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1. Introduction

It is well known that Gaudin models describe completely integrable classical and quantum long-
range interacting spin chains. Originally it was introduced by M. Gaudin for the simple Lie
algebra su(2) [1] and later generalized to arbitrary semi-simple Lie algebras [2,3]. This model attracted
considerable interest among theoretical and mathematical physicists, playing a distinguished role in
the realm of integrable systems. For example, classical Hamiltonian systems associated with Lax
matrices of the Gaudin-type in the context of a general group-theoretic approach [4], multi-Hamiltonian
formulations (see e.g., [5]) and their integrable discretizations through Bäcklund transformations (see
e.g., [6]), separation of variables of the rational Gaudin models (see e.g., [7–10]).

The separation of variables for finite-dimensional integrable systems are important for constructing

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2022557


9990

action-angle variables. Much work on the separation of variables for finite dimensional integrable
systems associated with hyperelliptic spectral curves was done(see e.g., [9–16]). It is worth noting
that Sklyanin gave an efficient way to construct separated variables for the classical integrable S L(3)
magnetic chain and sl(3) Gaudin model related to the non-hyperelliptic spectral curves [8]. After
this classical work, the general cases [17–19] and a sufficient condition to guarantee the “separation
polynomial” of Sklyanin under the corresponding r-matrix were provided in [20]. Action-angle
variables of the finite-dimensional integrable systems can be constructed by using separated variables
from the Liouville theorem and integration of Hamiltonian equations of motion. They were also
derived with the help of the scattering data for the first-order matrix differential operator [21], or
by finding real Darboux coordinates for scattering data [22, 23], or by using the algebraic-geometric
techniques [23–25]. Action-angle variables of the finite-dimensional integrable systems related to non-
hyperelliptic spectral curves can also be obtained in dealing with the stationary equations of soliton
hierarchies [24, 25].

Based on the previous research on Gaudin models [8, 10], the motivation of this paper is to use
the gl3(C) rational Gaudin model governed by the Lax matrix to study the constraint systems associated
with the generalized TWRI system: [26, 27]

ulk,t = clkulk,x + (cml − cmk)ulmumk, 1 ≤ l, k,m ≤ 3, (1.1)

where l, k,m are not equal to each other, the real constants c12, c21, c13, c31, c23, c32 are six real
constants and u12, u21, u13, u31, u23, u32 are complex functions of two real independent variables x
and t. Also, as a basic integrable model in mathematical physics, which has important applications
in nonlinear optics, plasma physics, acoustics, fluid dynamics, solid-state physics and other fields,
many studies have been done on the TWRI system. For example, Zakharov and Manakov [28, 29]
and Kaup [30] considered the inverse scattering transformation of the TWRI equations. It is shown
that the TWRI equations can be reduced to the generic sixth Painlevé equation [31]. Some explicit
solutions of the TWRI system are obtained in [32–39], including soliton solutions, rational solutions,
rogue wave solutions and so on. The finite dimensional Hamiltonian system associated with the TWRI
system is proved completely integrable in the Liouville sense [26]. Based on the theory of trigonal
curves, explicit algebro-geometric solutions of the TWRI system have been achieved in [40] by using
the asymptotic properties of the Baker-Akhiezer functions and the meromorphic functions [41, 42].

The outline is as follows. In Section 2, we review some basics about Lie-Poisson structure and
coadjoint representaive theory of Lie-algebra gl3(C). In Section 3, Lax matrix Vλ is introduced to study
the TWRI system (1.1) in the Lie-Poisson structure, the integrability of this restricted system and
the relation between the finite dimensional Hamiltonian system and the TWRI system (1.1) are also
discussed. In Section 4, the 9N dimensional Poisson manifold (gl3(C)∗)N is reduced to 6N dimensional
symplectic manifold by making a restriction on 3N common level set of Casimir functions, from
which 3N pairs of separated variables are constructed on the 6N dimensional symplectic manifold.
In Section 5, based on the Hamilton-Jacobi theory, the generating function to construct the canonical
transformation is obtained from separated variables to action-angle variables in implicit form. Further,
the functional independence of conserved integrals is proved in terms of the evolution of angle type
variables. In addition, the Jacobi inversion problems for the Lie-Poisson Hamiltonian systems related
to the TWRI system (1.1) are established.
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2. Preliminary

We start from a general definition of the Lie-Poisson structure [43]. Let G be a Lie group and g be
its Lie algebra. Let also g∗ be the dual of g with the natural pairing 〈A, B〉 between g and g∗. Consider
the algebra of smooth function F ∈ C∞(g∗), then its gradient ∇F ∈ g is defined as

〈x,∇F(y)〉 = lim
ε→0

F(y + εx) − F(y)
ε

, y, x ∈ g∗.

For any smooth functions F and G ∈ C∞(g∗), Lie-Poisson brakect is defined as

{F,G}(y) = 〈y, [∇F(y),∇G(y)]〉 (2.1)

When g is the matrix Lie-algebra gl3(C), we take the trace form 〈A, B〉 = tr(AB) as the pairing
between gl3(C) and gl3(C)∗ and fix the basis of gl3(C) as

Ekl = (δmlδnk)mn, 1 ≤ l, k ≤ 3,

where δi j are the Kronecker delta functions, which satisfy the commutative relations

[Emn, Ekl] = δnkEml − δlmEkn.

Since the trace form 〈A, B〉 = tr(AB) is a non-degenerate pairing, we can make an identification
gl3(C) � gl3(C)∗. In the sense of 〈Emn, ekl〉 = δmkδnl, one can find that the dual basis of {Ekl, 1 ≤ k, l ≤ 3}

is {ekl = Elk, 1 ≤ m, n ≤ 3}. Hereafter, we choose y =
3∑

l,k=1
yklekl ∈ gl3(C)∗ and ykl are coordinates

on gl3(C)∗. In these coordinates, the gradient ∇F ∈ gl3(C) is determined by

∇F =

3∑
k,l=1

∂F
∂ykl Ekl.

