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Abstract: The process white noise (PWN) and observation white noise (OWN) estimation problem 

for linear discrete fractional order systems (LDFOS) is addressed in this study. By using the Grünwald-

Letnikov (G-L) operator as a definition of the discrete fractional calculus (DFC), LDFOS is 

transformed into a class of linear discrete time-delay systems. However, it is different from the general 

time-delay system, in which the time-delay part is the cumulative sum from time 0 to the previous 

time. Based on the orthogonal projection theorem, a suboptimal one-step predictor of LDFOS is 

designed. Due to the existence of cumulative sum time-delay in system, the Riccati equation has one 

more cumulative sum state error variance term, which is different from the classical Kalman filter (KF). 

Moreover, using innovation analysis technology, the filtering and fixed-lag smoothing estimators of 

PWN and OWN in the form of noise orthogonal projection gain matrices are derived. Finally, two 

simulation examples are given to verify the effectiveness of PWN and OWN estimators. 
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1. Introduction 

The estimation of PWN and OWN for linear or nonlinear system, also known as deconvolution 

problem [1], have important applications in petroleum exploration, image restoration, voice processing, 

state estimation and fault diagnosis [1‒5]. Mendel proposed an input white noise estimation (WNE) 

method based on KF under the application background of petroleum exploration [2]. In [3], Wang and 

Zheng considered the influence of white noise in the modeling of networked control system, 

constructed the KF of the system, and calculated the filter parameters. By comparing the filter output 
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with the actual system, the sensor and actuator faults were diagnosed by generating residual quantities. 

In [4], Singh et al. used the method of linear partial differential equation to model the dynamic image 

field driven by Gaussian white noise (GWN), that is, through the noise measurement of the above 

image field, the magnetic resonance image was restored to the original image. By predicting the 

shielded speech spectrum envelope in real time, the spectrum energy of white noise could be adjusted 

to generate a shielded signal similar to white noise, so as to shield the signal more accurately to prevent 

speech information from being eavesdropped [5]. At present, the WNE of linear discrete system has 

achieved rich results, but the WNE of LDFOS is rarely studied. 

It is generally believed that fractional order was introduced in 1695, and its important research 

began in the early 21st century. From a large number of reported literature, we can see that the 

fractional order and its related problems have been studied in mathematics and other fields. In [6], 

Atici and Eloe gave two solutions for the discrete constant coefficient half-order fractional equation, 

and studied the existence of its initial value problem, which was a good promotion for the development 

of DFC. In [7], Huang and Wu et al. presented the definition of DFC of interval valued functions, 

which laid a solid foundation for the applications of fuzzy fractional difference equations. Wu et al. 

presented the fractional q-deformation mapping, and reported chaos in fractional q-deformed maps [8]. 

In [9], Sierociuk and Dzielinski developed the KF for linear and nonlinear fractional discrete state 

space system, and explained the application under what circumstances. In [10], Zarei et al. designed a 

unknown input filter for LDFOS, which could decouple its interference in a noisy environment. In [11], 

the basic estimation problems of fractional order system (FOS) were solved in the form of KF. Based 

on the infinite dimensional form of LDFOS, Sierociuk et al. studied the application of fractional KF 

application over lossy network [12]. In [13], Ram and Mohanty applied the concept of fractional 

calculus to the enhanced signal, and used G-L, Caputo and Riemann-Liouville methods to decompose 

the signal to achieve the enhanced effect. In [14], Wu et al. approximately transformed Lévy noises 

into GWN, and proposed an improved KF for LDFOS with non-GWN. Based on the proposed 

fractional order dynamic equivalent circuit model of the ultracapacitor, Wang et al. studied the 

application of particle filter and fractional KF hybrid algorithm in state of charge estimation [15]. FOS 

and fractional KF were also often used to model and estimate the state of charge of lithium-ion batteries 

in electric vehicles, and many results have been achieved [16–18]. In [19], Raïssi and Aoun established 

a fractional order observer in the exceptional case where the estimation error can be positive, and then 

changed the coordinates to extend it to the general case, so as to design a robust observer for dynamical 

continuous linear FOS. Wu and Luo et al. proposed a fractional order short memory method, which 

resulted in equations that could improve the performance of neural networks, and suggested some 

potential application directions [20]. In [21], Dehestani et al. studied the optimal control problem of 

dynamic FOS with varying orders by using the method of fractional Bessel wavelet, and proposed 

fractional derivative operator of variable order in the sense of Caputo type. On the basis of the stability 

of FOS and the properties of Kronecker product, Li obtained sufficient conditions for the robust 

asymptotically stable augmented system, and a state estimator was designed to estimate the state of 

the same complex fractional networks [22]. In [23], Abdeljawad et al. proposed a new DFC based on 

time scale, through which the application of image encryption technology in information security can 

be further studied. In [24], based on recursive least square algorithm, Idiou et al. proposed an 

identification algorithm for linear fractional order differential equations. As far as the authors know, 

although some achievements have been made in the research of observer or filter for LDFOS, the 

research on WNE has not been carried out. 
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In this paper, the state estimation methods of LDFOS are summarized, and the one-step predictor 

is designed by using the projection theorem. Then, based on the proposed one-step predictor of LDFOS, 

using innovation analysis technology, we propose the filter and fixed-lag smoother for PWN and OWN. 

The main innovations and characteristics of this paper are as follows: (1) The WNE for LDFOS is 

studied for the first time. (2) At the same time, a unified approach to recursive PWN and OWN filtering 

and smoothing for LDFOS is proposed. 

