account the interests of both parties and the market share of the reinsurer. First, the
reinsurer can derive the preferred reinsurance level under mean variance criterion as the benchmark.
Second, the insurer, as the other party to the reinsurance contract, cedes the loss to the reinsurer and
assigns a portion of the premium to the reinsurer. If the ceded loss by the insurer exceeds or falls
below the preferred reinsurance level of the reinsurer, the reinsurer will charge additional premiums
as a penalty, which depends on the degree of deviation from the reinsurance strategy of both parties.
Based on the preferred reinsurance level of the reinsurer, the insurer searches for his own optimal
reinsurance strategy with penalty function. The reinsurance countermeasure mechanism in the paper is
very different from the Stackelberg reinsurance game approach used in the [11,27], which assumes that
the reinsurer is the leader and the insurer is the follower, and the insurer first obtains the optimal policy
for any given reinsurance price (safety loading), and then the reinsurer controls the safety loading to
obtain the optimal value.

Different from [14], we assume the insurer is ambiguity averse to diffusion and jump risk. Moreover,
reinsurance is limited to proportional reinsurance or excess of loss reinsurance, which has been studied
in a lot of literature such as [18, 29, 30]. Unlike the above literature, our research adopts a wide
reinsurance form, which requires the ceded loss and retained loss to be an increasing function of loss
and includes proportional reinsurance and excess of loss reinsurance. Based on the above setting,
we formulate a robust optimal reinsurance and investment model and apply the stochastic dynamic
programming principle to derive the extended Hamilton–Jacobi-Bellman (HJB) equation, and deduce
the explicit optimal strategies for an ambiguity averse insurer. Some numerical analyses are presented
to show how the financial parameters affect the reinsurance-investment strategy and the value function.

Comparing with the existing literature, our paper proposes three main innovations. First, we
consider the deviation between the preferred reinsurance level of the reinsurer and level of the ceded
loss by the insurer. Second, faced with the deviation, the reinsurer charges additional premiums
as a penalty. Third, the reinsurance form satisfies incentive compatibility constraint which includes
proportional and excess of loss reinsurance.

The remainder of this paper is organized as follows. Section 2 formulates the reinsurer’s model and
obtains the preferred reinsurance level under mean variance criterion. Section 3 formulates the robust
investment-reinsurance problem for an ambiguity averse insurer, and derives the explicit optimal policy
using the dynamic programming principle. Section 4 obtains the equilibrium value function of the
reinsurer based on reinsurance strategy ultimately determined by the insurer in Section 3. In Section 5,
we show numerical analyses to illustrate our results. Finally, Section 6 concludes the paper.
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2. Model formulation

Let (Ω,F ,P) be a complete probability space with filtration {Ft}t∈[0,T ] generated by a compound
Poisson process L(t) given in the following and a Brownian motion W(t), where T is a positive finite
constant representing the terminal time.

Assume the surplus of the insurer is denoted by the classical Cramér–Lundberg model:

X(t) = x0 + ct −
N(t)∑
i=1

Zi,

where x0 is the initial surplus; c > 0 is the premium rate; L(t) :=
N(t)∑
i=1

Zi represents the cumulative claims

up to time t; N(t) is a homogeneous Poisson process with intensity λ > 0, which is the claim arrival
process; {Zi, i ≥ 1} are a sequence of positive independent and identically distributed positive random
variables independent of N(t) and represent the size of claim. The probability distribution function
of Zi is denoted by F(z). Meanwhile, Zi has finite mean value E[Zi] =

∫
R+ zdF(z) := µ̃ and second

moment
∫
R+ z2dF(z) := σ̃2. We assume the insurance premium is calculated based on the expected

value principle, that is, c = λ(1 + η)µ̃, where η > 0 is the safe loading of the insurer.
Next, we suppose that the reinsurer can invest surplus in the financial market to manage risk, where

the financial market consists of a risk-free asset and a risky asset. The price process of the risk-free
asset, S 0(t), follows the following ODE:

dS 0(t) = rS 0(t)dt, (2.1)

where r > 0 is the constant risk-free interest rate. Moreover, the price process of the risky asset, S (t),
follows a geometric Brownian motion (GBM):

dS (t) = S (t)[µdt + σdW(t)], (2.2)

in which µ > r is the appreciation rate, σ > 0 denotes the volatility of risky asset and W(t) is an
Ft-adapted standard Brownian motion.

2.1. Wealth process of the reinsurer

To spread risk, we assume the insurer can purchase reinsurance to transfer risk to the reinsurer.
Because reinsurance accounts for a large share of the insurance market, reinsurers impose the preferred
reinsurance level that is acceptable to themselves from their perspective, while it may not be acceptable
to the insurer. Suppose the preferred reinsurance level of the reinsurer is Rt(z) ∈ C for an incoming
claim Zi at time t, where

C := { f : [0,∞]→ [0,∞]| f (0) = 0, 0 ≤ f (y) − f (x) ≤ y − x,∀x ≤ y}

is called incentive compatibility constraint and can eliminate ex post moral hazard. Let π1(t, z) :=
{(πL(t),Rt(z))}t∈[0,T ] denote a strategy of the reinsurer, where πL(t) represents the total amount of money
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invested in the risky asset at time t. To simplify our presentation, we employ Poisson random measure
N(·, ·) to denote the compound Poisson process L(t) under the alternative measure P as follows.

L(t) :=
N(t)∑
i=1

Yi =

∫ t

0

∫ ∞

0
zN(ds, dz).

Ñ(dt, dz) = N(dt, dz) − v(dz)dt is a compensated Poisson random measure, where v(dz)dt = λF(dz)dt
is a compensator of the random measure N(dt, dz). Therefore, the surplus of the reinsurer with
reinsurance and investment, under measure P, is modeled by

dYπ1(t) = (p(t) + rYπ1(t) + (µ − r)πL(t)) dt + σπL(t)dW(t)

−

∫
R+

Rt(z)N(dt, dz), Yπ1(0) = y0,
(2.3)

where p(t) is the reinsurance premium rate and calculated by mean variance premium principle, that is

p(t) =

∫
R+

[
(1 + θ)Rt(z) + ξR2

t (z)
]

v(dz).

To avoid trivialities, we assume that c < λ[(1+θ)µ̃+ξσ̃2]. That is, the reinsurance premium is not cheap.
Otherwise, the insurer can transfer full losses to the reinsurer to achieve arbitrage. In the following, we
formally state the definition of admissible strategy (see [17]).

Definition 2.1 (Admissible strategy). A pair strategy π1(t, z) := {(πL(t),Rt(z))}(t,z)∈[0,T ]×R+ is said to be
admissible if it satisfies the following conditions:

1) Rt(z) ∈ C, ∀(t, z) ∈ [0,T ] × R+;
2) π1(t, z) is {Ft}t≥0 predictable and EP

[∫ T

t

(
(πL(s))2 + (Rs(z))2

)
ds

]
< ∞;

3) The stochastic differential equation (2.3) associated with π1 has a unique strong solution Yπ1(·).

Let Π1 := ΠL×R denote the set of all admissible policies, where ΠL represents the set of all admissible
investment policies of the reinsurer, and R represents the set of all admissible reinsurance policies
determined by the reinsurer.

2.2. The preferred reinsurance level of reinsurer

Compared with insurance companies, reinsurance companies have stronger economic strength,
which makes reinsurance companies occupy a larger share of the insurance market. Therefore, the
reinsurer has more say in the negotiation of the reinsurance contract. The reinsurer gives its own
preferred level of reinsurance based on its own risk appetite. In this paper, we consider the optimal
investment and reinsurance problem of the reinsurer under mean variance criterion. The problem of
the reinsurer is described by

sup
π1∈Π1

J1(t, y, π1) := sup
π1(t,z)∈Π1

{
EPt,y[Y

π1(T )] −
γ1

2
VarPt,y[Yπ1(T)]

}
subject to Yπ1(·) satisfies (2.3),

(2.4)
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where EPt,y[·] = E[·|Yπ1(t) = y], VarPt,y[·] = Var[·|Yπ1(t) = y], γ1 > 0 is the risk aversion coefficient of the
reinsurer.