The Lie-Poisson bracket (2.1) become

{F,G}(y) = 〈y, [∇F(y),∇G(y)]〉 = tr(y[∇F(y),∇G(y)]) (2.2)

Specially, the brackets between the coordinates are

{ylk, ymn} = 〈y, [Ekl, Enm]〉 = δlnymk − δmkyln, 1 ≤ l, k,m, n ≤ 3. (2.3)

Using the cyclicity of the trace, the Hamiltonian vector field associated with (2.5) for a smooth function
F is represented as

XF(y) =
[
∇F(y), y

]
.

For any g ∈ GL3(C) and X ∈ gl3(C), the adjoint action of g ∈ GL3(C) on its Lie algebra gl3(C) is

AdgX = gXg−1.
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Then for any ξ ∈ gl3(C)∗, the coadjoint action Ad∗g of GL3(C) in the dual space gl3(C)∗ is defined as

〈Ad∗gy, X〈= 〈y,Adg−1 X〉 = 〈y, g−1Xg〉 = tr(yg−1Xg) = tr(gyg−1X) = 〈gyg−1, X〉.

It follows that Ad∗gy = gyg−1 = Adgy. The coadjoint orbit passing through any y ∈ gl3(C)∗ is

Oy = {Ad∗gy|g ∈ GL3(C)} = {y = gyg−1|g ∈ GL3(C)}

According to the representative theory of Lie group, we know that the coadjoint orbits of GL3(C) are
the symplectic leaves of the Lie-Poisson structure on gl3(C)∗.

A smooth function h on gl3(C)∗ is a Casimir if an only if it is invariant under the coadjoint action

h(Ad∗gy) = h(y) ∀g ∈ GL3(C), y ∈ gl3(C)∗.

Choose h̃k(y) = tr(yk), where y ∈ gl3(C)∗, k = 1, 2, 3, · · · , we have

h̃k(Ad∗gy) = tr((Ad∗gy)k) = tr((gyg−1)k) = tr(gykg−1) = tr(yk) = h̃k(y).

Thus, we choose three Casimir functions as tr(y), 1
2 tr(y2) and 1

3 tr(y3).
To study the Lie-Poisson Hamiltonian systems, we will use the direct product of N copies of gl3(C)∗

which is denoted by (gl3(C)∗)N . The standard Lie-Poisson structure on (gl3(C)∗)N is given by

{F,G} =

N∑
j=1

〈
y j,

[
∇ jF,∇ jG

]〉
, ∇ jF =

3∑
k,l=1

∂F
∂ykl

j

Elk (2.4)

where y j ∈ gl3(C)∗, j = 1, 2, · · · ,N.
The Hamiltonian vector field associated with Lie-Poisson bracket (2.4) for a smooth function F is

X jF(y j) =
[
∇ jF(y j), y j

]
, j = 1, . . . ,N (2.5)

and the 3N Casimir functions are tr(y j), 1
2 tr

(
y2

j
)
, 1

3 tr
(
y3

j
)
, j = 1, . . . ,N.

3. The Lie-Poisson Hamiltonian systems

In this section, we shall use the gl3(C) rational Gaudin model governed by the Lax matrix

Vλ = (Vlk(λ))3×3 = β +

N∑
j=1

y j

λ − λ j
, β = diag(β1, β2, β3) (3.1)

to study the TWRI system (βl are different constants).
To obtain the Lie-Poisson Hamiltonian systems from the Lax matrix (3.1), we choose

F1(λ) = trVλ, F2(λ) =
1
2

tr(V2
λ), F3(λ) =

1
3

tr(V3
λ) (3.2)

as the Hamiltonians. Let tkλ be the variables of Fk(λ), according to Hamiltonian vector field (2.5), the
Lie-Poisson Hamiltonian systems for Fk(λ), k = 1, 2, 3 are

y j,tkλ = [∇ jFk(λ), y j] =
1

λ − λ j
[Vk−1

λ , y j], j = 1, . . . ,N. (3.3)
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Proposition 3.1. The Lax matrix Vτ satisfies the Lax equations along the Fk(λ)-flows:

d
dtkλ

Vτ =

[
1

λ − τ
Vk−1
λ ,Vτ

]
, k = 2, 3

with λ, τ are two different constant spectral parameters.

Proof. By making use of (3.3), one infers

d
dtkλ

Vτ =

N∑
j=

1
τ − λ j

y j,tkλ

=
1

λ − τ

Vk−1
λ ,

N∑
j=1

y j

τ − λ j

 − 1
λ − τ

Vk−1
λ ,

N∑
j=1

y j

λ − λ j


=

1
λ − τ

[
Vk−1
λ ,Vτ − β

]
−

1
λ − τ

[
Vk−1
λ ,Vλ − β

]
=

[
1

λ − τ
Vk−1
λ ,Vτ

]
.

