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Abstract: A graph G with at least 2k vertices is called k-subconnected if, for any 2k vertices in G,
there are k independent paths P1, P2, · · · , Pk joining the 2k vertices in pairs. A graph G is minimally
2-subconnected if G is 2-subconnected and G − e is not 2-subconnected for any edge e in G. The
concept of k-subconnected graphs is introduced in the research of matching theory, and this concept
has been found to be related with connectivity of graphs. It is of theorectical interests to characterize the
structure of minimally k-subconnected graphs. In this paper, we characterize the structure of minimally
2-subconnected graphs.
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1. Introduction and terminology

In this paper, we only study undirected, connected, finite and simple graphs.
Let G = (V, E) be a graph with at least 2k vertices. Then G is called k-subconnected if, for any 2k

vertices u1, u2, . . . , u2k in G, there are k independent paths P1, P2, . . . , Pk in G joining the 2k vertices in
pairs. If G is k-subconnected and G has at least 3k−1 vertices, then G is called properly k-subconnected.

Let G be a connected graph with at least one cut vertex. Let B1, B2, . . . , Bm be all blocks of G, and
c1, c2, . . . , cn be all cut vertices in G. Then the block graph B(G) of G is such a graph B(G) = (V, E)
that V = {bi, c j|bi corresponds to Bi, i = 1, 2, . . . ,m; j = 1, 2, . . . , n} and E = {bic j|Bi contains c j,
1 ≤ i ≤ m, 1 ≤ j ≤ n}. By Lemma 1 in the following, B(G) is a tree. If a block B of G corresponds to a
leaf vertex of B(G), then B is called a leaf block of G. The concept of the block graph of G is from [1]
(see [1], p. 44). In [2], Hung studies optimal vertex ranking of block graphs, but in his paper, a block
graph is a graph of which each block is a clique (complete graph). Our concept is different from his
concept.
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Let G = (V, E) be a graph. We denote |V | by ν and |E| by ε. We also denote the number of the
components of G by ω(G). Let C = u0u1u2 . . . unu0 be a cycle, suppose u0, u1, u2, . . . , un appear on C
in turn in clockwise orientation. If ui, u j ∈ V(C), we denote by C[ui, u j] the path from ui to u j on C in
clockwise orientation. For any vertex u ∈ V(G), dG(u) is the degree of u in G. If H is a subgraph of G,
and u ∈ V(H), then dH(u) is the degree of u in H.

Let H be a graph and P be a (u, v) path such that V(H) ∩ V(P) = {u, v} and E(H) ∩ E(P) = ∅, then
H
′

= H + P is such a graph that V(H
′

) = V(H) ∪ V(P) and E(H
′

) = E(H) ∪ E(P).
Let G be a connected graph, an H-path P of G is a path P = u0, u1, . . . , uk in G of length k ≥ 1 such

that dG(ui) = 2 (i = 1, 2, . . . , k − 1), dG(u0) ≥ 3 and dG(uk) ≥ 3.
A connected graph G is k-connected, if deleting any r (0 ≤ r < k) vertices from G, G is still

connected. A graph G is called minimally k-connected if G is k-connected but, for any e ∈ E(G), G − e
is no longer k-connected. A graph G is called minimally k-subconnected if G is k-subconnected but,
for any e ∈ E(G), G − e is not k-subconnected.

The concept of k-subconnected graphs is introduced in the research of matching theory. In 1980,
Plummer [3] introduced the concept of n-extendable graphs. A graph G with ν(G) ≥ 2n + 2 is called
n-extendable if G has a matching of n edges, and any matching M of n edges in G is contained in a
perfect matching of G. Since this concept is proposed, an extensive research has been done. Yu [4] and
Faveron [5] propose a related concept k-critical (or k-factor-critical) graphs, extending the concepts of
factor critical graphs and bicritical graphs in matching theory. A graph G with ν(G) ≥ k and ν(G) ≡ k
(mod 2) is called k-critical if, for any subset S of k vertices of V(G), G − S has a perfect matching.
Obviously, a 2k-critical graph is also k-extendable. Aldred, Holton, Lou and Zhong [6] characterize 2k-
critical garaphs as following: A graph G with a perfect matching M is 2k-critical if and only if, for any
2k vertices u1, u2, · · · , u2k in G, there are k independent M-alternating paths P1, P2, · · · , Pk starting and
ending with edges in M, joining the 2k vertices in pairs. To design an efficient algorithm to determine
2k-criticality of G, we shall find the largest number k of the M-alternating paths in G. This problem is
still unsolved. As a model to study this problem, Qin, Lou, Zhu and Liang [7] introduce the concept
of k-subconnected graphs to study k normal paths connecting any given 2k vertices in G. To obtain an
efficient algorithm to determine k-subconnectivity of a graph may help to design an efficient algorithm
to determine 2k-criticality of graphs.

Since the concept of k-subconnected graphs is proposed, we find its strong relation with connectivity
of graphs.

Connectivity is an important property of graphs, it has been extensively studied (see [8]).
In recent years, conditioned connectivities attract researchers’ attention. For example, Peroche [9]

studied several sorts of connectivities, including cyclic edge (vertex) connectivity, and their relation.
A cyclic edge (vertex) cutset S of G is an edge (vertex) cutset whose deletion disconnects G such
that at least two of the components of G − S contain a cycle respectively. The cyclic edge (vertex)
connectivity, denoted by cλ(G) (cκ(G)), is the cardinality of a minimum cyclic edge (vertex) cutset
of G. Dvoŕǎk, Kára, Král and Pangrác [10] obtained the first efficient algorithm to determine the
cyclic edge connectivity of cubic graphs. Lou and Wang [11] obtained the first efficient algorithm
to determine the cyclic edge connectivity for k-regular graphs. Lou [12] also obtained a square time
algorithm to determine the cyclic edge connectivity of planar graphs.

Another related concept is linkage. Let G be a graph with at least 2k vertices. If, for any 2k vertices
u1, u2, . . . , uk, v1, v2, . . . , vk, there are k disjoint paths Pi from ui to vi (i = 1, 2, . . . , k) in G, then G
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is called k-linked. Thomassen [13] mentioned that a necessary condition for G to be k-linked is that
G is (2k − 1)-connected. But this condition is not sufficient unless k = 1. He also gave a complete
characterization of 2-linked graphs. Bollobás and Thomason [14] proved that if κ(G) ≥ 22k, then G is
k-linked. Kawarabayashi, Kostochka and Yu [15] proved that every 2k-connected graph with average
degree at least 12k is k-linked.