However, the problem (2.4) is time inconsistent since the variance term of the objective lacks the
iterated expectation property. Therefore, Bellman’s optimality principle fails. In order to handle time
inconsistent problem, we adopt a non-cooperative game theoretic approach as that in [4, 5], in which
we consider one player “t” is at time t, one player “s” is for each time s > t viewed as the future
incarnation of the player “t” and look for subgame perfect Nash equilibrium points. We give the
definitions of equilibrium strategy and equilibrium value function in the following.

Definition 2.2. For an admissible reinsurance and investment strategy of the reinsurer π∗1(·, ·), for ε > 0
and any (t, z) ∈ [0,T ] × R+, we define the strategy

πε1(s, z) =

{
π̃1(z), s ∈ [t, t + ε),
π∗1(s, z), s ∈ [t + ε,T ],

where π̃1(z) ∈ Π1. If

lim
ε→0+

inf
J1(t, y, π∗1) − J1(t, y, πε1)

ε
≥ 0,

for all deterministic function π̃1(z) ∈ Π1, π
∗
1(t, z) is called an equilibrium strategy of the reinsurer. The

equilibrium value function of problem (2.4) is defined by

V1(t, y) = J1(t, y, π∗1).

Before presenting the verification theorem of problem (2.4), we define

C1,1([0,T ] × R+) = {ϕ(t, x)|ϕ(t, x) is continuously differentiable in t and x}.

For (t, y) ∈ [0,T ]×R+, ϕ(t, y) ∈ C1,1([0,T ]×R+), we define an operator LπL,Rt
1 on ϕ(t, y) as follows:

L
πL,Rt
1 ϕ(t, y) =

∂ϕ

∂t
+
∂ϕ

∂y
{ry + p(t) + (µ − r)πL(t)} +

1
2
σ2π2

L(t)
∂2ϕ

∂y2

+

∫
R+

[ϕ(t, y − Rt(z)) − ϕ(t, y)]v(dz),

Theorem 2.1 (Verification theorem of reinsurer’s problem). Suppose there existV1(t, y) and f1(t, y) ∈
C1,1([0,T ] × R+) satisfying the extended HJB equations for the reinsurer: ∀(t, y) ∈ [0,T ] × R,

sup
πL∈ΠL,Rt∈R

{
L
πL,Rt
1 [V1(t, y)] −

γ1

2
L
πL,Rt
1 [ f 2

1 (t, y)] + γ1 f1(t, y)LπL,Rt
1 [ f1(t, y)]

}
= 0, (2.5)

L
π∗L,R

∗
t

1 [ f1(t, y)] = 0, (2.6)
V1(T, y) = y, f1(T, y) = y,

where

(π∗L,R
∗
t ) = arg sup

πL∈ΠL,Rt∈R

{
L
πL,Rt
1 [V1(t, y)] −

γ1

2
L
πL,Rt
1 [ f 2

1 (t, y)] + γ1 f1(t, y)LπL,Rt
1 [ f1(t, y)]

}
.

Then V1(t, y) = V1(t, y), Et,y

[
Yπ∗1(T )

]
= f1(t, y) and π∗1 = (π∗L,R

∗
t ) is the equilibrium investment and

reinsurance strategy of the reinsurer.
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Next, we give the equilibrium investment and reinsurance strategy of the reinsurer under mean
variance criterion.

Theorem 2.2. The optimal equilibrium investment strategy of the reinsurer is

π∗L(t) =
µ − r

γ1er(T−t)σ2

and the optimal preferred reinsurance level has the following cases:

1) Consider 2ξ − γ1er(T−t) > 0, R∗t (z) = R1,t(z) := z.
2) Consider 2ξ − γ1er(T−t) < 0, R∗t (z) = R2,t(z) := z ∧ θ

γ1er(T−t)−2ξ .

Proof. In order to solve (2.5) and (2.6), we ansatz

V1(t, y) = er(T−t)y + B1(t), B1(T ) = 0, (2.7)
f1(t, y) = er(T−t)y + b1(t), b1(T ) = 0. (2.8)

Substituting (2.7) and (2.8) into the first extended HJB equation (2.5) gives

B′1(t) + er(T−t) sup
Rt∈R

{∫
R+

P1(t, z,Rt)v(dz)
}

+ er(T−t) sup
πL∈ΠL

{
(µ − r)πL(t) −

γ1

2
er(T−t)σ2π2

L(t)
}

= 0, (2.9)

where

P1(t, z,Rt) =

(
ξ −

γ1

2
er(T−t)

)
Rt(z)2 + θRt(z). (2.10)

From (2.9), we can split the optimization problem into the following problems:

sup
πL∈ΠL

{
(µ − r)πL(t) −

γ1

2
er(T−t)σ2π2

L(t)
}
, (2.11)

sup
Rt∈R

{ ∫
R+

P1(t, z,Rt)v(dz)
}
. (2.12)

The expression in (2.11) is concave with respect to πL(t). According to the first order condition, we
obtain the equilibrium investment strategy of the reinsurer is

π∗L(t) =
µ − r

γ1er(T−t)σ2 .

The optimization problem (2.12) is readily solved by identifying the concavity of P1(t, z,Rt) with
respect to Rt. From (2.10), we have ∂2P1(t,y,Rt)

∂R2
t

= 2ξ − γ1er(T−t).

1) When 2ξ − γ1er(T−t) > 0, P1(t, y,Rt) is strictly convex in Rt. Hence,

R∗t (z) := z;

2) When 2ξ − γ1er(T−t) < 0, P1(t, y,Rt) is strictly concave in Rt. Hence,

R∗t (z) := z ∧
θ

γ1er(T−t) − 2ξ
.
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According to the expression of R∗t (z), we can get R∗t (z) ∈ C. In fact, the incentive compatibility
constraint requires that 0 ≤ R∗t (z) ≤ z and R∗t (z), z − R∗t (z) are non-decreasing with z. In the case
of R∗t (z) = z, z − R∗t (z) = 0. In the case of R∗t (z) = z ∧ θ

γ1er(T−t)−2ξ , z − R∗t (z) =
(
z − θ

γ1er(T−t)−2ξ

)
+

=

max
{
0, z − θ

γ1er(T−t)−2ξ

}
. Obviously, z ∧ θ

γ1er(T−t)−2ξ and
(
z − θ

γ1er(T−t)−2ξ

)
+

are non-decreasing with z. From
above two cases, we can easily get that R∗t (z) satisfies the incentive compatibility constraint. Moreover,
it is also easy to verify that R∗t (z) and π∗L(t) satisfy conditions 2 and 3 of the admissible strategy that is
given by Definition 2.1. �

3. Mean-variance problem with model uncertainty and for an AAI

3.1. The wealth process of the insurer

In Section 2, we obtain the preferred reinsurance level of the reinsurer, which may be not the
insurer’s optimal choice based on the insurer’s risk preference and thus may not be accepted by the
insurer, as also mentioned in [14].

Next, we assume that the insurer can also invest surplus in a risk-free asset and a risky asset to
manage risk, where the price processes of the risk-free asset and the risky asset follow (2.1) and (2.2),
respectively. Moreover, the insurer purchases reinsurance contract to spread risk. When the claim Z
arrives, the insurer cedes the loss I(Z) to the reinsurer and retains the remaining part of the loss Z−I(Z).
z − It(z), It(z) ∈ C are called retained loss function and ceded loss function that satisfy the incentive
compatibility constraint, respectively. Let π2(t, z) := {(πF(t), It(z))}t∈[0,T ] denote a strategy of insurer,
where πF(t) represents the total amount of money invested by the insurer in the risky asset at time t.

Based on the above assumptions, the surplus process of the insurer Xπ2(t) under measure P is
modeled by

dXπ2(t) =
(
c − c(t) + rXπ2(t) + (µ − r)πF(t) − aλE[It(Z) − R∗t (Z)]2

)
dt + σπF(t)dW(t)

−

∫
R+

(z − It(z))N(dt, dz), Xπ2(0) = x0,
(3.1)

where c(t) is the reinsurance premium rate; a indicates the extra charge rate for the deviation from
the preferred reinsurance level of the reinsurer R∗t (Z) given in Theorem 2.2; aE[It(Z) − R∗t (Z)]2 can be
viewed as the penalty/the additional reinsurance premium imposed on the ceded loss It(Z) deviating
from R∗t (Z). The quadratic term guarantees that larger deviation is punished more severely. We adopt
the mean variance premium principle, that is

c(t) =

∫
R+

[
(1 + θ)It(z) + ξI2

t (z)
]

v(dz).