�

Based on Proposition 3.1, for any λ, τ, a direct calculation shows that

{Fl(τ),Fk(λ)} =
d

dtkλ
Fl(τ) =

1
l
tr
( d
dtkλ

V l
τ

)
=

1
l
tr

([
1

λ − τ
Vk−1
λ ,V l

τ

])
= 0, k, l = 2, 3,

Therefore, Fk(λ), k = 1, 2, 3 can be regarded as the generating function of integrals of the Hamiltonian
systems generated from it. Using (3.1), we arrive at

F1(λ) = trβ +

N∑
j=1

h1 j

λ − λ j
:= trβ +

∞∑
l=0

F1,l

λl+1 ,

F2(λ) =
1
2

tr(β2) +

N∑
j=1

E1, j

λ − λ j
+

N∑
j=1

h2 j

(λ − λ j)2

:=
1
2

tr(β2) +

∞∑
l=0

F2,l

λl+1 , (3.4)

where

h1 j = tr(y j), F1,l =

N∑
j=1

λl
jh1 j, E1, j = tr(βy j) +

N∑
k = 1
k , j

tr(y jyk)
λ j − λk

,

h2 j =
1
2

tr(y2
j), F2,l =

N∑
j=1

λl
jE1, j + l

N∑
j=1

λl−1
j h2 j, l = 0, 1, . . . .
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Similarly, we have

F3(λ) =
1
3

tr(V3
λ) =

1
3

tr(β3) +

N∑
j=1

E2, j

λ − λ j
+

N∑
j=1

E3, j

(λ − λ j)2 +

N∑
j=1

h3 j

(λ − λ j)3

:=
1
3

tr(β3) +

∞∑
l=0

F3,l

λl+1 , (3.5)

where

E2, j = tr(β2y j) +

N∑
k = 1
k , j

1
λ j − λk

tr(βy jyk + βyky j) +

N∑
i = 1

i , k, j

tr(y jykyi + y jyiyk)
3(λk − λi)

+

N∑
i = 1

i , k, j

tr(y jykyi + y jyiyk)
3(λ j − λi)

 +

N∑
k = 1
k , j

tr(y2
ky j − y2

jyk)

(λ j − λk)2

E3, j = tr(βy2
j) +

N∑
k = 1
k , j

tr(y2
jyk)

λ j − λk
, h3 j =

1
3

tr
(
y3

j
)
,

F3,l =

N∑
j=1

λl
jE2, j + l

N∑
j=1

λl−1
j E3, j +

1
2

l(l − 1)
N∑

j=1

λl−2
j h3 j, l = 0, 1, . . . .

which implies {El j, Ekm} = 0, l, k = 1, 2, 3, j,m = 1, . . . ,N and the following fact.

Corollary 3.1. Functions F1,l, F2,l, F3,l (l ≥ 1) are in involution in pairs with respect to the Lie-Poisson
bracket (2.4).

Now, we consider two Lie-Poisson Hamiltonian systems generated by the Hamiltonians

H =γ0F1,1 + γ1

(
trβF1,1 − F2,1 +

1
2

(F1,0)2
)

+ γ3P(β1)P(β2)

+ γ2

[
F3,1 +

1
2
[
(trβ)2 − tr(β2)

]
F1,1 − trβF2,1 +

1
2

trβ(F1,0)2 − F1,0F2,0

]
+ γ4P(β1)P(β3) + γ5P(β2)P(β3)

(3.6)

= α1

N∑
j=1

λ jy11
j + α2

N∑
j=1

λ jy22
j + α3

N∑
j=1

λ jy33
j + c−1

12

N∑
j=1

y12
j

N∑
j=1

y21
j + c−1

13

N∑
j=1

y13
j

N∑
j=1

y31
j + c−1

23

N∑
j=1

y23
j

N∑
j=1

y32
j

where

γ0 =
α1(β2 − β3)β2

1 + α2(β3 − β1)β2
2 + α3(β1 − β2)β2

3

(β1 − β2)(β2 − β3)(β1 − β3)
,
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γ1 =
α1(β3 − β2)β1 + α2(β1 − β3)β2 + α3(β2 − β1)β3

(β1 − β2)(β2 − β3)(β1 − β3)
,

γ2 =
α1(β2 − β3) + α2(β3 − β1) + α3(β1 − β2)

(β1 − β2)(β2 − β3)(β1 − β3)
,

γ3 =
α2 − α1

(β1 − β2)3(β2 − β3)(β1 − β3)
, γ4 =

α1 − α3

(β1 − β2)(β2 − β3)(β1 − β3)2 ,

γ5 =
α3 − α2

(β1 − β2)(β2 − β3)2(β1 − β3)
,

P(β j) = β2
j F1,0 − β j(trβF1,0 − F2,0) + F3,0 +

1
3
[
(trβ)2 − tr(β2)

]
F1,0 − trβF2,0

and

H1 = F2,1 −
(β2 − β3)2P2(β1) − (β1 − β3)2P2(β2) + (β1 − β2)2P2(β3)

2(β1 − β2)2(β1 − β3)2(β2 − β3)2

= β1

N∑
j=1

λ jy11
j + β2

N∑
j=1

λ jy22
j + β3

N∑
j=1

λ jy33
j +

N∑
j=1

y12
j

N∑
j=1

y21
j +

N∑
j=1

y13
j

N∑
j=1

y31
j +

N∑
j=1

y23
j

N∑
j=1

y32
j .