In [7], Qin, Lou, Zhu and Liang introduced the new concept of k-subconnected graphs as defined at
the beginning of this paper, and in [16], Qin and Lou defined a properly k-subconnected graph to be a
k-subconnected graph G with ν(G) ≥ 3k − 1. In [7], Qin et. al. showed that a properly k-subconnected
graph is also a properly (k − 1)-subconnected graph. But only when ν(G) ≥ 3k − 1, that G is k-
subconnected implies that G is (k − 1)-subconnected. Qin et al. [7] also gave a sufficient condition
for a graph to be k-subconnected and a necessary and sufficient condition for a graph to be a properly
k-subconnected graph (see Lemma 3 of this paper).

If G has at least 2k vertices, that G is k-linked implies that G is k-connected, while that G is k-
connected implies that G is k-subconnected (see Lemma 4 in this paper). Also by [17], in a k-connected
graph G, deleting arbitrarily k − 1 edges from G, the resulting graph H is still k-subconnected. So
a graph H to be k-subconnected is a spanning substructure of a k-connected graph G. To study k-
subconnected graphs may help to know more properties in the structure of k-connected graphs. Notice
that a k-connected graph may have a spanning substructure to be m-subconnected for m > k.

For other terminology and notation not defined in this paper, the reader is referred to [18].

2. Preliminary results

In this section, we show some known results or some immediate results on k-connected graphs or k-
subconnected graphs, which will be used in the proof of our main results on the structure of minimally
2-subconnected graphs.
Lemma 1. (Proposition 3.1.1 of [1]) The block graph of a connected graph is a tree.
Lemma 2. (Proposition 3.1.2 of [1]) A graph G is 2-connected if and only if G = C0 +P1 +P2 + . . .+Pn

(n ≥ 0), where C0 is a cycle and Pi is a path of length at least 1 connecting two different vertices of
Gi−1 = C0 + P1 + P2 + . . . + Pi−1 (i = 1, 2, . . . , n) and Pi is internally disjoint with Gi−1.
Lemma 3. (Theorem 3 of [7]) A graph G with ν(G) ≥ 3k − 1 is k-subconnected if and only if, for any
cutset S ⊆ V(G) with |S | ≤ k − 1, ω(G − S ) ≤ |S | + 1.

Let us give examples of graphs satisfying Lemmas 1–3 respectively. Let B0 = a0a1 · · · a5a0, B1 =

a5b1, B2 = b0b1b2b3b0, B3 = c0c1(= b2)c2c3c0, B4 = d0d1(= b3)d2d3d4d0, then Bi is a block (i =

0, 1, 2, 3, 4) of graph G and x1 = a5, x2 = b1, x3 = b2 and x4 = b3 are cut vertices of G. Notice
that ai, b j, ck, dl are different vertices except the cases that we specify that they are the same vertices
as above. Then V(B(G)) = {b

′

i, x j|b
′

i corresponds to Bi, i = 0, 1, 2, 3, 4; j = 1, 2, 3, 4 }, E(B(G)) =

{b
′

0x1, b
′

1x1, b
′

1x2, b
′

2x2, b
′

2x3, b
′

2x4, b
′

3x3, b
′

4x4}. Then B(G) is a tree, satisfying Lemma 1.
Let C0 = a0a1a2 · · · a7a0, P1 = b0b1 · · · b6, P2 = c0c1c2c3, P3 = d0d1d2, where a1 = b0, a3 = b6, c0 =

b1, c3 = b5, d0 = b2 and d2 = b4, and ai, b j, ck, dl are different vertices except the cases that we specify
that they are the same vertices as above. Then G1 = C0 + P1 + P2 + P3 is a 2-connected graph satisfying
Lemma 2. In fact, G1 is also a minimally 2-connected graph.

Let G2 = v1v2 · · · vn (n ≥ 3k−1 and k ≥ 1), then G2 is a Hamilton path and for any cutset S ⊆ V(G2)
with |S | ≤ k − 1, ω(G2 − S ) ≤ |S | + 1, so G2 satisfies Lemma 3. Let G

′

2 = Kn,n+1 with 2n + 1 ≥ 3k − 1
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for a k ≥ 1 be a complete bipartite graph, then G
′

2 also satisfies Lemma 3.
Lemma 4. (Lemma 6 of [16]) A k-connected graph with at least 2k vertices is k-subconnected.

In the following, Lemma 5 will give a necessary and sufficient condition of 1-subconnected graphs,
and Lemma 6 will describe the structure of minimally 1-subconnected graphs.
Lemma 5. A graph G with ν(G) ≥ 2 is 1-subconnected if and only if G is connected.
Proof. By the definition of 1-subconnected graph, the result follows. �
Lemma 6. A graph G with ν(G) ≥ 2 is a minimally 1-subconnected graph if and only if G is a tree.
Proof. Since G is 1-subconnected if and only if G is connected with ν(G) ≥ 2 by Lemma 5, G is
minimally 1-subconnected if and only if G is minimally connected. But a minimally connected graph
is a tree. Lemma 6 follows. �
Theorem 7. If G is a minimally 2-connected graph, then G = C0 + P1 + P2 + . . . + Pn, where Pi is a
path of length at least 2, connecting two different vertices of Gi−1 = C0 + P1 + P2 + . . .+ Pi−1, 1 ≤ i ≤ n
and G0 = C0 is a cycle, and, for any edge uv ∈ E(G), if dG(u) ≥ 3 and dG(v) ≥ 3, then G − uv has a cut
vertex.
Proof. By Lemma 2, if G is 2-connected, then G = C0 + P1 + P2 + . . . + Pn. If Pi is a path of length 1,
i.e., Pi is an edge, then G − Pi = C0 + P1 + . . . + Pi−1 + Pi+1 + . . . + Pn, by Lemma 2, G − Pi is still a
2-connected graph. So G is not a minimally 2-connected graph, a contradiction. So every Pi has length
at least 2 (1 ≤ i ≤ n). Now we only need to prove that if G is a minimally 2-connected graph, then,
for any edge uv ∈ E(G), G − uv has a cut vertex. For any uv ∈ E(G), then uv ∈ E(C0) or uv ∈ E(Pi)
(1 ≤ i ≤ n). If dG(u) = 2 or dG(v) = 2, without loss of generality, assume dG(u) = 2, then in G − uv,
u is connected by a path P to a vertex x of degree at least 3; or G − uv is a path P (now G = C0), and
we assume w is the vertex on P adjacent to u (now dG−uv(w) ≥ 2). So w is a cut vertex of G − uv. If
dG(u) ≥ 3 and dG(v) ≥ 3, since G is minimally 2-connected, G − uv is not 2-connected, so G − uv has a
cut vertex. Hence the structure of minimally 2-connected graph G is as described in this theorem. �
Lemma 8. Let G be a minimally 2-connected graph. Then, for any edge e = uv ∈ E(G), G′ = G − e
has a cut vertex, and the block graph of G′ is a path P, and u and v are contained respectively in the
two blocks corresponding to the two end vertices of P.
Proof. Since G is a minimally 2-connected graph, G is 2-connected and has no cut vertex, but G − e
is 1-connected and has a cut vertex for any edge e = uv ∈ E(G). So G′ = G − e has a block graph
B(G′). If B(G′) has a vertex of degree at least 3, by Lemma 1, B(G′) is a tree, and B(G′) has at least
3 leaves corresponding 3 leaf blocks of G′ of which one contains neither u nor v. So, in G = G′ + e,
that block still contains a cut vertex which contradicts the hypothesis that G is 2-connected. So every
vertex in B(G′) has degree at most 2, and B(G′) is a path P. Then we prove that u and v are contained
respectively in the two blocks corresponding to the two end vertices of P. Suppose P has one end vertex
b1 corresponding to a leaf block B1 in G′ containing neither u nor v. Then the vertex x′ adjacent to b1