The insurer is generally assumed to be ambiguity neutral in traditional reinsurance and investment
models. The objective function of the insurer is

sup
π2∈Π̃2

JP2 (t, x, π2) := sup
π2∈Π̃2

{
EPt,x[X

π2(T )] −
γ2

2
VarPt,x[Xπ2(T)]

}
subject to Xπ2(·) satisfies (3.1),

(3.2)
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where EPt,x[·] = E[·|Xπ2(t) = x], VarPt,x[·] = Var[·|Xπ2(t) = x], γ2 > 0 denotes the risk aversion
coefficient of the insurer, Π̃2 is the corresponding admissible set. However, the insurer is generally
ambiguity averse in practice and only regard the surplus process under single probability measure P
as the reference model, which is the best description of the real world based on the insurer’s current
information. In general, the ambiguity averse insurer is doubtful about this reference model. In fact,
we do not know what models describe the real world. Faced with model uncertainty, the insurer
considers alternative models to guard against worst-case scenarios. Suppose that all alternative models
are described by a class of probability measures that are equivalent to P and absolutely continuous, and
denoted as

Q := {Q|Q ∼ P}.

Suppose that a process φ(t) := (φ1(t), φ2(t)) satisfies the three conditions:

1) φ1(t) and φ2(t) are Ft-measurable for each t ∈ [0,T ];
2) φ1(t), φ2(t) > 0, for a.s. (t,w) ∈ [0,T ] ×Ω;

3) EP
[
exp

{∫ T

0
1
2 (φ1(t))2 + λ(φ2(t) ln φ2(t) − φ2(t) + 1)dt

}]
< ∞.

We denote Φ for the space of all such processes φ(t) called a density operator.
For each φ(t) ∈ Φ, we define a real valued process {Λφ(t), t ∈ [0,T ]} on (Ω,F ,P) by

Λφ(t) := exp
{∫ t

0
φ1(s)dW(s) −

1
2

∫ t

0
(φ1(s))2ds +

∫ t

0

∫ ∞

0
ln φ2(s)N(ds, dz) + λ

∫ t

0
(1 − φ2(s))ds

}
.

(3.3)

According to the assumption of φ(t), we get that Λφ(t) is a P-martingale with filtration {Ft}t≥0. For each
φ(t) ∈ Φ, a new probability measure Q absolutely continuous with P on Ft is defined by setting

dQ
dP

∣∣∣∣∣
Ft

:= Λφ(t).

By Girsanov’s Theorem, under the alternative measure Q, WQ(t) is a standard Brownian motion, where

dWQ(t) = dW(t) + φ1(t)dt,

and N(t) becomes the Poisson process NQ(t) with jump intensity λQ(t) = λφ2(t) under the alternative
measure Q. NQ(dt, dz) is Poisson random measure under the alternative measure Q. ÑQ(dt, dz) =

NQ(dt, dz) − vQ(dz)dt is a compensated Poisson random measure, where vQ(dz)dt = λφ2(t)F(dz)dt is a
compensator of the random measure NQ(·, ·). Furthermore, the dynamics of the surplus process Xπ2(t)
under Q is

dXπ2(t) =
(
c − c(t) + rXπ2(t) + ((µ − r) − φ1(t)σ) πF(t) − aλE[It(Z) − R∗t (Z)]2

)
dt

+ σπF(t)dWQ(t) −
∫
R+

(z − It(z))NQ(dt, dz), Xπ2(0) = x0,
(3.4)

We give the definition of insurer’s admissible strategy (see [28]).
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Definition 3.1 (Admissible strategy). A pair strategy π2(t, z) := {(πF(t), It(z))}t∈[0,T ] is said to be
admissible if it satisfies the following conditions:

1) It(z) ∈ C, ∀(t, z) ∈ [0,T ] × R+;
2) π2(t, z) is {Ft}t≥0 predictable and EQ

∗

t,x

[∫ T

t
(πF(s))2 + (Is(z))2ds

]
< ∞, where Q∗ is the chosen

probability measure to describe the worst-case scenario;
3) The stochastic differential equation (3.4) associated with π2 has a unique strong solution, Xπ2(·).

Let Π2 := ΠF×I denote the set of all admissible policies, where ΠF represents the set of all admissible
investment policies of the insurer, and I represents the set of all admissible reinsurance policies
determined by the insurer.

3.2. The robust reinsurance and investment problem of the insurer

We assume that the ambiguity averse insurer tries to design a robust optimal reinsurance and
investment contract, which is the best option in some worst cases. Inspired by [9, 20], we formulate a
robust control problem to modify problem (3.2) as follows:

V(t, x) = sup
π2∈Π2

J2(t, x, π2) := sup
π2∈Π2

inf
φ∈Φ

{
EQt,x[X

π2(T )] −
γ2

2
VarQt,x[Xπ2(T)] + EQt,x

[∫ T

t
Γ(s,Xπ2(s), φ(s))ds

]}
,

(3.5)

where

Γ(s, Xπ2(s), φ(s)) =
(φ1(s))2

2Ψ1(s, Xπ2(s))
+
λ (φ2(s) ln φ2(s) − φ2(s) + 1)

Ψ2(s, Xπ2(s))
. (3.6)

The third term of (3.5) denotes the penalty for deviation from the reference model, which relies on the
relative entropy caused by the diffusion and jump risks. Similar to [9], The growth of relative entropy
from t to t + dt is equal to [

1
2

(φ1(t))2 + λ(φ2(t) ln φ2(t) − φ2(t) + 1)
]

dt. (3.7)

In (3.6), relative entropy is scaled by Ψ1(t, Xπ2(s)) and Ψ1(t, Xπ2(s)), representing preference parameters
for ambiguity aversion regarding diffusion risk and jump risk. The smaller Ψ(t, X̂I

t ) is, the larger the
penalty for deviation from the reference model is, and the more confidence in the reference model the
insurer has, vice versa. In this paper, we assume Ψ1(s, Xπ2(s)) and Ψ2(s, Xπ2(s)) are fixed and state
independent functions (see [20, 22, 28]). We take

Ψ1(s, Xπ2(s)) = β1, Ψ2(s, Xπ2(s)) = β2, (3.8)

where β1 ≥ 0 and β2 ≥ 0. After substituting (3.8) into (3.5), the value function V2(t, x) then becomes

V2(t, x) = sup
π2∈Π2

inf
φ∈Φ

{
EQt,x[X

π2(T )] −
γ2

2
VarQt,x[Xπ2(T)] + EQt,x

[∫ T

t

(
(φ1(s))2

2β1

+
λ (φ2(s) ln φ2(s) − φ2(s) + 1)

β2

)
ds

]}
.

(3.9)
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Generally, the parameters β1 and β2 measure the strength of the preference for robustness. When
β1 = β2 = 0, robust problem (3.9) becomes mean variance utility maximization. The larger the
parameters β1 and β2 are, the more robust the insurer is, and the more robust insurer has less faith in
the reference model. In order to obtain time consistent investment and reinsurance strategy, we give
the definitions of the equilibrium strategy and the equilibrium value function as [4].

Definition 3.2. For an admissible reinsurance and investment strategy of the insurer π∗2(·, ·), for ε > 0
and any (t, z) ∈ [0,T ] × R+, we define the strategy

πε2(s, z) =

{
π̃2(z), s ∈ [t, t + ε),
π∗2(s, z), s ∈ [t + ε,T ],

where π̃2(z) ∈ Π2. If

lim
ε→0+

inf
J2(t, x, π∗2) − J2(t, x, πε2)

ε
≥ 0,

for all deterministic function π̃2(z) ∈ Π2, π
∗
2(t, z) is called an equilibrium strategy of the reinsurer. The

equilibrium value function of problem (3.9) is defined by

V2(t, x) = J2(t, x, π∗2).