The structure of this paper is as follows. In the second section, we introduce the system model 

and describe the main problems. In Section 3, we introduce the one-step predictor for LDFOS. In 

Section 4, we obtain filter and fixed-lag smoother for PWN and OWN of linear discrete random FOS. 

Finally, in Section 5, the proposed PWN, OWN filter and fixed-lag smoother are simulated. 

2. System model and problem formulation 

The discrete linear stochastic FOS is represented by the following state space representation: 

∆𝛾𝑥(𝜁 + 1) = 𝐴𝑥(𝜁) + 𝐵𝑢(𝜁) + 𝜔(𝜁),                       (1) 

𝑦(𝜁) = 𝐻𝑥(𝜁) + 𝑣(𝜁),                             (2) 

with 

∆𝛾𝑥(𝜁 + 1) = [

∆𝑛1𝑥1,𝜁+1

⋮
∆𝑛𝛧𝑥𝛧,𝜁+1

], 

where 𝑥(𝜁) ∈ 𝑅𝛧  is the state vector, 𝑦(𝜁) ∈ 𝑅𝑚  is observation vector, 𝑢(𝜁) ∈ 𝑅𝑝  is the system 

input, 𝜔(𝜁) ∈ 𝑅𝛧 is the PWN, 𝑣(𝜁) ∈ 𝑅𝑚 is the OWN, 𝑛1, ⋯ , 𝑛𝛧 are the orders of equations and 

are arbitrary constants, 𝛧  refers to the number of equations above, ∆𝑛𝛧𝑥𝛧,𝜁+1  is the 𝑛𝛧  order 

difference of the 𝛧 component of 𝑥(𝜁 + 1), 𝜁𝜖𝑍+, and it can be obtained from the following G-L 

operator 

∆𝑛𝑥(𝜁) =
1

𝒽𝑛
∑ (−1)𝑗 (

𝑛
𝑗 ) 𝑥(𝜁 − 𝑗)𝜁

𝑗=0 ,                     (3) 

where 𝒽 is the sampling interval, it's assumed to be 1 throughout the paper, and the factor (
𝑛
𝑗 ) can 

be obtained by the following formula 

(
𝑛
𝑗 ) = {

1 𝑓𝑜𝑟 𝑗 = 0,

𝑛(𝑛 − 1) ⋯ (𝑛 − 𝑗 + 1)

𝑗!
𝑓𝑜𝑟 𝑗 > 0.

 

Assumption 1. 𝜔(𝜁) and 𝑣(𝜁) are uncorrelated white noise with zero mean and variance of 𝑄𝜁 

and 𝑅𝜁, respectively 

𝐸𝜔(𝜁) = 0, 𝐸𝑣(𝜁) = 0, 𝐸[𝜔(𝜁)𝑣𝑇(𝜁)] = 0, ∀𝜁,𝑗, 

𝐸[𝜔(𝜁)𝜔𝑇(𝑗)] = 𝑄𝜁𝛿𝜁𝑗, 𝐸[𝑣(𝜁)𝑣𝑇(𝑗)] = 𝑅𝜁𝛿𝜁𝑗,                  (4) 
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where 

𝛿𝜁𝜁 = 1, 𝛿𝜁𝑗 = 0(𝜁 ≠ 𝑗), 𝑄𝜁 > 0, 𝑅𝜁 > 0. 

Assumption 2. The initial state 𝑥(0) is disrelated to 𝜔(𝜁) and 𝑣(𝜁), and 

𝐸𝑥(0) = 𝜇0,                                (5) 

𝐸[(𝑥(0) − 𝜇0)(𝑥(0) − 𝜇0)𝑇] = 𝑃0.                     (6) 

Assumption 3. 𝑢(𝜁) is a known deterministic control quantity. 

The WNE problem for LDFOS (1) to (2) is given as follows: 

Problem 1. Given an integer 𝛧 and based on the LDFOS (1) to (2) with observation {{𝑦(𝑗)}𝑗=0
𝜁+𝛧

}, 

find a suboptimal linear estimator �̂�(𝜁|𝜁 + 𝛧)  of PWN 𝜔(𝜁) , and a suboptimal linear estimator 

�̂�(𝜁|𝜁 + 𝛧) of OWN 𝑣(𝜁) for 𝛧 = 0, 𝛧 > 0 or 𝛧 < 0. 

Remark 1. When 𝛧 = 0, it corresponds to filtering WNE of LDFOS; when 𝛧 > 0, it corresponds to 

fixed-lag smoothing WNE of LDFOS; when 𝛧 < 0, it corresponds to multi-step predicting WNE of 

LDFOS, but according to the projection theorem, we can’t get the estimation when 𝛧 < 0. Therefore, 

we only discuss the cases when 𝛧 = 0 and 𝛧 > 0 in this paper. 

3. Design of one-step predictor for LDFOS 

According to system (1)–(2) and the definition of G-L operator, it is readily obtained the following 

state space model with delay of system (1) to (2), which is similar to Definition 3 in [9]. 

𝑥(𝜁 + 1) = 𝐴𝑥(𝜁) + 𝐵𝑢(𝜁) + 𝜔(𝜁) − ∑ (−1)𝑗𝛾𝑗𝑥(𝜁 + 1 − 𝑗)𝜁+1
𝑗=1 ,          (7) 

𝑦(𝜁) = 𝐻𝑥(𝜁) + 𝑣(𝜁),                             (8) 

with 

𝛾𝜁 = 𝑑𝑖𝑎𝑔 [(
𝑛1

𝜁 ) ⋯ (
𝑛𝛧

𝜁 )]. 

The above formulas (7) and (8) can be proved by referring to (1)‒(3). 

The state vector one-step predictor at time 𝜁 is denoted as �̂�(𝜁|𝜁 − 1), the state vector filter at 

time 𝜁 is denoted as �̂�(𝜁|𝜁). 