in B(G′) is a cut vertex in G′, and x′ also corresponds to a cut vertex in G = G′ + e, which contradicts
the hypothesis that G is 2-connected. So u is contained in the block B1 in G′ corresponding to the end
vertex b1 of P and u is not the cut vertex x′ contained by B1. By the same reason, v is contained in the
block Bn in G′ corresponding to the other end vertex bn of P, and v is not the cut vertex x′′ contained
by Bn in G′. Hence Lemma 8 is proved. �
Lemma 9. A connected graph G with ν(G) ≥ 5 is 2-subconnected if and only if, for any subset
S ⊆ V(G) with |S | = 1, ω(G − S ) ≤ 2.
Proof. Let k = 2, by Lemma 3, we have the conclusion of this lemma. �
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3. The structure of minimally 2-subconnected graphs

In this section, we prove the structure of minimally 2-subconnected graphs to be as described in
Theorem 10.
Theorem 10. A connected graph G with ν(G) ≥ 5 is minimally 2-subconnected if and only if G has at
least one cut vertex and every cut vertex is contained in exactly two blocks in G, and
(1) Each leaf block of G is a K2; and
(2) Each block of G which is not K2 is a minimally 2-connected graph B = C0 + P1 + P2 + . . . + Pm.

If B = C0 = u0u1 . . . unu0, then C0 has two vertices ui and u j such that each of ui and u j is a cut
vertex of G, and is contained in a block different from B and i < i + 2 ≤ j < j + 2 ≤ i, where the
subscripts are reduced modulo n + 1; or C0 = u0u1u2u0, where each of u0, u1, u2 is a cut vertex of G and
is contained in a block different from B.

If B = C0 + P1 + P2 + . . . + Pm(m ≥ 1), for any H-path P = (u =)urur+1 . . . us(= v) of length
at least 1 in B connecting two vertices u and v of degree at least 3 in B, P is contained in a segment
u1u2 . . . urur+1 . . . us . . . un of C0 connecting two end vertices of P1 (here the subscripts of ui are different
from those of C0 in the above), or P is contained in a Pi = u1u2 . . . urur+1 . . . us . . . un in B (1 ≤ i ≤ m)
such that (i) there is a cut vertex x of B − urur+1 on u1u2 . . . ur−1 and x is also a cut vertex of G; or (ii)
there is a cut vertex y of B− us−1us on us+1us+2 . . . un and y is also a cut vertex of G; or when (i) and (ii)
do not hold, we have (iii) P is an H-path with s − r ≥ 2 and P has two vertices ui and u j such that each
of ui and u j is a cut vertex of G and is contained in a block different from B, and r ≤ i < i + 2 ≤ j ≤ s;
and
(3) Besides the cut vertices described in (2), any other vertex of B may or may not be a cut vertex of G.
Proof. We prove sufficiency first. Since each cut vertex x of G is contained in exactly 2 blocks,
ω(G − x) = 2. By Lemma 9, G is 2-subconnected. In the following, we prove that G is a minimally
2-subconnected graph, that is , for any edge e ∈ E(G), G − e is no longer 2-subconnected.

For any edge e = uv ∈ E(G), e ∈ E(B) for some block B in G.
Case 1. B is a K2.

Then e is the only edge in the K2. Then G−e is not connected, and there is a cutset S = ∅ ⊆ V(G−e)
with |S | ≤ 2− 1 = 1 such that ω((G − e)− S ) ≥ |S |+ 2 = 2. By Lemma 3, G − e is not 2-subconnected.
Case 2. B is a minimally 2-connected graph.
Case 2.1. B is a cycle C0 = u0u1u2 · · · unu0.

By condition (2) of this theorem, there exist cut vertices ui and u j in G such that ui and u j are
contained respectively in blocks Bi and B j besides B and i < i + 2 ≤ j < j + 2 ≤ i where subscripts i
and j are reduced modulo n + 1; or C0 = u0u1u2u0 such that each of u0, u1, u2 is a cut vertex of G and
they are contained respectively in blocks B0, B1, B2 besides B.

In the first case, if e = uiui+1, then in G − e, the segment ui+1ui+2 · · · u j−1 of C0 − e is not empty, and
(G − e) − u j contains 3 components containing P = ui+1ui+2 · · · u j−1, B j − u j and Q = u j+1u j+2 · · · ui on
C0 respectively. So ω((G − e) − u j) ≥ 3, by Lemma 9, G − e is not 2-subconnected.

If e = u j−1u j, then segment ui+1ui+2 · · · u j−1 of C0 − e is not empty, and (G − e) − ui contains 3
components containing P = ui+1ui+2 · · · u j−1, Bi − ui and Q = u ju j+1 · · · ui−1 on C0 respectively. So
ω((G − e) − ui) ≥ 3, by Lemma 9, G − e is not 2-subconnected.