Before presenting the verification theorem of problem (3.9), we define the infinitesimal operator
L
φ,πF ,It
2 on ϕ(t, y): for (t, y) ∈ [0,T ] × R+, ϕ(t, y) ∈ C1,1([0,T ] × R+),

L
φ,πF ,It
2 ϕ(t, x) =

∂ϕ

∂t
+
∂ϕ

∂x

{
c − c(t) + rx + ((µ − r) − φ1(t)σ) πF(t) − a

∫
R+

(It(z) − R∗t (z))2v(dz)
}

+
1
2
σ2π2

F(t)
∂2ϕ

∂x2 + φ2(t)
∫
R+

[ϕ(t, x − (z − It(z))) − ϕ(t, x)]v(dz).

Theorem 3.1 (Verification theorem). Suppose there exist V2(t, x) and f2(t, x) ∈ C1,1([0,T ] × R+)
satisfying the extended HJB equations for the reinsurer: ∀(t, x) ∈ [0,T ] × R,

sup
πF∈ΠF ,It∈I

inf
φ∈Φ

{
L
φ,πF ,It
2 [V2(t, x)] −

γ2

2
L
φ,πF ,It
2 [ f 2

2 (t, x)] + γ2 f2(t, x)Lφ,πF ,It
2 [ f2(t, x)]

+
(φ1(t))2

2β1
+
λ (φ2(t) ln φ2(t) − φ2(t) + 1)

β2

}
= 0, (3.10)

L
φ∗,π∗F ,I

∗
t

2 [ f2(t, x)] = 0,V2(T, x) = x, f2(T, x) = x, (3.11)

where

(φ∗, π∗F , I
∗
t ) = arg sup

πF∈ΠF ,It∈I

inf
φ∈Φ

{
L
φ,πF ,It
2 [V2(t, y)] −

γ1

2
L
φ,πF ,It
2 [ f 2

2 (t, y)] + γ2 f2(t, y)Lφ,πF ,It
2 [ f2(t, y)]

+
(φ1(t))2

2β1
+
λ (φ2(t) ln φ2(t) − φ2(t) + 1)

β2

}
.

Then V2(t, x) = V2(t, x), EQ
∗

t,x

[
Xπ∗2(T )

]
= f2(t, x), and π∗2 = (π∗F , I

∗
t ) is the equilibrium investment and

reinsurance strategy of the insurer.
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Before presenting the main results, we define some functions as follows:

a1(w) :=
γ2er(T−t)w + 2a

γ2er(T−t)w + 2a + 2ξ
, a2(w) :=

γ2er(T−t)w
γ2er(T−t)w + 2a + 2ξ

, (3.12)

c1(w) :=
1 + θ − w

γ2er(T−t)w + 2a + 2ξ
, c2(w) :=

2aθ − (1 + θ − w)(γ1er(T−t) − 2ξ)
(γ2er(T−t)w + 2a + 2ξ)(γ1er(T−t) − 2ξ)

, (3.13)

It,1(z; w) :=


0, 0 ≤ z <

1 + θ − w
γ2er(T−t)w + 2a

,

a1(w)z − c1(w), z ≥
1 + θ − w

γ2er(T−t)w + 2a
.

(3.14)

It,2(z; w) :=


z, 0 ≤ z <

w − 1 − θ
2ξ

,

a1(w)z − c1(w), z ≥
w − 1 − θ

2ξ
.

(3.15)

It,3(z; w) :=


0, 0 ≤ z <

(1 + θ − w)(γ1er(T−t) − 2ξ) − 2aθ
γ2er(T−t)w(γ1er(T−t) − 2ξ)

,

a2(w)z + c2(w), z ≥
(1 + θ − w)(γ1er(T−t) − 2ξ) − 2aθ

γ2er(T−t)w(γ1er(T−t) − 2ξ)
.

(3.16)

It,4(z; w) :=



0, 0 ≤ z <
1 + θ − w

γ2er(T−t)w + 2a
,

a1(w)z − c1(w),
1 + θ − w

γ2er(T−t)w + 2a
≤ z <

θ

γ1er(T−t) − 2ξ
,

a2(w)z + c2(w), z ≥
θ

γ1er(T−t) − 2ξ

(3.17)

It,5(z; w) :=



z, 0 ≤ z <
w − 1 − θ

2ξ
,

a1(w)z − c1(w),
w − 1 − θ

2ξ
≤ z <

θ

γ1er(T−t) − 2ξ
,

a2(w)z + c2(w), z ≥
θ

γ1er(T−t) − 2ξ
.

(3.18)

It,6(z; w) :=


z, 0 ≤ z <

(1 + θ − w)(2ξ − γ1er(T−t)) + 2aθ
2(er(T−t)γ1 − 2ξ)(a + ξ)

,

a2(w)z + c2(w), z ≥
(1 + θ − w)(2ξ − γ1er(T−t)) + 2aθ

2(er(T−t)γ1 − 2ξ)(a + ξ)
.

(3.19)

In the following theorems, we compute the robust optimal strategy and the value function of the
insurer.

Theorem 3.2. For It(z) ∈ C, we define h by

h(I) = E[z − It(z)] +
γ2

2
er(T−t)E[(z − It(z))2].
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Then the density operator is given by φ∗ = (φ∗1(t), φ∗2(t)) =
(
β1(µ−r)
σ(β1+γ2) , exp

{
β2er(T−t)h(I∗t (z))

})
, and the

optimal investment strategy is π∗F(t) =
µ−r

er(T−t)σ2(β1+γ2) , the optimal reinsurance strategy I∗t (z) is given in
several cases:

1) When 2ξ − γ1er(T−t) > 0,

I∗t (z) =

It,1(z; φ∗2(t)), 0 < φ∗2(t) < 1 + θ,

It,2(z; φ∗2(t)), φ∗2(t) > 1 + θ.

2) When 2ξ − γ1er(T−t) < 0,

I∗t (z) =



It,3(z; φ∗2(t)), 0 < φ∗2(t) < max
{

0,
(1 + θ)(γ1er(T−t) − 2ξ) − 2θa
θγ2er(T−t) + (γ1er(T−t) − 2ξ)

}
,

It,4(z; φ∗2(t)), max
{

0,
(1 + θ)(γ1er(T−t) − 2ξ) − 2θa
θγ2er(T−t) + (γ1er(T−t) − 2ξ)

}
< φ∗2(t) < 1 + θ,

It,5(z; φ∗2(t)), 1 + θ < φ∗2(t) <
(1 + θ)γ1er(T−t) − 2ξ

γ1er(T−t) − 2ξ
,

It,6(z; φ∗2(t)), φ∗2(t) >
(1 + θ)γ1er(T−t) − 2ξ

γ1er(T−t) − 2ξ
,

where It,1, It,2, It,3, It,4, It,5, It,6 are given by (3.14)–(3.19).

Proof. For the insurer’s value function, we ansatz

V2(t, x) = er(T−t)x + B2(t), B2(T ) = 0, (3.20)
f2(t, x) = er(T−t)x + b2(t), b2(T ) = 0. (3.21)

Substituting (3.20) and (3.21) into the extended HJB equation (3.10), we derive

B′2(t) + cer(T−t) + sup
πF∈ΠF ,It∈I

inf
φ∈Φ

{
er(T−t)

(
(µ − r)πF(t) − φ1(t)σπF(t) −

γ2

2
er(T−t)σ2π2

F(t)

−λE
[
(1 + θ)It(z) + φ2(t)(z − It(z)) + ξI2

t (z) +
γ2

2
er(T−t)φ2(t)(It(z) − z)2 + a(It(z) − R∗t (z))2

])
+

(φ1(t))2

2β1
+
λ (φ2(t) ln φ2(t) − φ2(t) + 1)

β2

}
= 0.