Define the variance matrix of one-step predicting error, the variance matrix of filtering error, and 

innovation as 

𝑃(𝜁|𝜁 − 1) ≜ 𝐸[(𝑥(𝜁) − �̂�(𝜁|𝜁 − 1))(𝑥(𝜁) − �̂�(𝜁|𝜁 − 1))𝑇], 

𝑃(𝜁|𝜁) ≜ 𝐸[(𝑥(𝜁) − �̂�(𝜁|𝜁))(𝑥(𝜁) − �̂�(𝜁|𝜁))𝑇], 

ℨ(𝜁) ≜ 𝑦(𝜁) − �̂�(𝜁|𝜁 − 1), 

where 
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�̂�(𝜁|𝜁 − 1) = 𝐻�̂�(𝜁|𝜁 − 1). 

In the following lemma, we give the one-step predictor for the LDFOS. 

Lemma 1. According to system (1)‒(2), Assumptions 1‒3 and Problem 1, the one-step predictor is 

given by the following equations 

�̂�(𝜁 + 1|𝜁) = 𝐴�̂�(𝜁|𝜁) + 𝐵𝑢(𝜁) − ∑ (−1)𝑗𝛾𝑗�̂�(𝜁 + 1 − 𝑗|𝜁 + 1 − 𝑗)𝜁+1
𝑗=1 ,         (9) 

𝑃(𝜁|𝜁 − 1) = (𝐴 + 𝛾1)𝑃(𝜁 − 1|𝜁 − 1)(𝐴 + 𝛾1)𝑇 + 𝑄𝜁−1 + ∑ 𝛾𝑗𝑃(𝜁 − j|𝜁 − j)𝛾𝑗
𝑇𝜁

𝑗=2 ,  (10) 

�̂�(𝜁|𝜁) = �̂�(𝜁|𝜁 − 1) + 𝒦(𝜁)ℨ(𝜁),                       (11) 

𝑃(𝜁|𝜁) = (𝐼𝑛 − 𝒦(𝜁)𝐻)𝑃(𝜁|𝜁 − 1),                      (12) 

where 

𝒦(𝜁) = 𝑃(𝜁|𝜁 − 1)𝐻𝑇(𝐻𝑃(𝜁|𝜁 − 1)𝐻𝑇 + 𝑅𝜁)
−1

,                (13) 

with the initial conditions 

�̂�(0|−1) = 𝜇0, 𝑃(0|0) = 𝐸[(𝑥(0) − �̂�(0|0))(𝑥(0) − �̂�(0|0))𝑇]. 

Proof. Using projection formula and (7), we have 

�̂�(𝜁 + 1|𝜁) = ∑ 𝐸[𝑥(𝜁 + 1)ℨ𝑇(𝑗)][𝐸[ℨ(𝑗)ℨ𝑇(𝑗)]]
−1

ℨ(𝑗)𝜁
𝑗=0 = ∑ 𝐸[(𝐴𝑥(𝜁) + 𝐵𝑢(𝜁) + 𝜔(𝜁)𝜁

𝑗=0 −

∑ 𝛾𝑗𝑥(𝜁 + 1 − 𝑗))ℨ𝑇(𝑗)][𝐸[ℨ(𝑗)ℨ𝑇(𝑗)]]
−1

ℨ(𝑗)𝜁+1
𝑗=1 ≈ 𝐴�̂�(𝜁|𝜁) + 𝐵𝑢(𝜁) −

∑ (−1)𝑗𝛾𝑗�̂�(𝜁 + 1 − 𝑗|𝜁 + 1 − 𝑗)𝜁+1
𝑗=1 .                       (14) 

Employing the same method, the filter can be computed by 

�̂�(𝜁|𝜁) = ∑ 𝐸[𝑥(𝜁)ℨ𝑇(𝑗)][𝐸[ℨ(𝑗)ℨ𝑇(𝑗)]]
−1

ℨ(𝑗)𝜁
𝑗=0 = ∑ 𝐸[(𝐴𝑥(𝜁 − 1) + 𝐵𝑢(𝜁 − 1) +

𝜁
𝑗=0

𝜔(𝜁 − 1) − ∑ (−1)𝑗𝛾𝑗𝑥(𝜁 − 𝑗)𝜁
𝑗=1 )ℨ𝑇(𝑗)][𝐸[ℨ(𝑗)ℨ𝑇(𝑗)]]

−1
ℨ(𝑗) = �̂�(𝜁|𝜁 − 1) + 𝒦(𝜁)ℨ(𝜁). 

According to (9) and innovation analysis technology, we have 

𝑃(𝜁|𝜁 − 1) = 𝐸 [(𝑥(𝜁) − �̂�(𝜁|𝜁 − 1))(𝑥(𝜁) − �̂�(𝜁|𝜁 − 1))
𝑇

] ≈ (𝐴 + 𝛾1)𝑃(𝜁 − 1|𝜁 − 1)(𝐴 +

𝛾1)𝑇 + 𝑄𝜁−1 + ∑ 𝛾𝑗𝑃(𝜁 − 𝑗|𝜁 − 𝑗)𝛾𝑗
𝑇𝜁

𝑗=2 .                  (15) 

Applying the same analysis, we have 𝑃(𝜁|𝜁) = (𝐼𝑛 − 𝒦(𝜁)𝐻)𝑃(𝜁|𝜁 − 1).The one-step gain matrix 

𝒦(𝜁) can be proved by the following formula 
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𝒦(𝜁) = 𝐸[𝑥(𝜁)ℨ𝑇(𝜁)][𝐸[ℨ(𝜁)ℨ𝑇(𝜁)]]
−1

= 𝐸[𝑥(𝜁)(𝑣(𝜁) + 𝐻𝑥(𝜁) − 𝐻�̂�(𝜁|𝜁 − 1))𝑇] × 𝐸[(𝑣(𝜁) +

𝐻𝑥(𝜁) − 𝐻�̂�(𝜁|𝜁 − 1))(𝑣(𝜁) + 𝐻𝑥(𝜁) − 𝐻�̂�(𝜁|𝜁 − 1))𝑇]−1 = 𝑃(𝜁|𝜁 − 1)𝐻𝑇(𝐻𝑃(𝜁|𝜁 − 1)𝐻𝑇 +

𝑅𝜁)
−1

. 