(3.7)

respectively, where α1, α2, α3 are different constants and clk =
βl−βk
αl−αk

, 1 ≤ l, k ≤ 3, l , k.
The equations of motion for H and H1 are

y j,x =
[
∇ jH, y j

]
, j = 1, . . . ,N (3.8)

and
y j,t = [∇ jH1, y j], j = 1, . . . ,N (3.9)

which are exactly the Lie-Poisson Hamiltonian systems associated with TWRI system (1.1).
In fact, the Lie-Poisson Hamiltonian systems (3.8) and (3.9) are generated respectively by the N

copies of adjoint representations of the spectral problems

ϕx = Uϕ, ϕ =


ϕ1

ϕ2

ϕ3

 ,U = λA + U0 = λ


α1 0 0
0 α2 0
0 0 α3

 +


0 u12 u13

u21 0 u23

u31 u32 0

 (3.10)

and

ϕt = Wϕ, W =


β1λ c12u12 c13u13

c21u21 β2λ c23u23

c31u31 c32u32 β3λ

 (3.11)

under the Bargmann constraint

ulk = c−1
lk

N∑
j=1

ylk
j , (1 ≤ l, k ≤ 3, l , k). (3.12)

Proposition 3.2. The Lie-Poisson Hamiltonian systems (3.8) and (3.9) admit the Lax representations

d
dx

Vλ = [U,Vλ]
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and
d
dt

Vλ = [W,Vλ],

respectively, where

U =


α1λ u12 u13

u21 α2λ u23

u31 u32 α3λ

 , W =


β1λ c12u12 c13u13

c21u21 β2λ c23u23

c31u31 c32u32 β3λ


with

U0 =


0 u12 u13

u21 0 u23

u31 u32 0

 = f (y1, · · · , yN) =


0 c−1

12
∑N

j=1 y12
j c−1

13
∑N

j=1 y13
j

c−1
21

∑N
j=1 y21

j 0 c−1
23

∑N
j=1 y23

j

c−1
31

∑N
j=1 y31

j c−1
32

∑N
j=1 y32

j 0

 .
It follows that the integrals of motion of the Lie-Poisson Hamiltonian systems (3.8) and (3.9) are

provided by Fk(λ), k = 1, 2, 3.
Now we know that there are 3N Casimir functions of the Lie-Poisson structure (2.4):

tr(y j), 1
2 tr

(
y2

j
)
, 1

3 tr
(
y3

j
)
, j = 1, . . . ,N and 3N involutive first integrals E1, j, E2, j, E3, j, j = 1, · · · ,N.

Hence, they are integrable.
The first two typical members of TWRI vector fields {Xm} are [26]

X0 =


0 (β1 − β2)u12 (β1 − β3)u13

(β2 − β1)u21 0 (β2 − β3)u23

(β3 − β1)u31 (β3 − β2)u32 0

 , (3.13)

X1 =


0 c12u12x + (c13 − c23)u13u32 c13u13x + (c12 − c23)u12u23

c21u21x + (c23 − c13)u23u31 0 c23u23x + (c12 − c13)u21u13

c31u31x + (c23 − c12)u21u32 c32u32x + (c13 − c12)u12u31 0

 . (3.14)

The zero-curvature equation Ut = Wx − [U,W] leads to the TWRI system (1.1)

(U0)t = X1.

From Corollary 3.1, it is not difficult to verify the involutivity {H,H1} = 0, which implies the
commutativity of Hamiltonian vector fields. The importance of Hamiltonians H, H1 are that the
differential f∗ maps [∇ jH, y j], [∇ jH1, y j] exactly into the TWRI vector fields X0, X1

f∗([∇1H, y1], · · · , [∇N H, yN]) = X0, f∗([∇1H1, y1], · · · , [∇N H1, yN]) = X1,

respectively. Thus solutions of TWRI system (1.1) can be obtained by solving two compatible Lie-
Poisson Hamiltonian systems with ordinary differential equations:

Proposition 3.3. Let y j be a compatible solution of the Lie-Poisson Hamiltonian systems (3.8)
and (3.9). Then

ulk = c−1
lk

N∑
j=1

ylk
j , 1 ≤ l, k ≤ 3, l , k

solves TWRI system (1.1).
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4. Separation of variables

In this section, we will give the separated canonical coordinates on the common level set of the
Casimir functions to deal with the Lie-Poisson Hamiltonian systems.
Remark 1. Let (C1 j, C2 j, C3 j) be regular values of the map defined by the Casimirs: y j →

(tr(y j), 1
2 tr

(
y2

j
)
, 1

3 tr
(
y3

j
)
). Then restricted on the common level set of Casimir functions

{y1, · · · , y j, · · · , yN |tr(y j) = C1 j,
1
2

tr
(
y2

j
)

= C2 j,
1
3

tr
(
y3

j
)

= C3 j, j = 1, . . . ,N}, (4.1)

the 9N dimensional Poisson manifold (gl3(C)∗)N is naturally reduced to a 6N dimensional symplectic
manifold, by which 3N pairs of canonical variables can be introduced.

In the following, we give the first 3N−2 pairs of separated variables µi, νi by Sklyanin’s method [8].
In fact, the characteristic polynomial of Lax matrix Vλ for the TWRI system (1.1) is a constant

independent of variables x and t with the expansion

det(zI − Vλ) = z3 − F1(λ)z2 +
(1
2
F 2

1 (λ) − F2(λ)
)
z −

(
F3(λ) − F2(λ)F1(λ) +

1
6
F 3

1 (λ)
)

= 0, (4.2)

which defines a non-hyperelliptic algebraic curve by introducing variable ζ = a(λ)z:

ζ3 − a(λ)F1(λ)ζ2 + a2(λ)
(1
2
F 2

1 (λ) − F2(λ)
)
ζ − a3(λ)

(
F3(λ) − F2(λ)F1(λ) +

1
6
F 3

1 (λ)
)

= 0

with

a(λ) =

N∏
j=1

(λ − λ j).