(3.22)

We first solve the minimization optimization problem. Since the expression in the curly braces in (3.22)
is convex with respect to φ1, φ2 and the first order condition gives

φ1(t)
β1
− er(T−t)σπF(t) = 0,

1
β2

lnφ2(t) − er(T−t)
(
E[z − It(z)] +

γ2

2
er(T−t)E[(z − It(z))2]

)
= 0,

we can get the worst-case density generatorφ
∗
1(t, πF) = β1er(T−t)σπF(t),

φ∗2(t, I) = exp
{
β2er(T−t)h(I)

}
.

(3.23)
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Plugging (3.23) into (3.22), we have

− λ inf
It∈I

{
er(T−t)

(
(1 + θ)E[It(z)] + ξE[I2

t (z)] + aE[(It(z) − R∗t (z))2]
)

+
1
β2

[
exp{β2er(T−t)h(I)} − 1

] }
+ B′2(t) + cer(T−t) + er(T−t) sup

πF∈ΠF

{
(µ − r)πF(t) −

1
2

(β1 + γ2)er(T−t)σ2π2
F(t)

}
= 0.

(3.24)

Because (µ − r)πF(t) − 1
2 (β1 + γ2)er(T−t)σ2π2

F(t) is concave with respect to πF(t), and the first order
condition gives

µ − r − er(T−t)σ2 (β1 + γ2) πF(t) = 0,

the optimal investment strategy is given by

π∗F(t) =
µ − r

er(T−t)σ2(β1 + γ2)
. (3.25)

Combining (3.23) with (3.25), we can get

φ∗1(t) = φ∗1(t, π∗F) =
β1(µ − r)
σ(β1 + γ2)

.

Substituting (3.25) into (3.24), we obtain

B′2(t) + cer(T−t) +
(µ − r)2

2σ2(β1 + γ2)
− λ inf

I∈I

{
er(T−t)

(
(1 + θ)E[It(z)] + ξE[I2

t (z)]

+aE[(It(z) − R∗t (z))2]
)

+
1
β2

[
exp{β2er(T−t)h(I)} − 1

] }
= 0.

(3.26)

Next, we need to solve the following optimization problem:

inf
I∈I

P(I) (3.27)

where

P(I) = er(T−t)
(
(1 + θ)E[It(z)] + ξE[I2

t (z)] + aE[(It(z) − R∗t (z))2]
)

+
1
β2

[
exp{β2er(T−t)h(I)} − 1

]
. (3.28)

For the problem (3.27), we solve it in two steps. First, fix h(I); then the problem is equivalent to
minimizing

inf
I∈I

{
(1 + θ)E[It(z)] + ξE[I2

t (z)] + aE[(It(z) − R∗t (z))2]
}

subject to h(I) = h. Then, we denote the Lagrangian L by

L(I, %) = (1 + θ)E[It(z)] + ξE[I2
t (z)] + aE[(It(z) − R∗t (z))2

+ %
(
E[z − It(z)] +

γ2

2
er(T−t)E[(z − It(z))2] − h

)
,

(3.29)
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where % > 0 is a Lagrange multiplier. (3.29) can be rewritten as

L(I, %) =

∫ ∞

0
Γ(t, I, z)dFZ(z) − %h,

where

Γ(t, I, z) = %z + (1 + θ − %) It(z) + ξI2
t (z) + a(It(z) − R∗t (z))2 +

γ2

2
er(T−t)%(z − It(z))2.

We can easily obtain that Γ(t, I, z) is a convex function of I and the first order condition becomes

∂Γ(t, I, z)
∂I

= 1 + θ − % + (2ξ + 2a + γ2er(T−t)%)It(z) − 2aR∗t (z) − γ2er(T−t)%z = 0.

Then, the optimal reinsurance strategy of the insurer is

I∗t (z, %) = max
{

0,min
{

z,
γ2er(T−t)%z + 2aR∗t (z) − (1 + θ − %)

γ2er(T−t)% + 2a + 2ξ

}}
, (3.30)

where R∗t (z) is given as Theorem 2.2. Specifically, we discuss the specific form of I∗t (z; %) in the
following two cases.

1) When 2ξ − γ1er(T−t) ≥ 0, we know R∗t (z) = z from Theorem 2.2. Therefore, according to (3.30),
we get

I∗t (z; %) = max {0,min {z, a1(%)z − c1(%)}} ,

that is,

I∗t (z; %) :=

It,1(z; %), 0 < % ≤ 1 + θ,

It,2(z; %), % > 1 + θ.
(3.31)

2) When 2ξ−γ1er(T−t) < 0, we have R∗t (z) = z∧ θ
γ1er(T−t)−2ξ from Theorem 2.2. Hence, based on (3.30),

we deduce

I∗t (z; %) := max
{
0,min

{
z,

[
a1(%)z − c1(%)

]
∧

[
a2(%)z + c2(%)

]}}
,

that is,

I∗t (z; %) :=



It,3(z; %), 0 < % ≤ max
{

0,
(1 + θ)(γ1er(T−t) − 2ξ) − 2θa
θγ2er(T−t) + (γ1er(T−t) − 2ξ)

}
,

It,4(z; %), max
{

0,
(1 + θ)(γ1er(T−t) − 2ξ) − 2θa
θγ2er(T−t) + (γ1er(T−t) − 2ξ)

}
< % ≤ 1 + θ,

It,5(z; %), 1 + θ < % ≤
(1 + θ)γ1er(T−t) − 2ξ

γ1er(T−t) − 2ξ
,

It,6(z; %), % >
(1 + θ)γ1er(T−t) − 2ξ

γ1er(T−t) − 2ξ
.

(3.32)
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Clearly, we can conclude that the optimal strategy depends on % from (3.31) and (3.32).
Second, our goal is to seek the optimal Lagrange multiplier %∗ > 0 that solves the following

optimization problem:

inf
%(t)>0

L(%), (3.33)

where

L(%) =er(T−t) ((1 + θ) h1(%) + ξh2(%) + ah3(%)) +
1
β2

[
exp

{
β2er(T−t)

(
h4(%) +

γ2

2
er(T−t)h5(%)

)}
− 1

]
,

in which

h1(%) = E[I∗t (z; %)] =

∫ ∞

0
I∗t (z; %)dFZ(z),

h2(%) = E[I∗2t (z; %)] =

∫ ∞

0
I∗2t (z; %)dFZ(z),

h3(%) = E[(I∗t (z; %) − R∗t (z))2] =

∫ ∞

0
(I∗t (z; %) − R∗t (z))2dFZ(z),

h4(%) = E[z − I∗t (z; %)] =

∫ ∞

0
(z − I∗t (z; %))dFZ(z),

h5(%) = E[(z − I∗t (z; %))2] =

∫ ∞

0
(z − I∗t (z; %))2dFZ(z).

We differentiate L(%) with respect to %, then obtain L% in two cases:

1) When 2ξ − γ1er(T−t) > 0, based on (3.31), we can determine that

L% =er(T−t)
∫ ∞

w(%)

(2a + 2ξ + er(T−t)γ2(1 + θ + 2ξz))2

(2a + er(T−t)γ2% + 2ξ)3 dFZ(z)

×

[
% − exp

{
β2er(T−t)

(
h4(%) +

γ2

2
er(T−t)h5(%)

)}]
,

(3.34)

where

w(%) =


1 + θ − %

γ2er(T−t)% + 2a
, 0 < % < 1 + θ,

% − 1 − θ
2ξ

, % ≥ 1 + θ.