The proof is now completed. 

Remark 2. In order to make it easier to calculate (14) and (15), we make a simplified assumption 

𝐸[𝑥(𝜁 + 1 − 𝑗|𝜁)] ≊ 𝐸[𝑥(𝜁 + 1 − 𝑗|𝜁 + 1 − 𝑗)], 𝑖 = 1, ⋯ , 𝜁 + 1. 

This assumption implies that the past state vector is not updated by the newer data at time 𝜁. In this 

way, the calculation amount can be reduced without affecting the accuracy of the algorithm. Therefore, 

under this simplified assumption, the estimator obtained in this paper is suboptimal. 

4. Design of white noise estimator for LDFOS 

4.1. PWN estimator 

Based on the innovation analysis method, we have the following theorem. 

Theorem 1. According to system (1)‒(2), Assumptions 1‒3 and Problem 1, the PWN estimator is 

proposed by the following equations 

�̂�(𝜁|𝜁) = 0, (𝛧 = 0),                            (16) 

�̂�(𝜁|𝜁 + 1) = 𝐻𝑇𝑄𝜁[𝑅𝜁 + 𝐻(𝑃(𝜁 + 1|𝜁))𝐻𝑇]−1ℨ(𝜁 + 1), (𝛧 = 1),         (17) 

�̂�(𝜁|𝜁 + 𝛧) = ∑ 𝑀𝜔(𝜁|𝜁 + 𝑖)ℨ(𝜁 + 𝑖)𝛧
𝑖=1 , (𝛧 > 0),              (18) 

where 

𝑀𝜔(𝜁|𝜁 + 𝛧) = 𝐻𝑇((𝐴 + 𝛾1)𝑇)𝑍−1 ∏ (𝐼𝑛 − 𝒦(𝜁 + 𝑖)𝐻)𝑇𝛧−1
𝑖=1 ((𝐴 + 𝛾1)𝑇𝑄𝜁 −

∑ (−1)𝑗𝛾𝑗
𝑇𝑄𝜁

𝜁+𝛧
𝑗=2 )[𝑅𝜁+𝛧 + 𝐻(𝑃(𝜁 + 𝑍|𝜁 + 𝑍 − 1))𝐻𝑇]−1. 

Proof. Note that ℒ({{𝑦(𝑗)}𝑗=1
𝑗=𝜁

}) ⊂ ℒ({{𝑣(𝑗)}𝑗=1
𝑗=𝜁

}, {{𝜔(𝑗)}𝑗=0
𝑗=𝜁−1

}, 𝑥(0)) and Assumption 1, thus we 

have 𝜔(𝜁) ⊥ ℒ ({{𝑦(𝑗)}𝑗=1
𝑗=𝜁

}), that is �̂�(𝜁|𝜁) = 𝑝𝑟𝑜𝑗 (𝜔(𝜁)|{{𝑦(𝑗)}𝑗=1
𝑗=𝜁

}) = 0. 

We can prove (17) by projection theorem, namely one-step fixed-lag smoother 

�̂�(𝜁|𝜁 + 1) = ∑ 𝐸[𝜔(𝜁)ℨ𝑇(𝑗)][𝐸[ℨ(𝑗)ℨ𝑇(𝑗)]]
−1𝜁+1

𝑗=0 ℨ(𝑗) = �̂�(𝜁|𝜁) + 𝐸[𝜔(𝜁)ℨ𝑇(𝜁 +

1)][𝐸[ℨ(𝜁 + 1)ℨ𝑇(𝜁 + 1)]]
−1

ℨ(𝜁 + 1) = 𝐸[𝜔(𝜁)ℨ𝑇(𝜁 + 1)][𝐸[ℨ(𝜁 + 1)ℨ𝑇(𝜁 + 1)]]
−1

ℨ(𝜁 + 1), 

with 
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𝐸[𝜔(𝜁)ℨ𝑇(𝜁 + 1)] = 𝐸 [𝜔(𝜁)(𝑣(𝜁 + 1) + 𝐻𝑥(𝜁 + 1) − 𝐻�̂�(𝜁 + 1|𝜁))
𝑇

] ≈ 𝐸[𝜔(𝜁)𝑣𝑇(𝜁 + 1)] +

𝐻𝑇𝐸[𝜔(𝜁)(𝐴𝑥(𝜁) + 𝐵𝑢(𝜁) + 𝜔(𝜁) − ∑ (−1)𝑗𝛾𝑗𝑥(𝜁 + 1 − 𝑗)𝜁+1
𝑗=1 − 𝐴�̂�(𝜁|𝜁) − 𝐵𝑢(𝜁) +

∑ (−1)𝑗𝛾𝑗�̂�(𝜁 + 1 − 𝑗|𝜁 + 1 − 𝑗)𝜁+1
𝑗=1 )Τ] = 𝐻𝑇𝑄𝜁. 