Follow the method in [8], the canonical separated variables µi (i = 1, . . . , 3N − 2) are defined by zeros
of some polynomial B(λ) and the corresponding conjugate coordinates νi (i = 1, . . . , 3N − 2) related
to µi by the equation

ν3
i − F1(µi)ν2

k +
(1
2
F 2

1 (µi) − F2(µi)
)
νi −

(
F3(µi) − F2(µi)F1(µi) +

1
6
F 3

1 (µi)
)

= 0, (4.3)

It follows from (4.2) that νi are eigenvalues of the matrix Vµi . Therefore, there must exists a similarity
transformation Vµi → Ṽµi = PVµi P

−1 for each i such that the matrix Ṽµi is block-triangular

Ṽ21(µi) = Ṽ31(µi) = 0 (4.4)

and νi is the eigenvalue of Vµi splitted from the upper block,

νi = Ṽ11(µi). (4.5)

Thus, the problem is reduced to determining the matrix P and polynomial B(λ). Let P be of the form:

P =


1 0 0
p 1 0
0 0 1

 .
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Note that the matrix

Ṽλ = PVλP−1

=


V11(λ) − pV12(λ) V12(λ) V13(λ)

V21(λ) + pV11(λ) − p(pV12(λ) + V22(λ)) V22(λ) + pV12(λ) V23 + pV13(λ)
V31(λ) − pV32(λ) V32(λ) V33(λ)


depends on two parameters λ and p. Hence, we can consider the condition (4.4) as the set of two
algebraic equations Ṽ21(λ) = V21(λ) + pV11(λ) − p(pV12(λ) + V22(λ)) = 0,

Ṽ31(λ) = V31(λ) − pV32(λ) = 0
(4.6)

for two variable λ and p. Eliminating p from (4.6), one obtains the polynomial equation for λ:

B(λ) = V32(λ)V31(λ)[V11(λ) − V22(λ)] + V2
32(λ)V21(λ) − V2

31(λ)V12(λ) = 0. (4.7)

Based on (3.1) and (4.7), the polynomial B(λ) of degree 3N − 2 can be denote as

B(λ) := (β1 − β2)
N∑

j=1

y31
j

N∑
j=1

y32
j

n(λ)
a3(λ)

, (4.8)

where

n(λ) =

3N−2∏
i=1

(λ − µi), a(λ) =

N∏
j=1

(λ − λ j) :=
N∑

j=0

a jλ
N− j, (a0 = 1). (4.9)

Expressing p from Ṽ31(λ) = 0 as p = −V31(λ)/V32(λ) and substituting it into Eq (4.5) of νi, we arrive at

νi = Ṽ11(µi) = V11(µi) −
V12(µi)V31(µi)

V32(µi)
, i = 1, . . . , 3N − 2, (4.10)

which produces 3N − 2 pairs of variables µi, νi. It is easy to see from (2.3) and the above expressions
that

{Vlk(τ),Vmn(λ)} =
1

λ − τ
[(Vmk(τ) − Vmk(λ))δln − (Vln(τ) − Vln(λ))δmk], 1 ≤ l, k,m, n ≤ 3 (4.11)

with λ, τ are two different constant spectral parameters. We have from (4.11) that

A(λ) = V11(λ) −
V12(λ)V31(λ)

V32(λ)
, (4.12)

which, together with B(λ) defined by (4.7), B(λ) and A(τ) satisfy
{A(τ), A(λ)} = 0,
{B(τ), B(λ)} = 0,

{A(τ), B(λ)} =
1

λ − τ

(
V2

32(λ)

V2
32(τ)

B(τ) − B(λ)
)
.

(4.13)

AIMS Mathematics Volume 7, Issue 6, 9989–10008.



9999

Proposition 4.1. The canonical separated variables µ j and ν j constructed from B(λ) in (4.8) and A(µ j)
in (4.10) satisfy the relations

{µi, µ j} = 0, {νi, ν j} = 0, {νi, µ j} = δi j1 ≤ i, j ≤ 3N − 2.

Proof. The commutativity of B in (4.13) implies the commutativity of µ j (zeros of B(λ)). The Poisson
brackets of ν j can be calculated by using the definition of µ j. From B(µ j) = 0 for j = 1, . . . , 3N − 2, it
follows that

0 = {F, B(µ j)} = {F, B(λ)}|λ=µ j + B′(µ j){F, µ j}

that is

{F, µ j} = −
{F, B(λ)}|λ=µ j

B′(µ j)
, (4.14)

for any function F. In the same way we have

{νi, F} = {A(µi), F} = {A(τ), F}|τ=µi + A′(µi){µi, F}.

Now we turn to prove {νi, µ j} = δi j. Noting that

{νi, µ j} = {A(τ), µ j}|τ=µi + A′(µi){µi, µ j} = {A(τ), µ j}|τ=µi ,

we obtain by using (4.14) and the third equation in (4.13) that

{νi, µ j} = −
{A(τ), B(λ)}|τ=µi

λ=µ j

B′(µ j)
=

1
µ j − µi

(
V2

32(µ j)

V2
32(µi)

B(µi) − B(µ j)
)

1
B′(µ j)

, (4.15)

which vanishes for µi , µ j due to B(µi) = B(µ j) = 0 and is evaluated via L’Hôpital rule for µi = µ j to
produce the proclaimed result. Similarly, the commutativity of νi (1 ≤ i ≤ 3N − 2) can be shown by
the first equation of (4.13). �

Apart from the 3N − 2 pairs of separated variables above, we should add 2 pairs of conjugate
variables to prove the canonical structure on the common level set of Casimir functions (4.1).

The last 2 pairs of conjugate variables can be defined as follows by direct calculation.

Proposition 4.2. Assume that the 2 pairs of additional canonical separated variables are defined by

µ3N−1 = ln
N∑

j=1

y31
j , ν3N−1 =

(β2 + β3)F2,0 − F3,0

(β2 − β1)(β3 − β1)
,

µ3N = ln
N∑

j=1

y32
j , ν3N =

G0 − (β1 + β3)F2,0

(β2 − β1)(β3 − β2)
.