If e = utut+1 and i + 1 ≤ t ≤ t + 1 ≤ j− 1, then on C0 − e, P = ut+1ut+2 · · · u j−1 is not empty, and (G −
e) − u j contains 3 components containing P = ut+1ut+2 · · · u j−1, B j − u j and Q = u j+1u j+2 · · · uiui+1 · · · ut
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on C0 respectively. So ω((G − e) − u j) ≥ 3, by Lemma 9, G − e is not 2-subconnected.
For e on segment u ju j+1 · · · ui on C0, the discussion is similar.
In the second case, C0 = u0u1u2u0 and each ui is contained in a block Bi besides B(i = 0, 1, 2).

Assume e = uiui+1(i = 0, 1, 2 and the subscripts are reduced modulo 3). Since ui+2 is a cut vertex of G,
contained in a block Bi+2 besides B, (G − e) − ui+2 has 3 components containing P = ui+1, Bi+2 − ui+2

and Q = ui respectively. So ω((G − e) − ui+2) ≥ 3, by Lemma 9, G − e is not 2-subconnected.
Case 2.2. B = C0 + P1 + P2 + · · · + Pm(m ≥ 1).
Case 2.2.1. e = xy ∈ E(B) and, dB(x) = 2 or dB(y) = 2.

Now e is on an H-path P = (u =)urur+1 · · · us(= v)(s − r ≥ 2) connecting two vertices u and v of
degree at least 3 in B. But, in B, the two ends of each Pi has degree at least 3 and the degree of each
internal vertex of P is 2, so P is contained in a Pi = u1u2 · · · urur+1 · · · us · · · un(1 ≤ i ≤ m); or P is
contained in a segment C0[u1, un] = u1u2 · · · ur, ur+1 · · · us · · · un connecting the two ends of P1 on C0

(Notice that here the subscripts of ui(i = 1, 2, · · · , n) are different from those of ui on C0 = u0u1 · · · unu0

before).
Assume e = utut+1(r ≤ t ≤ t + 1 ≤ s). Now, the cut vertices on u1u2 · · · ur−1 of B − e are the same

cut vertices on u1u2 · · · ur−1 of B − urur+1; and the cut vertices on us+1us+2 · · · un of B − e are the same
cut vertices on us+1us+2 · · · un of B − us−1us. Also the cut vertices of B − e can appear only on Pi − e or
C0[u1, un] − e (We shall prove it later).

If B − e has a cut vertex x on u1u2 · · · ur−1 or us+1us+2 · · · un and x is also a cut vertex of G, then x
is contained in a block Bx besides B and (B − e) − x has two components C1 and C2, so (G − e) − x
has 3 components containing C1,C2 and Bx − x. Hence ω((G − e) − x) ≥ 3, by Lemma 9, G − e is not
2-subconnected. In cases (i) and (ii) of condition (2) of this theorem, the conclusion holds. Suppose
cases (i) and (ii) do not hold and case (iii) holds. Then P is an H-path, and s − r ≥ 2, and then P has
at least two cut vertices ui and u j of G, contained respectively in blocks Bi and B j besides B, where
r ≤ i < i + 2 ≤ j ≤ s.

Assume e = utut+1. If j ≤ t < s, then (G−e)−ui has 3 components containing R = ui+1ui+2 · · · ut, Bi−

ui, and T = urur+1 · · · ui−1 respectively. ( If T is empty, then the third component is the one not
containing R and Bi−ui in (G−e)−ui. So ω((G−e)−ui) ≥ 3, by Lemma 9, G−e is not 2-subconnected.

If t = j − 1, the proof is the same as last case.
If t < j − 1, then (G − e) − u j has 3 components containing R = ut+1ut+2 · · · u j−1, B j − u j and

T = u j+1u j+2 · · · us respectively. If T is empty, then the third component is the one not containing R
and B j − u j in (G − e) − u j. So ω((G − e) − u j) ≥ 3, by Lemma 9, G − e is not 2-subconnected.
Case 2.2.2. e = uv ∈ E(B) and dB(u) ≥ 3 and dB(v) ≥ 3.

Now P = uv. P is on a seqment C0[u1, un] = u1u2 · · · uv · · · un on C0 connecting the two ends of P1;
or P is on a path Pi = u1u2 · · · uv · · · un(1 ≤ i ≤ m). Then we have u = ut = ur and v = ut+1 = us. By
condition (2) of this theorem, only case (i) or case (ii) can happen. By the condition, B − e has a cut
vertex x on u1u2 · · · ur−1 or us+1us+2 · · · un such that x is also a cut vertex of G and x is contained in a
block Bx besides B. Then (B− e)− x has exactly two components C1 and C2 and then (G − e)− x has 3
components containing C1,C2 and Bx − x respectively. So ω((G − e) − x) ≥ 3, by Lemma 9, G − e is
not 2-subconnected.

If, according to condition (3), besides the cut vertices in condition (2), B has another cut vertex x of
G, since x is contained in exactly two blocks, ω(G − x) = 2, by Lemma 9, G is 2-subconnected. Since
the cut vertices required by condition (2) exist, for each block B in G, G − e is not 2-subconnected for
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every edge e ∈ E(B). Hence the sufficiency of this theorem is proved.
Now we prove the necessity. Suppose G is a minimally 2-subconnected graph. Now G has two

possible cases: (1) G does not contain any cut vertex; (2) G has a cut vertex.
Case 1. G does not contain any cut vertex.

Then G is a minimally 2-connected graph and G = C0 + P1 + P2 + · · · + Pm. Suppose not ,G has
an edge e such that G − e is still 2-connected, by Lemma 4, G is 2-subconnected and G − e is still
2-subconnected, contradicting the assumption that G is a minimally 2-subconnected graph.

By Theorem 7, G = C0 + P1 + P2 + · · · + Pm, where Pi is an H-path in Gi connecting two vertices
in Gi−1 = C0 + P1 + P2 + · · · + Pi−1, 1 ≤ i ≤ m, and G0 = C0 is a cycle, and for each uv ∈ E(G), if
dG(u) ≥ 3 and dG(v) ≥ 3, then G − uv has a cut vertex.

If G = C0, then, for any edge e on C0,C0 − e is a Hamilton path, hence is 2-subconnected. So G is
not a minimally 2-subconnected graph, a contradition to the assumption.