For the calculation of 𝐸[ℨ(𝜁 + 1)ℨ𝑇(𝜁 + 1)], please refer to the proof of 𝒦(𝜁) in Lemma 1. Thus, 

we have 

�̂�(𝜁|𝜁 + 1) = 𝐻𝑇𝑄𝜁[𝑅𝜁 + 𝐻((𝐴 + 𝛾1)𝑃(𝜁|𝜁)(𝐴 + 𝛾1)𝑇 + 𝑄𝜁 +

∑ 𝛾𝑗𝑃(𝜁 + 1 − 𝑗|𝜁 + 1 − 𝑗)𝛾𝑗
𝑇𝜁+1

𝑗=2 )𝐻𝑇]−1ℨ(𝜁 + 1) = 𝐻𝛵𝑄𝜁[𝑅𝜁 + 𝐻(𝑃(𝜁 + 1|𝜁))𝐻𝑇]−1ℨ(𝜁 + 1). 

Let the estimator gain be 𝑀𝜔(𝜁|𝜁 + 𝛧) = 𝐸[𝜔(𝜁)ℨ𝑇(𝜁 + 𝛧)][𝐸[ℨ(𝜁 + 𝛧)ℨ𝑇(𝜁 + 𝛧)]]
−1

, so we have 

�̂�(𝜁|𝜁 + 𝛧) = �̂�(𝜁|𝜁 + 𝛧 − 1) + 𝑀𝜔(𝜁|𝜁 + 𝛧)ℨ(𝜁 + 𝛧). 

In the light of Assumptions 1‒3, system (1) and (2), we have the following suboptimal recursive 

PWN estimator 

�̂�(𝜁|𝜁 + 𝛧) = ∑ 𝐸[𝜔(𝜁)ℨ𝑇(𝑗)][𝐸[ℨ(𝑗)ℨ𝑇(𝑗)]]
−1𝜁+𝛧

𝑗=0 ℨ(𝑗) =

∑ 𝐸[𝜔(𝜁)ℨ𝑇(𝑗)][𝐸[ℨ(𝑗)ℨ𝑇(𝑗)]]
−1𝜁+𝛧−1

𝑗=0 ℨ(𝑗) + 𝑀𝜔(𝜁|𝜁 + 𝛧)ℨ(𝜁 + 𝛧) = �̂�(𝜁|𝜁 + 𝛧 − 1) +

𝑀𝜔(𝜁|𝜁 + 𝛧)ℨ(𝜁 + 𝛧). 

Through the recurrence relation, we can get the formula of 

�̂�(𝜁|𝜁 + 𝛧) = ∑ 𝑀𝜔(𝜁|𝜁 + 𝑖)ℨ(𝜁 + 𝑖)𝛧
𝑖=1 , 

then 

[𝜔(𝜁)ℨ𝑇(𝜁 + 𝛧)] = 𝐸{𝜔(𝜁)[𝑣(𝜁 + 𝛧) + 𝐻𝑥(𝜁 + 𝛧) − 𝐻�̂�(𝜁 + 𝛧|𝜁 + 𝛧 − 1)]} ≈

𝐸[𝜔(𝜁)𝑣𝑇(𝜁 + 𝛧)] + (𝐴 + 𝛾1)𝑇𝐻𝑇𝐸 [𝜔(𝜁)(𝑥(𝜁 + 𝛧 − 1) − �̂�(𝜁 + 𝛧 − 1|𝜁 + 𝛧 − 1))
𝑇

] +

𝐻𝑇𝐸[𝜔(𝜁)𝜔𝑇(𝜁 + 𝛧 − 1)] − 𝐻𝑇 ∑ (−1)𝑗𝛾𝑗
𝑇𝜁+𝛧

𝑗=2 𝐸 [𝜔(𝜁)(𝑥(𝜁 + 𝛧 − 𝑗) −

�̂�(𝜁 + 𝛧 − 𝑗|𝜁 + 𝛧 − 𝑗))
𝑇

] = (𝐴 + 𝛾1)𝑇𝐻𝑇𝐸 [𝜔(𝜁)(𝑥(𝜁 + 𝛧 − 1) − �̂�(𝜁 + 𝛧 − 1|𝜁 + 𝛧 − 1))
𝑇

] −

𝐻𝑇 ∑ (−1)𝑗𝛾𝑗
𝑇𝜁+𝛧

𝑗=2 𝐸 [𝜔(𝜁)(𝑥(𝜁 + 𝛧 − 𝑗) − �̂�(𝜁 + 𝛧 − 𝑗|𝜁 + 𝛧 − 𝑗))
𝑇

]. 

Using (14) in Lemma 1, we get 

𝐸 [𝜔(𝜁)(𝑥(𝜁 + 𝛧 − 1) − �̂�(𝜁 + 𝛧 − 1|𝜁 + 𝛧 − 1))
𝑇

] = (𝐼𝑛 − 𝒦(𝜁 + 𝛧 − 1)𝐻)𝑇{(𝐴 + 𝛾1)𝑇𝐻𝑇 ×

𝐸 [𝜔(𝜁)(𝑥(𝜁 + 𝛧 − 2) − �̂�(𝜁 + 𝛧 − 2|𝜁 + 𝛧 − 2))
𝑇

] + 𝐻𝑇𝐸[𝜔(𝜁)𝜔𝑇(𝜁 + 𝛧 − 2)] −
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𝐻𝑇 ∑ (−1)𝑗𝛾𝑗
𝑇𝜁+𝛧−1

𝑗=2 𝐸 [𝜔(𝜁)(𝑥(𝜁 + 𝛧 − 1 − 𝑗) − �̂�(𝜁 + 𝛧 − 1 − 𝑗|𝜁 + 𝛧 − 1 − 𝑗))
𝑇

]}, 

then 

(𝐴 + 𝛾1)𝑇𝐻𝑇𝐸 [𝜔(𝜁)(𝑥(𝜁 + 𝛧 − 1) − �̂�(𝜁 + 𝛧 − 1|𝜁 + 𝛧 − 1))
𝑇

] = ((𝐴 + 𝛾1)𝑇)𝑍𝐻𝑇 ∏ (𝐼𝑛 −𝛧−1
𝑖=1

𝒦(𝜁 + 𝑖)𝐻)𝑇𝑄𝜁. 