(4.16)

Then on the common level set of Casimir functions (4.1), we have

{µi, µ j} = 0, {νi, ν j} = 0, {µi, ν j} = δi j, i, j = 1, . . . , 3N. (4.17)

It is shown that µ j, ν j, j = 1, · · · ,N are 3N pairs of conjugate variables.
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5. Action-angle variables and Jacobi inversion problems

In this section, the action-angle variables will be introduced by resorting to Hamilton-Jacobi theory.
As a by-product, the functional independence of conserved integrals for the Liouville integrability of
Lie-Poisson Hamiltonian systems (3.8) and (3.9) will be proved. Further, the Jacobi inversion problems
for systems (3.8), (3.9) and TWRI Eq (1.1) will be built by using the canonical transformation from
the separated variables to the action-angle variables

Let

1
2

trβ2 +

N∑
j=1

E1, j

λ − λ j
:=

b2(λ)
a(λ)

:=
1
2

trβ2 +

∞∑
l=0

fl

λl+1 ,

1
3

trβ3 +

N∑
j=1

E2, j

λ − λ j
+

N∑
j=1

E3, j

(λ − λ j)2 :=
b3(λ)
a2(λ)

:=
1
3

trβ3 +

∞∑
l=0

gl

λl+1 ,

where

b2(λ) =
1
2

trβ2λN + I0λ
N−1 + I1λ

N−2 + · · · + IN−3λ
2 + IN−2λ + IN−1,

b3(λ) =
1
3

trβ3λ2N + Ĩ0λ
2N−1 + INλ

2N−2 + · · · + I3N−3λ + I3N−2,

(5.1)

from which we can rewrite the generating functions F1(λ), F2(λ), F3(λ) as

F1(λ) = trβ +

N∑
j=1

C1 j

λ − λ j
:=

R1(λ)
a(λ)

,

F2(λ) =
b2(λ)
a(λ)

+

N∑
j=1

C2 j

(λ − λ j)2 =
1
2

trβ2 +

∞∑
l=0

fl

λl+1 +

N∑
j=1

C2 j

(λ − λ j)2 :=
R2(λ)
a2(λ)

,

F3(λ) =
b3(λ)
a2(λ)

+

N∑
j=1

C3 j

(λ − λ j)3 =
1
3

trβ3 +

∞∑
l=0

gl

λl+1 +

N∑
j=1

C3 j

(λ − λ j)3

(5.2)

with

R1(λ) = a(λ)
(
trβ +

N∑
j=1

C1 j

λ − λ j

)
,R2(λ) = a(λ)b2(λ) + a2(λ)

N∑
j=1

C2 j

(λ − λ j)2 ,

The comparison of the coefficients of λl, l = 0, . . . ,N − 1 in equation

b2(λ) = a(λ)
(1
2

trβ2 +

∞∑
l=0

fl

λl+1

)
and the comparison of the coefficients of λl, l = 0, 1, . . . , 2N − 1 in equation

b3(λ) = a2(λ)
(1
3

trβ3 +

∞∑
l=0

gl

λl+1

)
,
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respectively, yield

I0 =
1
2

a1trβ2 + f0 =
1
2

a1trβ2 + (β3 − β1)ν3N−1 + (β3 − β2)ν3N ,

Ĩ0 =
2
3

a1trβ3 + g0 =
2
3

a1trβ3 + (β2
3 − β

2
1)ν3N−1 + (β2

3 − β
2
2)ν3N ,

I j =

j∑
i=0

ai f j−i +
1
2

a j+1trβ2, j = 1, . . . ,N − 1,

IN+k =

k+1∑
l=0

(∑
i, j≥0
i+ j=l

aia j

)
gk+1−l +

1
3

∑
i, j≥0

i+ j=k+2

aia jtrβ3, k = 0, . . . , 2N − 2.

Let
νi =

∂S
∂µi

, i = 1, . . . , 3N − 2.

We obtain from (4.3) that the completely separated Hamilton-Jacobi equations:(
∂S
∂µi

)3

−
R1(µi)
a(µi)

(
∂S
∂µi

)2

+

 R2
1(µi)

2a2(µi)
−

b2(µi)
a(µi)

−

N∑
j=1

C2 j

(µi − λ j)2

 ∂S
∂µi

−

b3(µi)
a2(µi)

+

N∑
j=1

C3 j

(µi − λ j)3 −
(b2(µi)

a(µi)
+

N∑
j=1

C2 j

(µi − λ j)2

)R1(µi)
a(µi)

+
R3

1(µi)
6a3(µi)

 = 0,

with i = 1, . . . , 3N − 2, from which we get an implicit complete integral of Hamilton-Jacobi equations
for the generating functions F2(λ) and F3(λ):

S =

3N−2∑
j=1

S j(µ j) = S (µ1, · · · , µ3N−2; I1, · · · , I3N−2) =

3N−2∑
j=1

∫ µ j

0
z dλ, (5.3)

where z satisfies (4.2).
Now let us consider a canonical transformation from the variables µi, νi, (i = 1, . . . , 3N − 2) to

variables φi and Ii, (i = 1, . . . , 3N − 2), generated by the generating function S :

3N−2∑
i=1

νidµi +

3N−2∑
i=1

φidIi = dS ,

that satisfies
νi =

∂S
∂µi

, φi =
∂S
∂Ii
, i = 1, · · · , 3N − 2. (5.4)

Resorting to Eqs (5.3), (5.4), (4.2) and (5.2), we arrive at

φi =
∂S
∂Ii

=

3N−2∑
j=1

∫ µ j

0

∂z
∂Ii

dλ =



3N−2∑
j=1

∫ µ j

0

(
a(λ)z − R1(λ)