If G = C0 + P1 + P2 + · · · + Pm(m ≥ 1), by Theorem 7, Pm = u1u2 · · · un and n ≥ 3, as G′ =

C0 +P1 +P2 + · · ·+Pm−1 is also 2-connected, then G−un−1un contains cut vertices ui(i = 1, 2, · · · , n−2),
and (G−un−1un)−ui has exactly two components P = ui+1ui+2 · · · un−1 and the rest part of (G−un−1un)−ui.
So, for any cut set S ⊆ V(G) with |S | = 1, we have ω((G − un−1un) − S ) ≤ 2. By Lemma 9, G − un−1un

is 2-subconnected. Hence G is not minimally 2-subconnected, contradicting the assumption of G. So
Case 1 does not hold, and G must have a cut vertex.
Case 2. G has a cut vertex.

First, every cut vertex of G is contained in exactly two blocks of G. Otherwise, suppose a cut vertex
x is contained in at least 3 blocks B1, B2, B3 in G. Then G − x has at least 3 components containing
B1 − x, B2 − x and B3 − x respectively. So ω(G − x) ≥ 3, by Lemma 9, G is not 2-subconnected,
contradicting the assumption of G.

Second, each block not to be K2 in G must be a minimally 2-connected graph. Suppose B is a block
not to be K2, then B is a 2-connected graph as B is a block and ν(B) ≥ 3. Suppose B is not a minimally
2-connected graph, then B has an edge e such that B − e is still 2-connected. Then each block of G is
still a block in G − e, and each cut vertex of G is still a cut vertex of G − e and B− e does not have any
new cut vertex different from those cut vertices in G. Then each cut vertex x in G − e is still contained
in exactly two blocks of G − e. So ω((G − e)− x) ≤ 2 for each vertex x in G − e. By Lemma 9, G − e is
still 2-subconnected. Hence G is not minimally 2-subconnected, a contradiction to the assumption of
G.

Now we prove conclusion (1): Every leaf block B of G is K2. Suppose not. Then B is a minimally
2-connected graph and B = C0 + P1 + P2 + · · · + Pm by Theorem 7.

In the first case, B = C0 = u0u1 · · · unu0. Since B is a leaf block, B contains exactly one cut vertex
x of G. Without loss of generality, assume that x = u0. Let e = unu0. In G − e, for any cut vertex x, x
is originally a cut vertex in G or x = ui(i = 0, 1, · · · , n − 1), (G − e) − x has exactly two components,
i.e., ω((G − e) − x) = 2. By Lemma 9, G − e is still 2-subconnected, and hence G is not minimally
2-subconnected, contradictiong the assumption of G.

In the second case, B = C0 + P1 + P2 + · · ·+ Pm (m ≥ 1). Let Pm = u1u2 · · · un (n ≥ 3). If the only cut
vertex x of G in B is not on Pm or x = un, then let e = un−1un; if the only cut vertex x of G in B is x = u j

(1 ≤ j < n), then let e = u ju j+1. Now, ω((G− e)− y) = 2 for each cut vertex y in G− e (y is original cut
vertex in G or y = ui (i = 1, 2, · · · , j; or i = j + 2, j + 3, · · · , n). Hence G − e is still 2-subconnected,
and then G is not minimally 2-subconnected, contradicting the assumption of G. So conclusion (1) of
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Theorem 10 is proved.
Now we prove conclusion (2). We have proved that each block B not to be K2 is a minimally 2-

connected graph. If B contains only one cut vertex of G, then B is a leaf block, by the proof before, B
must be a K2, contradicting the above assumption of B. So B contians at least two cut vertices of G.

If B = C0 = u0u1 · · · unu0, then B contains two cut vertices ui and u j such that they are separated
by at least one vertex on C0, i.e., i < i + 2 ≤ j < j + 2 ≤ i (where the subscripts i and j are reduced
modulo n+1); or C0 = u0u1u2u0, and u0, u1 and u2 are all cut vertices of G each of which is contained
in one block of G besides B. Suppose not. Then B = C0 contains only two cut vertices ui and u j of G
and j = i + 1, and then let e = uiui+1. Now every vertex of C0 − e is a cut vertex of G − e, and every cut
vertex of G is still a cut vertex of G− e. Also ω((G− e)− x) = 2 holds for each cut vertex x of G− e. So
G − e is still 2-subconnected, which contradicts the assumption that G is a minimally 2-subconnected
graph.

Now suppose B = C0 + P1 + P2 + · · · + Pm (m ≥ 1). Let P = (u =)urur+1 · · · us(= v) be a path in B
connecting two vertices of degree at least 3 in B. If P is not an edge uv, then P is an H-path. Since the
degree of each inner vertex of P is 2, but the degree of each end vertex of Pi (1 ≤ i ≤ m) is at least 3,
so P is on the segment C0[u1, un] = u1u2 · · · urur+1 · · · us · · · un of C0 connecting two end vertices of P1.
(Notice that the subscript of ui of C0[u1, un] is different from that of ui of C0 = u0u1 · · · unu0 before); or
P is on a Pi = u1u2 · · · urur+1 · · · us · · · un (1 ≤ i ≤ m).

For each edge e = utut+1 of B, if dB(ut) = 2 or dB(ut+1) = 2, then e is on an H-path P as above, and
P is on a segment C0[u1, un] or a Pi (1 ≤ i ≤ m).

Since G is a minimally 2-subconnected graph, G − e is not a 2-subconnected graph, by Lemma 9,
in the following, we only need to prove that B − e has a cut vertex x, and x is also a cut vertex of G
contained in a block Bx besides B. Then (B−e)− x has two components C1 and C2, and then (G−e)− x
has 3 components containing C1,C2 and Bx − x, hence we can prove that x satisfies conclusion (2) in
this theorem.