Likewise, we have 

∑ (−1)𝑗𝛾𝑗
𝑇𝜁+𝛧

𝑗=2 𝐸 [𝜔(𝜁)(𝑥(𝜁 + 𝛧 − 𝑗) − �̂�(𝜁 + 𝛧 − 𝑗|𝜁 + 𝛧 − 𝑗))
𝑇

] = 𝐻𝑇((𝐴 + 𝛾1)𝑇)𝑍−1 ∏ (𝐼𝑛 −𝛧−1
𝑖=1

𝒦(𝜁 + 𝑖)𝐻)𝑇 ∑ (−1)𝑗𝛾𝑗
𝑇𝑄𝜁

𝜁+𝛧
𝑗=2 . 

Based on the above discussion, we have 

𝑀𝜔(𝜁|𝜁 + 𝛧) = 𝐻𝑇((𝐴 + 𝛾1)𝑇)𝑍−1 ∏ (𝐼𝑛 − 𝒦(𝜁 + 𝑖)𝐻)𝑇𝛧−1
𝑖=1 ((𝐴 + 𝛾1)𝑇𝑄𝜁 −

∑ (−1)𝑗𝛾𝑗
𝑇𝑄𝜁

𝜁+𝛧
𝑗=2 )[𝑅𝜁+𝛧 + 𝐻(𝑃(𝜁 + 𝛧|𝜁 + 𝛧 − 1))𝐻𝑇]−1). 

Thus, the proof is completed. 

4.2. OWN estimator 

Employing similar technical schemes, we can get the following theorem. 

Theorem 2. According to system (1)‒(2), Assumptions 1‒3 and Problem 1, the OWN estimator is 

proposed by the following equations 

�̂�(𝜁|𝜁) = 𝑅𝜁[𝑅𝜁 + 𝐻(𝑃(𝜁|𝜁 − 1))𝐻𝑇]−1ℨ(𝜁)     (𝛧 = 0),               (19) 

�̂�(𝜁|𝜁 + 1) = �̂�(𝜁|𝜁) − 𝑅𝜁𝒦𝑇(𝜁)(𝐴 + 𝛾1)𝑇𝐻𝑇[𝑅𝜁 + 𝐻(𝑃(𝜁 + 1|𝜁))𝐻𝑇]−1ℨ(𝜁 + 1), (𝑍 =

1)�̂�(𝜁|𝜁 + 𝛧) = �̂�(𝜁|𝜁) + ∑ 𝑀𝑣(𝜁|𝜁 + 𝑖)ℨ(𝜁 + 𝑖)𝛧
𝑖=1 , (𝛧 > 0),             (21) 

where 

𝑀𝑣(𝜁|𝜁 + 𝛧) = 𝐻𝑇𝒦𝑇(𝜁)((𝐴 + 𝛾1)𝑇)𝑍−1 ∏ (𝐼𝑛 − 𝒦(𝜁 + 𝑖)𝐻)𝑇𝛧−1
𝑖=1 ((𝐴 + 𝛾1)𝑇𝑅𝜁 −

∑ (−1)𝑗𝛾𝑗
𝑇𝑅𝜁

𝜁+𝛧
𝑗=2 )[𝑅𝜁+𝛧 + 𝐻(𝑃(𝜁 + 𝑍|𝜁 + 𝑍 − 1))𝐻𝑇]−1. 

Proof. We can prove the formula (19) by projection theorem, namely OWN filter 

�̂�(𝜁|𝜁) = ∑ 𝐸[𝑣(𝜁)ℨ𝑇(𝑗)][𝐸[ℨ(𝑗)ℨ𝑇(𝑗)]]
−1

ℨ(𝑗)𝜁
𝑗=0 = �̂�(𝜁|𝜁 − 1) +
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𝐸[𝑣(𝜁)ℨ𝑇(𝜁)][𝐸[ℨ(𝜁)ℨ𝑇(𝜁)]]
−1

ℨ(𝜁) = 0 + 𝐸[𝑣(𝜁)ℨ𝑇(𝜁)][𝐸[ℨ(𝜁)ℨ𝑇(𝜁)]]
−1

ℨ(𝜁) =

𝐸[𝑣(𝜁)ℨ𝑇(𝜁)][𝐸[ℨ(𝜁)ℨ𝑇(𝜁)]]
−1

ℨ(𝜁), 

with 

𝐸[𝑣(𝜁)ℨΤ(𝜁)] = 𝐸{𝑣(𝜁)[𝑣(𝜁) + 𝐻𝑥(𝜁) − 𝐻�̂�(𝜁|𝜁 − 1)]𝛵} ≈ 𝐸[𝑣(𝜁)𝑣𝑇(𝜁)] + 𝐻𝑇𝐸[𝑣(𝜁)(𝐴𝑥(𝜁 −

1) + 𝐵𝑢(𝜁 − 1) + 𝜔(𝜁 − 1) − ∑ (−1)𝑗𝛾𝑗𝑥(𝜁 − 𝑗)𝜁+1
𝑗=1 − 𝐴�̂�(𝜁 − 1|𝜁 − 1) − 𝐵𝑢(𝜁 − 1) +

∑ (−1)𝑗𝛾𝑗�̂�(𝜁 − 𝑗|𝜁 − 𝑗)𝜁+1
𝑗=1 )𝑇] = 𝑅𝜁. 