)
λN−i−1

R(λ)
dλ, i = 1, . . . ,N − 1,

3N−2∑
j=1

∫ µ j

0

λ3N−i−2

R(λ)
dλ, i = N, . . . , 3N − 2,

(5.5)
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where R(λ) = 3a2(λ)z2 − 2a(λ)R1(λ)z + 1
2R2

1(λ) − R2(λ). From Eqs (5.1) and (5.2), the generating
functions of integrals can be rewritten as

F2(λ) =

N∑
j=1

C2 j

(λ − λ j)2 +

1
2 trβ2λN + I0λ

N−1 + I1λ
N−2 + · · · + IN−1

a(λ)

:= K2(I1, · · · , IN−1, λ),

F3(λ) =

N∑
j=1

C3 j

(λ − λ j)3 +

1
3 trβ3λ2N + Ĩ0λ

2N−1 + INλ
2N−2 + · · · + I3N−2

a2(λ)

:= K3(IN , . . . , I3N−2, λ).

Functions I1, · · · , I3N−2 and φ1, . . . , φ3N−2 are variables of action type and the corresponding variables of
angles, respectively. In the following, we will use these action-angle variables to discuss the equations
of motion for the Lie-Poisson Hamiltonian systems generated by the Lax matrix (3.1). The Hamiltonian
canonical equations for the generating functions F2(λ) and F3(λ) in terms of action-angle variables I j

and φ j, j = 1, . . . , 3N − 2, are as follows

φ j,t2λ =


∂K2(λ)
∂I j

=
λN− j−1

a(λ)
, 1 ≤ j ≤ N − 1

∂K2(λ)
∂I j

= 0, N ≤ j ≤ 3N − 2
, (5.6)

I j,t2λ = −
∂K2(λ)
∂φ j

= 0, 1 ≤ j ≤ 3N − 2, (5.7)

φ j,t3λ =


∂K3(λ)
∂I j

= 0, 1 ≤ j ≤ N − 1

∂K3(λ)
∂I j

=
λ3N− j−2

a2(λ)
, N ≤ j ≤ 3N − 2

, (5.8)

I j,t3λ = −
∂K3(λ)
∂φ j

= 0, 1 ≤ j ≤ 3N − 2. (5.9)

Let t2,l and t3,l represent the variables of F2,l-flow and F3,l-flow, respectively. According to the definition
of the Lie-Poisson bracket, one infers

I j,t2λ =

∞∑
l=0

1
λl+1 {I j, F2,l} =

∞∑
l=0

1
λl+1

dI j

dt2,l

I j,t3λ =

∞∑
l=0

1
λl+1 {I j, F3,l} =

∞∑
l=0

1
λl+1

dI j

dt3,l

φ j,t2λ =

∞∑
l=0

1
λl+1 {φ j, F2,l} =

∞∑
l=0

1
λl+1

dφ j

dt2,l

φ j,t3λ =

∞∑
l=0

1
λl+1 {φ j, F3,l} =

∞∑
l=0

1
λl+1

dφ j

dt3,l

, j = 1, . . . , 3N − 2. (5.10)
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Proposition 5.1. (
dφ

dt2,1
, · · · ,

dφ
dt2,N−1

,
dφ

dt3,1
, · · · ,

dφ
dt3,2N−1

)
=

(
Q11 0
0 Q22

)
, (5.11)

with

Q11 =



1 A1 A2 · · · AN−2

1 A1 · · · AN−3
. . .

. . .
...

1 A1

1


, Q22 =



1 B1 B2 · · · B2N−2

1 B1 · · · B2N−3
. . .

. . .
...

1 B1

1


where Ak’s are the coefficients in the expansion

λN

a(λ)
=

∞∑
k=0

Ak

λk ,

which could be represented through the power sums of λ j, that is

A0 = 1, A1 = s1, A2 =
1
2

(s2 + s2
1)

with the recursive formula

Ak =
1
k

sk +
∑
m, n≥1
m+n=k

smAn

 , sk =

N∑
j=1

λk
j,

and Br’s are obtained by comparing the coefficients of λr, r = 0, 1, . . . , in equation

λ2N

a2(λ)
=

 ∞∑
k=0

Ak

λk

2

=

∞∑
r=0

Br

λr ,

where B0 = A2
0 = 1, B1 = 2A1, · · · , Br =

∑
m,n≥0
m+n=r

AmAn with the supplementary definition A−k=B−k = 0,

k = 1, 2, . . . .

Proof. Using (5.6), (5.8) and (5.10), it is easy to see that
∞∑

l=0

1
λl+1 {I j, F2,l} =

∞∑
l=0

1
λl+1 {I j, F3,l} = 0, j = 1, . . . , 3N − 2,

∞∑
l=0

1
λl+1 {φ j, F2,l} =

λN− j−1

a(λ)
=

∞∑
k=0

Ak

λk+ j+1 , j = 1, . . . ,N − 1,

∞∑
l=0

1
λl+1 {φ j, F3,l} = 0, j = 1, . . . ,N − 1,

∞∑
l=0

1
λl+1 {φ j, F2,l} = 0, j = N, . . . , 3N − 2,

∞∑
l=0

1
λl+1 {φ j, F3,l} =

λ3N− j−2

a2(λ)
=

∞∑
k=0

Bk

λk+ j+2−N , j = N . . . , 3N − 2.

(5.12)

AIMS Mathematics Volume 7, Issue 6, 9989–10008.