Now we firstly prove that the cut vertices of B − e are on C0[u1, un] − e or on Pi − e (1 ≤ i ≤ m). If
e = utut+1 is on C0[u1, un], then C0[un, u1] + P1 is a cycle, i.e., a 2-connected graph. The cut vertices
of (C0 + P1) − e are on C0[u1, un] − e. Since (C0 + P1) − e is a connected graph, adding P j to it, which
connects two different vertices of (C0 + P1) − e + P2, · · · + P j−1( j = 2, 3, · · · , n), every P j is contained
in a cycle. So each vertex of P j, except the end vertex (or two end vertices) of P j on C0[u1, un] − e, is
not a cut vertex of B− e. Hence the cut vertices of B− e = (C0 + P1)− e + P2 + P3 + · · ·+ Pm are all on
C0[u1, un]− e. If e = utut+1 is on a Pi, then C0 + P1 + P2 + · · ·+ Pi−1 is 2-connected, then the cut vertices
of ((C0 + P1 + · · · + Pi−1) + Pi) − e are on Pi − e. Since (C0 + P1 + · · · + Pi−1 + Pi) − e is a connected
graph, adding P j to it, which connects two vertices of (C0 + P1 + · · ·+ Pi)− e + Pi+1 + · · ·+ P j−1, every
P j is on a cycle of ((C0 + P1 + · · · + Pi−1 + Pi) − e + Pi+1 + · · · + P j−1) + P j ( j = i + 1, i + 2, · · · ,m).
Then each vertex of P j, except the end vertex (or two end vertices) of P j on Pi − e, is not a cut vertex
of B − e. Hence the cut vertices of B − e = (C0 + P1 + · · · + Pi) − e + Pi+1 + · · · + Pm are all on Pi − e.

Now assume that e = utut+1 is on P = urur+1 · · · us, and P is contained in C0[u1, un] =

u1u2 · · · urur+1 · · · us · · · un or is contained in Pi = u1u2 · · · urur+1 · · · us · · · un. By the proof before, B − e
has a cut vertex x on C0[u1, un]− e or on Pi− e. As (B− e)− x has only two components, suppose every
cut vertex x of B − e is not a cut vertex of G, then ω((G − e) − x) = ω((B − e) − x) = 2. By Lemma 9,
G−e is still 2-subconnected, contradictiong the assumption that G is minimally 2-subconnected. Hence
B − e has a cut vertex x and x is also a cut vertex of G contained in a block Bx besides B in G. Notice
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that the degree of each inner vertex of P is 2, so the cut vertices of B − e on u1u2 · · · ur−1 are the same
as the cut vertices of B − urur+1 on u1u2 · · · ur−1. If B − e has a cut vertex x on u1u2 · · · ur−1 such that x
is also a cut vertex of G, then B − urur+1 also has a cut vertex x on u1u2 · · · ur−1 such that x is also a cut
vertex of G. Hence conclusion (2) (i) of this theorem is proved.

By the same reason, since the degree of each inner vertex of P in B is 2, the cut vertices of B − e
on us+1us+2 · · · un are the same as the cut vertices of B − us−1us on us+1us+2 · · · un. If B − e has a cut
vertex y on us+1us+2 · · · un and y is also a cut vertex of G, then B − us−1us also has the cut vertex y on
us+1us+2 · · · un such that y is also a cut vertex of G. Hence conclusion (2) (ii) of the theorem is proved.

Now suppose conclusions (i) and (ii) of (2) do not hold. As dB(ut) = 2 or dB(ut+1) = 2, and e = utut+1

is on P = urur+1 · · · us, so s − r ≥ 2. Suppose that P does not satisfy that P has at least two vertices ui

and u j such that ui and u j are cut vertices of G and r ≤ i < i + 2 ≤ j ≤ s, then P does not have any cut
vertex of G; or P has only one cut vertex ui of G; or P has exactly two cut vertices ui and u j of G with
j = i + 1.

In the first case, P does not have any cut vertex of G. By the proof as before, B− e has a cut vertex x
on C0[u1, u2]− e; or on Pi − e such that x is also a cut vertex of G. By the assumption in last paragraph,
conclusions (i) and (ii) do not hold, then u1u2 · · · ur−1 and us+1us+2 · · · un do not have any cut vertex x of
G, so cut vertex x of G can only lie on P = urur+1 · · · us, it contradicts the assumption of this case.

In the second case, P has exactly one cut vertex ui of G. If i = s, let e = us−1us; if r ≤ i ≤ s − 1, let
e = uiui+1. Then, in G − e, each cut vertex is x on u1u2 · · · ur−1; or y on us+1us+2 · · · un; or u j( j = i = s
and j = r, r + 1, · · · i − 2; or j = r, r + 1, · · · , i and j = i + 2, i + 3, · · · s). But since x and y are not
cut vertices of G and only ui is a cut vertex of G on P, each cut vertex z of G − e is contained only
in two blocks, then ω((G − e) − z) ≤ 2, by Lemma 9, G − e is still 2-subconnected, contradicting the
assumption that G is minimally 2-suconnected.

In the third case, P has exactly two cut vertices ui and u j respectively contained in two blocks Bi

and B j besides B in G with j = i + 1. Let e = uiui+1. Then in G − e, each cut vertex x on u1u2 · · · ur−1

is not a cut vertex of G; each cut vertex y on us+1us+2 · · · un is not a cut vertex of G; and up is a cut
vertex of G − e for p = r, r + 1, · · · , i; and p = i + 1, i + 2, · · · , s. But each cut vertex of G − e is
contained in exactly two blocks. So ω((G − e) − z) ≤ 2 for each cut vertex z of G − e. By Lemma 9,
G− e is still 2-subconnected, contradicting the assumption that G is minimally 2-subconnected. Hence
conclusion(iii) of (2) holds.

Suppose e = utut+1 satisfy that dB(ut) ≥ 3 and dB(ut+1) ≥ 3.Then P = uv = urur+1 · · · us satisfies that
r = t and s = t + 1. Since B = C0 + P1 + P2 + · · · + Pm, P is on C0[u1, un] = u1u2 · · · utut+1 · · · un; or on
Pi = u1u2 · · · utut+1 · · · un. As G − e has a cut vertex z such that ω((G − e) − z) ≥ 3, by the same proof
as before, the cut vertex of B− e is on u1u2 · · · ur−1(= ut−1); or on (ut+2=) us+1us+2 · · · un. Each of ut and
ut+1 is possibly a cut vertex of G − e, but each of these two possible cut vertices can be contained only
in two blocks of G − e. To satisfy that ω((G − e) − z) ≥ 3, z can be only cut vertex x on u1u2 · · · ur−1 in
B − e such that x is also a cut vertex of G contained in a block Bx besides B; or can be a cut vertex y
on us+1us+2 · · · un in B − e such that y is also a cut vertex of G contained in a block By besides B. Then
conclusions (i) and (ii) of (2) of this theorem hold.