2) When 2ξ − γ1er(T−t) < 0, based on (3.32), we can determine that

L% =



W1 (p1) , 0 < % < max
{

0,
(1 + θ)(γ1er(T−t) − 2ξ) − 2θa
θγ2er(T−t) + (γ1er(T−t) − 2ξ)

}
,

W2 (q1) , max
{

0,
(1 + θ)(γ1er(T−t) − 2ξ) − 2θa
θγ2er(T−t) + (γ1er(T−t) − 2ξ)

}
< % < 1 + θ,

W2 (q2) , 1 + θ < % <
(1 + θ)γ1er(T−t) − 2ξ

γ1er(T−t) − 2ξ
,

W1 (p2) , % >
(1 + θ)γ1er(T−t) − 2ξ

γ1er(T−t) − 2ξ
,

(3.35)
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in which

q1 =
1 + θ − %

γ2er(T−t)% + 2a
, p1 =

(1 + θ − %)(γ1er(T−t) − 2ξ) − 2aθ
γ2er(T−t)%(γ1er(T−t) − 2ξ)

,

q2 =
% − 1 − θ

2ξ
, p2 =

(1 + θ − %)(2ξ − γ1er(T−t)) + 2aθ
2(er(T−t)γ1 − 2ξ)(a + ξ)

,

W1(p) = er(T−t)

[
% − exp

{
β2er(T−t)

(
h4(%) +

γ2
2 er(T−t)h5(%)

)}]
(er(T−t)γ1 − 2ξ)2(2a + er(T−t)γ2% + 2ξ)3

×

∫ ∞

p

[(
er(T−t)γ1 − 2ξ

) (
2ξ + er(T−t)γ2(1 + θ + 2ξz)

)
+2a

(
e2r(T−t)γ1γ2z − 2ξ + er(T−t) (γ1 − γ2(θ + 2ξz))

)]2
dFZ(z),

W2(q) =er(T−t)

[
% − exp

{
β2er(T−t)

(
h4(%) +

γ2
2 er(T−t)h5(%)

)}]
(2a + er(T−t)γ2% + 2ξ)3

×

∫ θ

γ1er(T−t)−2ξ

q

(
2a + 2ξ + er(T−t)γ2(1 + θ + 2ξz)

)2
dFZ(z)

+
1

(er(T−t)γ1 − 2ξ)2

∫ ∞

θ

γ1er(T−t)−2ξ

[(
er(T−t)γ1 − 2ξ

) (
2ξ + er(T−t)γ2(1 + θ + 2ξz)

)
+2a

(
e2r(T−t)γ1γ2z − 2ξ + er(T−t) (γ1 − γ2(θ + 2ξz))

)]2
dFZ(z)

)
.

From (3.34) and (3.35), we discover that L% is proportional to b(%), where

b(%) := % − exp
{
β2er(T−t)

(
h4(%) +

γ2

2
er(T−t)h5(%)

)}
.

It is easy to conclude that I∗t (z; %) increases with respect to %, which implies that h4(%) and h5(%)
decrease with %. Then, b(%) increases from

b(1) = 1 − exp
{
β2er(T−t)

(
h4(1) +

γ2

2
er(T−t)h5(1)

)}
< 0

to ∞ as % increases from 1 to ∞. Therefore, there exists a unique value %∗(t) that solves b(%) = 0,
and minimizes (3.33). Thus, the optimal reinsurance strategy I∗(t) is given by I∗t (z; %∗). Moreover,
according to (3.23), we obtain

φ∗2(t) = φ∗2(t, I∗t (z; %∗)) = exp
{
β2er(T−t)h(I∗t (z; %∗))

}
= %∗.

In summary, we obtain the result as described in the theorem. According to the expression of I∗t (z), we
can get I∗t (z) ∈ C. In fact, the incentive compatibility constraint is equal to

C = { f : [0,∞]→ [0,∞]| f (0) = 0, 0 ≤ f ′(y) ≤ 1, a.e.}.
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We note that it is quite obvious that I∗t (0) = 0. Moreover, from (3.12), we can find 0 < a1(%∗), a2(%∗) <
1. Thus, we get that 0 < I∗

′

t (z) < 1. From above, we deduce I∗t (z) satisfies the incentive compatibility
constraint. Moreover, it is also easy to verify that I∗t (z) and π∗F(t) satisfy conditions 2 and 3 of the
admissible strategy that is given by Definition 3.1. �

Remark 3.1. The optimal investment strategy depends only on the degree of ambiguous aversion β1 to
diffusion risk. While, the optimal reinsurance policy depends only on the degree of ambiguous aversion
β2 to jump risk.

Next, we present the second key result about the value function of the insurer. For notional
convenience, we define several sets below.

P1 :=
{
t : 2ξ − γ2er(T−t) > 0, 0 < φ∗2(t) < 1 + θ

}
,

P2 :=
{
t : 2ξ − γ2er(T−t) > 0, φ∗2(t) > 1 + θ

}
,

P3 :=
{

t : 2ξ − γ2er(T−t) < 0, 0 < φ∗2(t) < max
{

0,
(1 + θ)(γ1er(T−t) − 2ξ) − 2θa
θγ2er(T−t) + (γ1er(T−t) − 2ξ)

}}
,

P4 :=
{

t : 2ξ − γ2er(T−t) < 0,max
{

0,
(1 + θ)(γ1er(T−t) − 2ξ) − 2θa
θγ2er(T−t) + (γ1er(T−t) − 2ξ)

}
< φ∗2(t) < 1 + θ

}
,

P5 :=
{

t : 2ξ − γ2er(T−t) < 0, 1 + θ < φ∗2(t) <
(1 + θ)γ1er(T−t) − 2ξ

γ1er(T−t) − 2ξ

}
,

P6 :=
{

t : 2ξ − γ2er(T−t) < 0, φ∗2(t) >
(1 + θ)γ1er(T−t) − 2ξ

γ1er(T−t) − 2ξ

}
.

Theorem 3.3. The equilibrium value function of the insurer is given by

V2(t, x) = er(T−t)x +
c(er(T−t) − 1)

r
+

(µ − r)2(T − t)
2σ2(β1 + γ2)

−

6∑
i=1

∫ T

t
Ci(s)IPi(s)ds, (3.36)

and the expectation of the insurer’s terminal surplus is

f2(t, x) = er(T−t)x +
c(er(T−t) − 1)

r
+

(µ − r)2γ2(T − t)
σ2(β1 + γ2)2 −

6∑
i=1

∫ T

t
Di(s)IPi(s)ds, (3.37)

where Ci(s), Di(s), i = 1, 2, · · · , 6 are given in (3.38) and (3.39).

Proof. Substituting I∗t (z), which are given in Theorem 3.2, into (3.26), together with terminal
conditions B2(T ) = 0, we obtain

B2(t) =
c(er(T−t) − 1)

r
+

(µ − r)2(T − t)
2σ2(β1 + γ2)

−

6∑
i=1

∫ T

t
Ci(s)IPi(s)ds,
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where

Ci(s) =er(T−s)
(∫ ∞

0

[
(1 + θ)Is,i(z; φ∗2) + ξI2

s,i(z; φ∗2) + a(Is,i(z; φ∗2) − z)2
]

v(dz)
)

+
1
β2

[
exp

{
β2er(T−s)

∫ ∞

0

[
z − Is,i(z; φ∗2) +

γ2

2
er(T−t)(z − Is,i(z; φ∗2))2

]
v(dz)

}
− 1

]
, i = 1, 2;

Ci(s) =er(T−s)
(∫ ∞

0

[
(1 + θ)Is,i(z; φ∗2) + ξI2

s,i(z; φ∗2) + a(Is,i(z; φ∗2) − R2,t(z))2
]

v(dz)
)

+
1
β2

[
exp

{
β2er(T−s)

∫ ∞

0

[
z − Is,i(z; φ∗2) +

γ2

2
er(T−t)(z − Is,i(z; φ∗2))2

]
v(dz)

}
− 1

]
, i = 3, 4, 5, 6,

(3.38)

in which R2,t(z) = z ∧ θ
γ1er(T−t)−2ξ . From (3.20), we obtain V2(t, x) as shown in (3.36).

Next, we present the expectation of the insurer’s terminal surplus. Substituting (3.21) and π∗F(t),
I∗t (z), φ∗(t), R∗t (z), which are given in Theorem 2.2 and 3.2, into (3.11), yields

b′2(t) + cer(T−t) +
(µ − r)2γ2

σ2(β1 + γ2)2 − λer(T−t)
{
(1 + θ)E[I∗t (Z)] + ξE[(I∗t (Z))2] + aE[(I∗t (Z) − R∗t (Z))2]

+ exp{β2er(T−t)h(I∗t (z))}E[Z − I∗t (Z)]
}

= 0.