10004

By comparing the coefficients of λ−l−1 in (5.12), we deduce the Poisson brackets

{I j, F2,l} = 0, {I j, F3,l} = 0, j = 1, . . . , 3N − 2,
{φ j, F2,l} = 0, {φ j, F3,l} = 0, j = 1, . . . , 3N − 2,
{φ j, F2,l} = Al− j, {φ j, F3,l} = 0, j = 1, . . . ,N − 1,
{φ j, F2,l} = 0, {φ j, F3,l} = Bl+N− j−1, j = N, . . . , 3N − 2.

(5.13)

Thus, the non-degenerate matrix takes on the form (5.11). �

Proposition 5.2. F2,1, · · · , F2,N−1, F3,1, · · · , F3,2N−1 given in (3.4) and (3.5) are functionally
independent.

Proof. We need only prove the linear independence of the gradients: ∇F2,1, · · · ,∇F2,N−1,

∇F3,1, · · · ∇F3,2N−1. Suppose

N−1∑
k=1

ck ∇F2,k +

2N−1∑
m=1

cN+m−1 ∇F3,m = 0.

It is easy to calculate that

0 =

N−1∑
k=1

ck{φ j, F2,k} +

2N−1∑
m=1

cN+m−1{φ j, F3,m}

=

N−1∑
k=1

ck
dφ j

dt2,k
+

2N−1∑
m=1

cN+m−1
dφ j

dt3,m
,

which implies that c1 = c2 = · · · = c3N−2 = 0 because the coefficient determinant is equal to 1
by (5.11). �

Remark 2. From Corollary 3.1 and the above Proposition, it is proved that the Lie-Poisson
Hmailtonian systems (3.8) and (3.9) with the Hamiltonians (3.6) and (3.7) are complete integrable
in the Liouville sense because their 3N − 2 integrals F2,1, · · · , F2,N−1, F3,1, · · · , F3,2N−1 are involutive in
pairs and functionally independent.

For given values of the 3N Casimir functions in (4.1), F0,l =
∑N

j=1 λ
l
jC1 j are constants, which means

that {φ j, F0,l} = 0. Based on (5.13) and (3.6), the solution of the Lie-Poisson Hmailtonian system (3.8)
in terms of action-angle variables φ j and I j is

I j(x) = I j(0), φ j(x) =

φ j(0) − (γ2trβ + γ1)A1− jx, j =1, . . . ,N − 1,
φ j(0) + γ2BN− jx, j =N, . . . , 3N − 2.

(5.14)

Thus, combining (5.5) with (5.14) give rise to the Jacobi inversion problem
φ j(0) − (γ2trβ + γ1)A1− jx =

3N−2∑
k=1

∫ µk

0

(
a(λ)z − R1(λ)

)
λN− j−1

R(λ)
dλ, j = 1, . . . ,N − 1,

φ j(0) + γ2BN− jx =

3N−2∑
k=1

∫ µk

0

λ3N− j−2

R(λ)
dλ, j = N, . . . , 3N − 2.
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For the Lie-Poisson Hamiltonian system (3.9) with respect to Lie-Poisson bracket (5.13), we obtain
by using (3.7) that

I j(t) = I j(0), φ j(t) =

φ j(0) + A1− jt, j = 1, . . . ,N − 1,
φ j(0), j = N, . . . , 3N − 2.

(5.15)

With the help of (5.5) and (5.15), we deduce the Jacobi inversion problem
φ j(0) + A1− jt =

3N−2∑
k=1

∫ µk

0

(
a(λ)z − R1(λ)

)
λN− j−1

R(λ)
dλ, j = 1, . . . ,N − 1,

φ j(0) =

3N−2∑
k=1

∫ µk

0

λ3N− j−2

R(λ)
dλ, j = N, . . . , 3N − 2.

The compatible solution of Lie-Poisson Hamiltonian systems (3.8) and (3.9) in terms of action-angle
variables φ j and I j is

I j(x, t) = I j(0, 0),

φ j(x, t) =

φ j(0, 0) − (γ2trβ + γ1)A1− jx + A1− jt, j = 1, . . . ,N − 1,
φ j(0, 0) + γ2BN− jx, j = N, . . . , 3N − 2.

(5.16)

Thus, by making use of (5.5) and (5.16), we arrive at the Jacobi inversion problem for the TWRI
Eq (1.1)

φ j(0, 0) − (γ2trβ + γ1)A1− jx + A1− jt =

3N−2∑
k=1

∫ µk

0

(
a(λ)z − R1(λ)

)
λN− j−1

R(λ)
dλ, j = 1, . . . ,N − 1,

φ j(0, 0) + γ2BN− jx =

3N−2∑
k=1

∫ µk

0

λ3N− j−2

R(λ)
dλ, j = N, . . . , 3N − 2.

6. Conclusions

In this paper, two finite dimensional Lie-Poisson Hamiltonian systems associated with a 3 × 3
spectral problem related to three-wave resonant interaction system are presented with the help
of nonlinearization method. In the framework of Lie-Poisson structure, it is easier to prove the
integrability for these finite-dimensional Lie-Poisson Hamiltonian systems in Liouville sense. 3N
pairs of separation of variables for these integrable systems with non-hyperelliptic spectral curves are
constructed and 3N − 2 pairs of them are proposed by using Sklyanin’s method. In addition, apart
from the variables µk, νk(k = 1, · · · , 3N − 2), we add two pairs of conjugate variables. 3N − 2 pairs
of action-angle variables are introduced with the help of Hamilton-Jacobi theory. The Jacobi inversion
problems for the these Lie-Poisson Hamiltonian systems and three-wave resonant interaction system
are discussed. Furthermore, based upon the Jacobi inversion problems, we may use the algebro-
geometric method to get the multi-variable sigma-function solutions, which will be left to a future
publication. The methods in this paper can be applied to other systems of soliton hierarchies with 3×3
matrix spectral problems.
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