In above discussion, if G is a minimally 2-subconnected graph, we always have conclusions (1)
and (2) of this theorem. Since, in logic, if A implies B, then A implies B or B and C, so we also
have conclusion (3). Now we prove conclusions (1)–(3) imply that G is a minimally 2-subconnected
graphs. Besides the cut vertices required by (2), each other vertex x of a block B not to be K2 may be
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a cut vertex of G. Since by conditions (1) and (2), each cut vertex x of G is contained in exactly two
blocks, so ω(G − x) ≤ 2 for each cut vertex x in G, by Lemma 9, G is 2-subconnected. By the proof
of sufficiency, for each edge e ∈ E(B) and each block B of G, if G satisfies conditions (1)–(3) (and
hence (1) and (2)), then G is a minimally 2-subconnected graph. So conclusion (3) holds.

Hence the theorem is proved. �
Now we give examples of graphs satisfying Theorem 10. Let C0 = a0a1 · · · a8a0, P1 = b0b1 · · · b8,

P2 = c0c1c2c3c4, P3 = d0d1d2d3. Let B0 = C0 + P1 + P2 + P3, where a1 = b0, a4 = b8, b2 = c4,
b6 = c0, b1 = d3 and b7 = d0. Notice that ai, b j, ck, dl are different vertices except the cases that we
specify that they are the same vertices as above. Then B0 is a minimally 2-connected graph and it is a
block discussed in Theorem 10. Let D0 = x0x1x2x3x4x5x0 be a cycle, D1 = x3y1, H = D0 ∪ D1. Let
H1,H2, · · · ,H9 be nine copies of H. Let G3 be the graph by identifying a1 in B0 and x1 in H1, a3 in B0

and x1 in H2, a5 in B0 and x1 in H3, b1 in B0 and x1 in H4, b2 in B0 and x1 in H5, b5 in B0 and x1 in H6,
b7 in B0 and x1 in H7, c1 in B0 and x1 in H8, and y1 in H8 and x1 in H9 respectively. Then G3 has the
structure in Theorem 10. Let G4 be the graph by identifying a1 in C0 and x1 in H1, a4 in C0 and x1 in
H2 respectively. Then G4 consists of C0, H1 and H2, and it also has the structure in Theorem 10.
Theorem 11. A 2-connected graph G has a spanning 2-subconnected subgraph H such that (1) if G has
a Hamilton path, then |E(G)|−|E(H)| ≥ 1; (2) if G does not have a Hamilton path, then |E(G)|−|E(H)| ≥
2.
Proof. First, assume that ν(G) ≥ 5, and assume that G is a minimally 2-connected graph. Since, by
Lemma 4, a 2-connected graph G must be 2-subconnected, so deleting some edges from G,we can
obtain a minimally 2-subconnected spanning subgraph H. As the minimum degree of a vertex in 2-
connected graph G is at least 2, by Theorem 10, the minimum degree of a vertex in H is 1. To obtain
H, we must delete at least 1 edge from G. So |E(G)| − |E(H)| ≥ 1, by Remark 1 in the following, if G
is a cycle (a Hamilton cycle), then H is a Hamilton path and |E(G)| − |E(H)| = 1.

Now assume that G does not contain a Hamilton path. By the argument in last paragraph, G has
a minimally 2-subconnected spanning subgraph H. By Theorem 10, H has a cut vertex and each leaf
block of H is a K2. Since, by Lemma 1, the block graph B(H) of H is a tree, and H has a cut vertex
and at least 2 leaf blocks, so H has at least 2 vertices of degree 1. If B(H) has at least 3 leaves, i.e., H
has at least 3 leaf blocks K2, then H has at least 3 vertices of degree 1. Since the degree of each vertex
of G is at least 2, to obtain H, we have to delete at least two edges from G. Then |E(G)| − |E(H)| ≥ 2.

Now assume that the block graph B(H) of H has exactly two leaves. Then B(H) is a path, and H
has exactly two leaf blocks K2, each of which has a vertex u(or v) of degree 1. Since ν(H) = ν(G) ≥ 5,
by the assumption at the beginning of this proof, besides the two blocks K2, H has another block B
which contains exactly two cut vertices of H. If H is not obtained by deleting edge uv from G, that is,
G does not contain edge uv, since δ(G) ≥ 2, to obtain the two vertices u and v of degree 1, we have to
delete at least two edges from G. Then |E(G)| − |E(H)| ≥ 2. Now assume that E(G) = E(H)∪ {uv} and
uv < E(H).

If we go from u to v in H and every blocks gone through is K2, then H is a Hamiltian path,
contradicting the former assumption that G has no Hamiltonian path. So at least one block B gone
through from u to v in H is not K2.

If B = C0 = u0u1 · · · unu0 and C0 has exactly two cut vertices ui and u j of H(i < i+2 ≤ j < j+2 ≤ i,
where the subscripts i and j are reduced modulo n + 1) by Theorem 10. Then we delete ui−1ui and
u j−1u j from G = H + uv to obtain H′, and H′ is still minimally 2-subconnected, so |E(G)| − |E(H′)| ≥ 2.
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This is because, in H′ = G − {ui−1ui, u j−1u j}, except blocks B and uv, every block is the same as it
is in H and has the same cut vertices as in H, the two leaf blocks of H and edge uv form a path in
H′, and each of the blocks in this path is a K2, and now the two leaf blocks ui−2ui−1 and u j−2u j−1 are
K2, and uiui+1 · · · u j−1 and u ju j+1 · · · ui−1 are two paths containing cut vertices ui and u j respectively on
which each edge is a block K2. So H′ satisfies the hypotheses of minimally 2-subconnected graphs in
Theorem 10, and hence H′ is a minimally 2-subconnected graph.

Suppose B = C0 + P1 + P2 + · · · + Pm (m ≥ 1). Let C0 = w0w1 · · ·wnw0, and two end vertices of P1

on C0 be x = wi and y = w j and i < i + 2 ≤ j < j + 2 ≤ i, where the subscripts i and j are reduced
modulo n + 1. Now Pm = u1u2 · · · uk be an H-path in B connecting two vertices of degree at least 3.
Now cases (i) and (ii) of conclusion (2) in Theorem 10 do not hold since r = 1 and s = k. So only
case (iii) happens, that is, Pm has two vertices ui and u j to be cut vertices of H contained in two blocks
respectively besides B and 1 ≤ i < i + 2 ≤ j ≤ k. Since B contains exactly 2 cut vertices of H, ui and
u j are the only two cut vertices of H in B.