And 𝐸[ℨ(𝜁)ℨ𝑇(𝜁)] is computed by the proof of 𝒦(𝜁) in Lemma 1. Thus, we have 

�̂�(𝜁|𝜁) = 𝑅𝜁[𝑅𝜁 + 𝐻((𝐴 + 𝛾1)𝑃(𝜁 − 1|𝜁 − 1)(𝐴 + 𝛾1)𝑇 + 𝑄𝜁−1 +

∑ 𝛾𝑗𝑃(𝜁 − 𝑗|𝜁 − 𝑗)𝜁
𝑗=2 𝛾𝑗

𝑇)𝐻𝑇]−1ℨ(𝜁) = 𝑅𝜁[𝑅𝜁 + 𝐻(𝑃(𝜁|𝜁 − 1))𝐻𝑇]−1ℨ(𝜁). 

By projection formula and filter Eq (19), we have 

�̂�(𝜁|𝜁 + 1) = 𝑅𝜁[𝑅𝜁 + 𝐻(𝑃(𝜁|𝜁 − 1))𝐻𝑇]−1ℨ(𝜁) − 𝒦𝑇(𝜁)𝑅𝜁(𝐴 + 𝛾1)𝑇𝐻𝑇[𝑅𝜁 +

𝐻((𝐴 + 𝛾1)𝑃(𝜁|𝜁)(𝐴 + 𝛾1)𝑇 + 𝑄𝜁 + ∑ 𝛾𝑗𝑃(𝜁 + 1 − 𝑗|𝜁 + 1 − 𝑗)𝜁
𝑗=2 𝛾𝑗

𝑇)𝐻𝑇]−1ℨ(𝜁 + 1) = �̂�(𝜁|𝜁) −

𝑅𝜁𝒦𝑇(𝜁)(𝐴 + 𝛾1)𝑇𝐻𝑇[𝑅𝜁 + 𝐻(𝑃(𝜁 + 1|𝜁))𝐻𝑇]−1ℨ(𝜁 + 1). 

In the light of Assumptions 1‒3, system (1) and (2), we have the following suboptimal recursive OWN 

estimator 

�̂�(𝜁|𝜁 + 𝛧) = �̂�(𝜁|𝜁) + ∑ [𝑣(𝜁)ℨ𝑇(𝑗)][𝐸[ℨ(𝑗)ℨ𝑇(𝑗)]]
−1

ℨ(𝑗)𝜁+𝛧
𝑗=0 = �̂�(𝜁|𝜁) + �̂�(𝜁|𝜁 + 𝛧 − 1) +

𝐸[𝑣(𝜁)ℨ𝑇(𝜁 + 𝛧)][𝐸[ℨ(𝜁 + 𝛧)ℨ𝑇(𝜁 + 𝛧)]]
−1

ℨ(𝜁 + 𝛧). 

Let the estimator gain be 𝑀𝑣(𝜁|𝜁 + 𝛧) = 𝐸[𝑣(𝜁)ℨ𝑇(𝜁 + 𝛧)][𝐸[ℨ(𝜁 + 𝛧)ℨ𝑇(𝜁 + 𝛧)]]
−1

, so we get 

�̂�(𝜁|𝜁 + 𝛧) = �̂�(𝜁|𝜁) + �̂�(𝜁|𝜁 + 𝛧 − 1) + 𝑀𝑣(𝜁|𝜁 + 𝛧)ℨ(𝜁 + 𝛧). 

Through the recurrence relation, we can get the formula of 

�̂�(𝜁|𝜁 + 𝛧) = �̂�(𝜁|𝜁) + ∑ 𝑀𝑣(𝜁|𝜁 + 𝑖)ℨ(𝜁 + 𝑖)𝛧
𝑖=1 , 

with 

𝐸[𝑣(𝜁)ℨ𝑇(𝜁 + 𝛧)] = 𝐸{𝑣(𝜁)[𝑣(𝜁 + 𝛧) + 𝐻𝑥(𝜁 + 𝛧) − 𝐻�̂�(𝜁 + 𝛧|𝜁 + 𝛧 − 1)]𝑇} ≈

𝐸[𝑣(𝜁)𝑣𝑇(𝜁 + 𝛧)] + 𝐻𝑇(𝐴 + 𝛾1)𝑇𝐸 [𝑣(𝜁)(𝑥(𝜁 + 𝛧 − 1) − �̂�(𝜁 + 𝛧 − 1|𝜁 + 𝛧 − 1))
𝑇

] +
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𝐻𝑇𝐸[𝑣(𝜁)𝜔𝑇(𝜁 + 𝛧 − 1)] − 𝐻𝑇 ∑ (−1)𝑗𝛾𝑗
𝑇𝜁+𝛧

𝑗=2 𝐸 [𝑣(𝜁)(𝑥(𝜁 + 𝛧 − 𝑗) −

�̂�(𝜁 + 𝛧 − 𝑗|𝜁 + 𝛧 − 𝑗))
𝑇

] = 𝐻𝑇(𝐴 + 𝛾1)𝑇𝐸 [𝑣(𝜁)(𝑥(𝜁 + 𝛧 − 1) − �̂�(𝜁 + 𝛧 − 1|𝜁 + 𝛧 − 1))
𝑇

] −

𝐻𝑇 ∑ (−1)𝑗𝛾𝑗
𝑇𝐸 [𝑣(𝜁)(𝑥(𝜁 + 𝛧 − 𝑗) − �̂�(𝜁 + 𝛧 − 𝑗|𝜁 + 𝛧 − 𝑗))

𝑇
]

𝜁+𝛧
𝑗=2 . 