Together with terminal condition b2(T ) = 0, we obtain

b2(t) =
c(er(T−t) − 1)

r
+

(µ − r)2γ2(T − t)
σ2(β1 + γ2)2 −

6∑
i=1

∫ T

t
Di(s)IPi(s)ds,

where

Di(s) =er(T−s)
(∫ ∞

0

[
(1 + θ)Is,i(z; φ∗2) + ξI2

s,i(z; φ∗2) + a(Is,i(z; φ∗2) − z)2 + (z − Is,i(z; φ∗2))

× exp
{
β2er(T−s)

∫ ∞

0
z − Is,i(z; φ∗2) +

γ2

2
er(T−s)(z − Is,i(z; φ∗2))2v(dz)

}]
v(dz)

)
, i = 1, 2;

Di(s) =er(T−s)
(∫ ∞

0

[
(1 + θ)Is,i(z; φ∗2) + ξI2

s,i(z; φ∗2) + a(Is,i(z; φ∗2) − R2,t(z))2 + (z − Is,i(z; φ∗2))

× exp
{
β2er(T−s)

∫ ∞

0

(
z − Is,i(z; φ∗2) +

γ2

2
er(T−s)(z − Is,i(z; φ∗2))2

)
v(dz)

}]
v(dz)

)
, i = 3, 4, 5, 6,

(3.39)

in which, R2,t(z) = z ∧ θ
γ1er(T−t)−2ξ . Finally, from (3.21), we have (3.37). �

4. The optimal strategy and the value function of the reinsurer

In this section, we investigate the optimal investment strategy under mean variance criterion when
the reinsurance strategy adopts I∗t (z) which satisfies the insurer’s risk preference and is eventually
implemented. Assume π3(t) is the money amount invested in a risky asset and the reminding Yπ3(t) −
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π3(t) is invested in a risk-free asset, in which Yπ3(t) is the surplus of the reinsurer associated with
the strategy π3. With the presence of the reinsurance and investment, the surplus of the reinsurer is
modeled by

dYπ3(t) =
(
c∗(t) + rYπ3(t) + (µ − r)π3(t) + aλE[I∗t (z) − R∗t (z)]2

)
dt + σπ3(t)dW(t)

−

∫
R+

I∗t (z)N(dt, dz), Yπ3(0) = y0,
(4.1)

where c∗(t) is the reinsurance premium rate and is denoted as

c∗(t) =

∫
R+

(
(1 + θ)I∗t (z) + ξI∗2t (z)

)
v(dz).

In the following, we state the admissible strategy.

Definition 4.1 (Admissible strategy). A strategy {π3(t)}t∈[0,T ] is said to be admissible if it satisfies the
following conditions:

1) π3(t) is {Ft}t≥0 predictable and E[
∫ T

t
(π3(s))2ds] < ∞;

2) The stochastic differential equation (4.1) associated with π3 has a unique strong solution, Yπ3(·).

Let Π3 denote the set of all admissible investment policies.
In this section, the problem of the reinsurer is described by

sup
π3∈Π3

J3(t, y, π3) := sup
π3∈Π3

{
EPt,y[Y

π3(T )] −
γ1

2
VarPt,y[Y

π3(T )]
}

subject to Yπ3(·) satisfies (4.1),
(4.2)

where EPt,y[·] = E[·|Yπ3(t) = y], VarPt,y[·] = Var[·|Yπ3(t) = y], γ1 > 0 is the risk aversion coefficient of the
reinsurer.

Similar to Section 2, the problem (4.2) is time inconsistent and solved by a non-cooperative game
theoretic approach. Therefore, we give the definitions of equilibrium strategy and equilibrium value
function in the following.

Definition 4.2. For an admissible investment strategy of the reinsurer π∗3(·), for ε > 0 and any t ∈ [0,T ]
and fixed number π̃3 ∈ R

+, we define the strategy

πε3(s) =

{
π̃3, s ∈ [t, t + ε),
π∗3(s), s ∈ [t + ε,T ].

If

lim
ε→0+

inf
J3(t, y, π∗3) − J3(t, y, πε3)

ε
≥ 0,

for all deterministic function π̃3 ∈ R
+, π∗3(t) is called an equilibrium strategy of the investment. The

equilibrium value function of problem (4.2) is defined by

V3(t, y) = J3(t, y, π∗3).
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Before presenting the Verification theorem of the preoblem (4.2), we defined a variational operator:
for ∀(t, y) ∈ [0,T ] × R+, ϕ(t, y) ∈ C1,1([0,T ] × R+),

L
π3
3 ϕ(t, y) =

∂ϕ

∂t
+
∂ϕ

∂y

{
ry + c∗(t) + (µ − r)π3(t) + a

∫
R+

(I∗t (z) − R∗t (z))2v(dz)
}

+
1
2
σ2π2

3(t)
∂2ϕ

∂y2 +

∫
R+

[
ϕ(t, y − It(z)) − ϕ(t, y)

]
v(dz).

Theorem 4.1 (Verification theorem of the preoblem (4.2)). Suppose there exist V3(t, y) and f3(t, y) ∈
C1,1([0,T ] × R+) satisfying the extended HJB equations for the reinsurer: ∀(t, y) ∈ [0,T ] × R,

sup
π3∈Π3

{
L
π3
3 [V3(t, y)] −

γ1

2
L
π3
3 [ f 2

3 (t, y)] + γ1 f3(t, y)Lπ3
3 [ f3(t, y)]

}
= 0, (4.3)

L
π∗3
3 [ f3(t, y)] = 0, (4.4)
V3(T, y) = y, f3(T, y) = y,

where

π∗3 = arg sup
π3∈Π3

{
L
π3
3 [V3(t, y)] −

γ1

2
L
π3
3 [ f 2

3 (t, y)] + γ1 f3(t, y)Lπ3
3 [ f3(t, y)]

}
.

Then V3(t, y) = V3(t, y), Et,y

[
Yπ∗3(T )

]
= f3(t, y) and π∗3 is the equilibrium investment of the reinsurer.

Theorem 4.2. The optimal investment strategy of (4.2) is

π∗3(t) =
µ − r

γ1er(T−t)σ2 .

The equilibrium value function of the reinsurer is given by

V3(t, y) = er(T−t)y +
(µ − r)2(T − t)

2σ2γ1
+

6∑
i=1

∫ T

t
Ei(s)IPi(s)ds, (4.5)

and the expectation of the insurer’s terminal surplus is

f3(t, y) = er(T−t)y +
(µ − r)2(T − t)

σ2γ1
+

6∑
i=1

∫ T

t
Fi(s)IPi(s)ds, (4.6)

where Ei(s), Fi(s), i = 1, 2, · · · , 6 are given in (4.10) and (4.11).

Proof. For the reinsurer’s value function, we ansatz

V3(t, y) = er(T−t)y + B3(t), B3(T ) = 0, (4.7)
f3(t, y) = er(T−t)y + b3(t), b3(T ) = 0. (4.8)

Substituting (4.7) and (4.8) into the extended HJB equation (4.3) gives

B′3(t) + er(T−t)
∫
R+

[
θI∗t (z) +

(
ξ −

γ1

2
er(T−t)

)
I∗2t (z) + a

(
I∗t (z) − R∗t (z)

)2
]

v(dz)

+ er(T−t) sup
π3

{
(µ − r)π3(t) −

γ1

2
er(T−t)σ2π2

3(t)
}

= 0.
(4.9)
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The first order condition gives

(µ − r) − γ1er(T−t)σ2π3(t) = 0,

we can get

π∗3(t) =
µ − r

γ1er(T−t)σ2 .

Because (µ− r)π3(t)− γ1
2 er(T−t)σ2π2

3(t) is strictly convex in π3(t), π∗3(t) is the optimal investment strategy
of the reinsurer.