If at least one of ui and u j is not an end vertex of Pm, without loss of generality, assume ui , u1,
and then ui is a vertex of degree 2 in B. Now not both x and y are cut vertices of H since both x
and y are of degree at least 3 in B. Without loss of generality, assume that x is not a cut vertex of
H. Assume that Q1 = a1a2 · · · ak1 and Q2 = b1b2 · · · bk2 be the two segments of C0 from y to x, and
Q3 = P1 = c1c2 · · · ck3 , where a1 = b1 = c1 = y and ak1 = bk2 = ck3 = x. Since ui is a vertex of degree
2 in B, it can be contained in only one of Q1, Q2 and Q3. So one of Q1, Q2 and Q3 (without loss of
generality, assume Q1) does not contain any cut vertex of H except y. As B is a minimally 2-connected
graph, the block graph of B − a1a2 is a path. Let B′ = C0 + P1. Then all cut vertices of B′ − a1a2 are
on Q1 − a1. Also since B − a1a2 = (B′ − a1a2) + P2 + P3 + · · · + Pm, each Pi connects two different
vertices of connected graph (B′ − a1a2)+P2 + · · · + Pi−1, and Pi is contained in a cycle of B − a1a2, so
except the cut vertices on Q1 − a1 in B′ − a1a2, B − a1a2 can not have other cut vertices, hence all cut
vertices of B − a1a2 are on Q1 − a1. As Q1 − a1 does not contain any cut vertex of H and Q1 − a1 is a
path, so ω(H − a1a2 − w) ≤ 2 for each cut vertex w of B − a1a2 on Q1 − a1. For any other cut vertex
w of H − a1a2, w is also a cut vertex of H, and w satisfies that ω(H − a1a2 − w) ≤ 2. By Lemma 9,
G − uv − a1a2 = H − a1a2 is still a 2-subconnected graph which contains a minimally 2-subconnected
spanning subgraph H′, hence |E(G)| − |E(H′)| ≥ 2.

Suppose both ui and u j are end vertices of Pm, i.e., ui = u1 and u j = uk. Suppose u1, uk , x, y,
without loss of generality, assume x < u1, uk, i.e., x is not a cut vertex of H. By the same argument as
above, we can get a minimally 2-subconnected spanning subgraph H′ of G such that |E(G)| − |E(H′)| ≥
2.

Now suppose u1 = x and uk = y. Then B does not contain any other cut vertex besides x and
y, and the block graph B(H) of H is a path containing the two vertices corresponding to x and y in
H. Assume that Q1 = a1a2 · · · ak1 and Q2 = b1b2 · · · bk2 are the two segments of C0 from y to x, and
Q3 = P1 = c1c2 · · · ck3 , where a1 = b1 = c1 = y, ak1 = bk2 = ck3 = x. Let B′ = C0 + P1. Let
G′ be the graph from G by replacing B by B′. Then G′ is also a minimally 2-connected graph. Let
H′ = G′ − a1a2 − bk2bk2−1. Then all cut vertices of H′ are on Q1 − a1 and Q2 − bk2 . Since B does contain
any other cut vertex of H besides x and y, and B−a1a2−bk2bk2−1 = (B′−a1a2−bk2bk2−1)+P2+P3+· · ·+Pm,
each Pi connects two different vertices in connected graph B′−a1a2−bk2bk2−1+P2+· · ·+Pi−1(2 ≤ i ≤ m),
then each Pi is contained in a cycle, so besides the vertices on Q1 − a1 and Q2 − bk2 , B− a1a2 − bk2bk2−1

does not contain any other cut vertex of G−a1a2−bk2bk2−1. Hence every cut vertex of G−a1a2−bk2bk2−1
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is on Q1−a1 and Q2−bk2 . But each of Q1−a1 and Q2−bk2 is a path, so ω(G−a1a2−bk2bk2−1−w) ≤ 2 for
each cut vertex w of G−a1a2−bk2bk2−1 on Q1−a1 or Q2−bk2 . Besides the above w, G−a1a2−bk2bk2−1 does
not have any other cut vertex. By Lemma 9, G − a1a2 − bk2bk2−1 is a 2-subconnected graph containing
a minimally 2-subconnected spanning subgraph H′′ such that |E(G)| − |E(H′′)| ≥ |{a1a2, bk2bk2−1}| = 2.

Then the conclusion of this theorem is proved.
If ν(G) ≤ 4, it is easy to verify that the conclusion of this theorem also holds. �
The examples of graphs satisfying Theorem 11 are the same as those in Theorem 10, and some

examples are illustrated in Remark 1.
Remark 1. In [17], we prove that, in a k-connected graph G, by deleting arbitrarily k − 1 edges,
the resulting graph is still k-subconnected. If we choose edges to be deleted properly, the number of
deleted edges to keep k-subconnectedness would be much more. For example, if G has a Hamiltonian
path P, then we can delete all edges except those on P, the resulting graph is still k-subconnected. But
for k = 2, the number of edges to be deleted will not increase. For example, if G is a cycle C, then G is
a 2-connected graph. Deleting arbitrarily k − 1 = 1 edge, G is still 2-subconnected. But deleting any 2
edges, no matter how to choose the 2 edges, the resulting graph is not connected, by Lemma 5, it is not
1-subconnected and hence not 2-subconnected.

If G is the union of four internally disjoint paths P = a1a2 · · · an, Q = b1b2 · · · bn, R = c1c2 · · · cn and
S = d1d2 · · · dn with x = a1 = b1 = c1 = d1 and y = an = bn = cn = dn (n ≥ 3), then G is a minimally
2-connected graph without Hamiltonian path. Then G − a1a2 − bn−1bn is a minimally 2-subconnected
graph, and deleting any three edges from G, the resulting graph is not 2-subconnected. So the lower
bounds of edges to be deleted in Theorem 11 are sharp.

4. Conclusions

As we mentioned in the introduction of this paper, to study k-subconnected graphs may help to
solve the computation problem of 2k-critical graphs. Also every k-connected graph has a minimally
k-subconnected spanning subgraph. To characterize the structure of minimally k-subconnected graphs
may help us to know more about the structure of k-connected graphs.

To start, in this paper, we characterize the structure of minimally 2-subconnected graphs.
But for k > 2, the structure of minimally k-subconnected graphs is still difficult to characterize. We

also do not know how many edges can be deleted in a k-connected graph to keep k-subconnectedness
if we choose the edges to be deleted properly.
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