Using (14) in Lemma 1, we can get 

𝐸 [𝑣(𝜁)(𝑥(𝜁 + 𝛧 − 1) − �̂�(𝜁 + 𝛧 − 1|𝜁 + 𝛧 − 1))
𝑇

] = (𝐼𝑛 − 𝒦(𝜁 + 𝛧 − 1)𝐻)𝑇{(𝐴 + 𝛾1)𝑇 ×

𝐸[𝑣(𝜁)(𝑥(𝜁 + 𝛧 − 2) − �̂�(𝜁 + 𝛧 − 2|𝜁 + 𝛧 − 2))𝑇 + 𝐻𝑇𝐸[𝑣(𝜁)𝜔𝑇(𝜁 + 𝛧 − 2)] −

𝐻𝑇 ∑ (−1)𝑗𝛾𝑗
𝑇𝜁+𝛧−1

𝑗=2 𝐸[𝑣(𝜁)(𝑥(𝜁 + 𝛧 − 1 − 𝑗) − �̂�(𝜁 + 𝛧 − 1 − 𝑗|𝜁 + 𝛧 − 1 − 𝑗))𝑇]. 

With the same recursion method as Theorem 1, we get 

𝑀𝑣(𝜁|𝜁 + 𝛧) = 𝐻𝑇𝒦𝑇(𝜁)((𝐴 + 𝛾1)𝑇)𝑍−1 ∏ (𝐼𝑛 − 𝒦(𝜁 + 𝑖)𝐻)𝑇𝛧−1
𝑖=1 ((𝐴 + 𝛾1)𝑇𝑅𝜁 −

∑ (−1)𝑗𝛾𝑗
𝑇𝑅𝜁

𝜁+𝛧
𝑗=2 )[𝑅𝜁+𝛧 + 𝐻(𝑃(𝜁 + 𝛧|𝜁 + 𝛧 − 1))𝐻𝑇]−1. 

The proof is now completed. 

5. Examples 

Example 1. The following example considers LDFOS described by (1) and (2), where the system 

matrix is given by 

𝐴 = [
−0.1 1

0 −0.2
], 𝐵 = [

0
0

], 𝐻 = [0.6 0.3]. 

PWN and OWN are both uncorrelated white noises, satisfying 𝑅𝜁 = 0.09 and 𝑄𝜁 = [0.36 0; 0 1]. 

The fractional order 𝑛 = 0.6, and set 𝑢(𝜁) = 0. According to Theorem 1, when 𝑁 = 0, the filtering 

estimate of PWN is 0. The signal, filtering estimate, one-step smoothing estimate and five-step 

smoothing estimate of PWN are shown in Figures 1 and 2, in which Figure 1 is the simulation result 

of the first component 𝜔1 in PWN and Figure 2 is the simulation result of the second component 𝜔2 

in PWN. The signal, filtering estimate, one-step smoothing estimate and five-step smoothing estimate 

of OWN are shown in Figure 3. It is shown that the smoothing estimate has higher accuracy, and the 

five-step smoothing estimate of 𝜔2 has better estimation performance than the one-step smoothing 

estimate. 
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Figure 1. Signal, filtering estimate, one-step smoothing estimate and five-step smoothing 

estimate of ω1 in PWN. 

 

Figure 2. Signal, filtering estimate, one-step smoothing estimate and five-step smoothing 

estimate of ω2 in PWN. 

 

Figure 3. Signal, filtering estimate, one-step smoothing estimate and five-step smoothing 

estimate of OWN. 
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Example 2. In order to further illustrate the effectiveness of our algorithm, in this example, it is 

assumed that the parameter matrices of LDFOS is the same as the simulation system in [12], that is 

𝐴 = [
0 −0.1
1 0.2

], 𝐵 = [
0.2
0.3

], 𝐻 = [0.4 0.3], 

where the fractional order n=0.5, the PWN, OWN and input 𝑢(𝜁) are the same as Example 1. 

The signal, filtering estimation, one-step smoothing estimation and five-step smoothing 

estimation of PWN and OWN are shown in Figures 4‒6. It can be seen from the figures that our 

algorithm has accurate estimation performance, especially the fixed-lag smoothing estimation 

performance is better. Although fixed-lag smoothing estimation will lead to estimation delay, we can 

make an appropriate compromise between accuracy and fixed-lag steps to meet the requirements of 

rapidity and accuracy in practical application. 

 

 

Figure 4. Signal, filtering estimate, one-step smoothing estimate and five-step smoothing 

estimate of ω1 in PWN. 

 

Figure 5. Signal, filtering estimate, one-step smoothing estimate and five-step smoothing 

estimate of ω2 in PWN. 
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Figure 6. Signal, filtering estimate, one-step smoothing estimate and five-step smoothing 

estimate of OWN. 

6. Conclusions 

Based on the orthogonal projection theory in time domain, a unified approach to PWN and OWN 

filtering and smoothing for LDFOS has been given. Through G-L operator, LDFOS has been converted 

into a class of linear discrete system with cumulative sum time-delay. Suboptimal approximation 

algorithm has been used to reduce the complexity caused by cumulative sum time-delay in the system. 

Nevertheless, the Riccati equation and white noise estimator gain matrices are still different from the 

normal white noise estimators, which naturally include cumulative sum gain terms respectively. The 

results of this paper can be applied to the normal systems (n=0) as a special case. The algorithm has 

recursive characteristics and is suitable for real-time online calculation. 
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