Substituting R∗t (z), I∗t (z), which are given in Theorem 2.2 and 3.2, and π∗3(t) into (4.9), together with
terminal condition B3(T ) = 0, we obtain

B3(t) =
(µ − r)2(T − t)

2σ2γ1
+

6∑
i=1

∫ T

t
Ei(s)IPi(s)ds,

where

Ei(s) =er(T−s)
∫ ∞

0

[
θIs,i(z; φ∗2) +

(
ξ −

γ1

2
er(T−s)

)
I2

s,i(z; φ∗2) + a(Is,i(z; φ∗2) − z)2
]

v(dz), i = 1, 2;

Ei(s) =er(T−s)
∫ ∞

0

[
θIs,i(z; φ∗2) + +

(
ξ −

γ1

2
er(T−s)

)
I2

s,i(z; φ∗2) + a(Is,i(z; φ∗2) − R2,s(z))2
]

v(dz), i = 3, 4, 5, 6,

(4.10)

in which R2,s(z) = z ∧ θ
γ1er(T−s)−2ξ . From (4.7), we obtain V3(t, y) as shown in (4.5).

Next, we present the expectation of the reinsurer’s terminal surplus. Inserting R∗t (z), I∗t (z), which
are given in Theorem 2.2 and 3.2, and π∗3(t), (4.8) into (4.4), yields

b′3(t) +
(µ − r)2

γ1σ2 + er(T−t)
∫ ∞

0

[
θI∗t (z) + ξ(I∗t (z))2 + a(I∗t (z) − R∗t (z))2

]
v(dz) = 0.

Together with terminal condition b3(T ) = 0, we obtain

b3(t) =
(µ − r)2(T − t)

γ1σ2 +

6∑
i=1

∫ T

t
Fi(s)IPi(s)ds,

where

Fi(s) =er(T−s)
∫ ∞

0

[
θIs,i(z; φ∗2) + ξI2

s,i(z; φ∗2) + a(Is,i(z; φ∗2) − z)2
]

v(dz), i = 1, 2;

Fi(s) =er(T−s)
∫ ∞

0

[
θIs,i(z; φ∗2) + ξI2

s,i(z; φ∗2) + a(Is,i(z; φ∗2) − R2,s(z))2
]

v(dz), i = 3, 4, 5, 6,
(4.11)

in which, R2,s(z) = z ∧ θ
γ1er(T−s)−2ξ . Finally, from (4.8), we have (4.6). �
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5. Numerical analysis

In this section, we analyze the impact of some parameters, such as the extra charge rate a, parameters
of the ambiguous aversion β1, β2 and the risk aversion coefficient γ1, γ2, on the optimal reinsurance
strategy as well as the value functions of the insurer and the reinsurer by several numerical experiments.
Unless otherwise specified, the basic parameters in the following analysis are as follows: x = 10, y =

100, σ = 0.2, µ = 0.06, β1 = 0.6, λ = 1, ξ = 0.2, θ = 0.3, γ1 = 0.6, γ2 = 1, r = 0.03, t = 0,T =

10, ρ = 1, β2 = 1, η = 0.2, a = 2. And we presume that the loss obeys an exponential distribution with
a parameter of 1, i.e., F(z) = 1 − e−z.

Figure 1(a) shows the optimal cession loss increases with the extra charge rate a when the loss z
is relatively small. However, when the loss z is relatively large, the cession loss I∗t (z) decreases as
a increases. In fact, to reduce the cost of service, cession loss of the insurer should be closer to the
reinsurer’s preferred level of reinsurance. Due to 2ξ−γ1er(T−t) < 0, the preferred reinsurance level of the
reinsurer is z∧ θ

γ1er(T−t)−2ξ . When z < θ
γ1er(T−t)−2ξ , the reinsurer prefers full reinsurance. As a increases, the

insurer will pay more for losses that deviate from full reinsurance. Thus, to reduce costs, the insurer’s
reinsurance strategy will be more inclined to full reinsurance. Similarly, when losses z > θ

γ1er(T−t)−2ξ , the
reinsurer prefers to take θ

γ1er(T−t)−2ξ . To reduce the penalty for deviating from the reinsurer’s preferred
reinsurance level, the insurer’s reinsurance strategy should be more inclined to θ

γ1er(T−t)−2ξ . Figure 1(b)
shows the cession losses of insurer I∗t (z) increases with β2, which is the ambiguity aversion parameter
for jump risk. As β2 increases, the insurer becomes more uncertain about the intensity of claim arrival
and thus will reduce the retained losses to mitigate this uncertainty. Therefore, more losses are ceded
to the reinsurer.
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Figure 1. The effects of a, β2 on the optimal reinsurance strategy of the insurer.

Figure 2 illustrates the effect of parameters a, γ1, γ2, β1 and β2 on the value function V2(t, x). From
Figure 2(a), we conclude that as the extra charge rate a increases, V2(t, x) decreases. The higher the
extra charge rate is, the more reinsurance premiums the insurer pays for ceded losses and the less
wealth the insurer invests in the financial markets. Thus surplus of the insurer decreases. Figure 2(b)
shows that as the risk aversion coefficient γ2 increases, the value function V2(t, x) has a decreasing
trend, which is in line with the form of the objective function (3.9). Moreover, Figure 2(c) shows
that as the risk aversion γ1 of the reinsurer increases, the insurer’s value function V2(t, x) first remains
constant, then increases and finally decreases. From Figure 2(d), we find that the value function V2(t, x)
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tends to decrease as the ambiguity aversion to diffusion risk β1 increases, but this downward trend is
not significant. Figure 2(e) presents that the value function V2(t, x) decreases as the ambiguity aversion
to jump risk β2 increases. Combining Figure 2(d) with Figure 2(e), we can find that the ambiguity
aversion to jump risk has a greater impact on the value function V2(t, x) than the ambiguity aversion
to diffusion risk. Moreover, in theory, if the insurer adopts the preferred reinsurance level R∗t (z) of
reinsurer, the objective function of the insurer is smaller than the value function V2(t, x) with I∗t (z).
Figures 2(a)–2(d) and 2(f) support this conclusion. In fact, from Figures 2(a)–2(d) and 2(f), we find
that the curve of the value function with I = R∗ is always below the curve of the value function with
I = I∗.
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Figure 2. The effects of a, γ1, γ2, β1 and β2 on the value function of the insurer.
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Figure 3 presents the effect of the extra charge rate a and the ambiguity aversion to jump risk β2

on the value function V3(t, y). As the extra charge rate a increases, V3(t, y) tends to rise as is shown in
Figure 3(a). In fact, it is quite obvious that the increase in the extra charge rate leads to an increase in
the surplus of the reinsurer, which in turn causes an increase in the value function. Figure 3(b) shows
the increase of β2 will raise the reinsurer’s value function V3(t, y). As Figure 1(b) demonstrates, as
ambiguity aversion to jump risk increases, the insurer cedes more losses to the reinsurer, which may
exceed the reinsurer’s preferred level of reinsurance. As a result, the insurer pays additional costs to
the reinsurer, which in turn increases the reinsurer’s surplus. Figure 3(c) shows that the reinsurer’s
value function V3(t, y) first decreases, then increases and finally decreases as its own risk aversion γ1

increases.
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Figure 3. The effects of a, β2, γ1 on the value function of the reinsurer.

6. Conclusions

In this paper, we investigate the optimal reinsurance investment strategies of the insurer and the
reinsurer under mean-variance criterion, where the reinsurer proposes a preferred level of reinsurance
and charges an extra fee as a penalty for losses that deviate from the reinsurer’s preferred level of
reinsurance. Since the reinsurer has a larger market share, the reinsurer has a greater say in negotiating
the reinsurance contracts. Specifically, the reinsurer first proposes its preferred level of reinsurance
to the insurer.Secondly, when the insurer receives information about the reinsurer’s decision, the
insurer trades off its own risk bearing capacity against the reinsurance premium to find the optimal
reinsurance-investment strategy under mean-variance criterion. In addition to being risk aversion, we
suppose that the insurer is ambiguity averse to jump risk and diffusion risk and obtain a robust optimal

AIMS Mathematics Volume 7, Issue 6, 10024–10051.



10049

reinsurance-investment strategy that is no longer excess of loss reinsurance or proportional reinsurance.
We discover that the optimal reinsurance policy relies on the degree of ambiguous aversion β2 to
jump risk and not on ambiguous aversion β1 to diffusion risk. In particular, the insurer may purchase
proportional reinsurance in different ranges of losses and the percentage purchased depends on the
extra charge rate a, which is more in line with market practice than excess-of-loss reinsurance and
proportional reinsurance.
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