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1. Introduction

Auxiliary information may enhance the accuracy of estimators in survey sampling, as is well known.
It is possible to employ the supplementary information in the selection and estimate stages. Many
academics have sought to acquire population metrics like the mean or median that have the best
statistical qualities. For this reason, a representative sample of the population is required. Simple
random sampling (SRS) may pick the units when the population of interest is homogenous. However,
it is not easy to use the SRS or any other sampling strategy to estimate population characteristics with
a natural population, such as a forest. Systematic sampling may be used swiftly in this case to choose
a representative sample from the population.
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Systematic sampling benefits picking the whole sample with a single random start, making it
extremely simple to operate. Apart from its simplicity, which is critical in large-scale sampling
operations, it produces more efficient estimators than those produced by SRS or stratified random
sampling for specific populations. References [11, 14] proposed ratio and product estimators for
estimating the finite population mean Ȳ of the research variable y, respectively, along with their
systematic sampling features. By contrast, systematic sampling has been extensively addressed
by [1, 2, 4–8, 13].

2. Materials and methods

It is important to remember that a finite population with units U = [1...N] has the study variable
y and the auxiliary variable x. Every kth unit is randomly picked from a systematic sample of size n,
with a random start to choose the initial unit. N = nk, where n and k are positive integers, are used in
this example. There are yi j and xi j, which are the values of the jth unit in the ith chosen sample for y and
x variables, respectively, in the ith-selected sample. Systematic random sampling uses sample means
such as these:

ȳsys =
1
n

n∑
j=1

yi j, x̄sys =
1
n

n∑
j=1

xi j,

which are unbiased estimators for population means Ȳ and X̄ respectively. To obtain the biases and
mean square errors, we define:

e0 =
ȳsys − Ȳ

Ȳ
, e1 =

x̄sys − X̄
X̄

, λ =
1
n
−

1
N

such that, E(e0) = E(e1) = 0

E(e2
0) = λρ∗2y C2

y , E(e2
1) = λρ∗2x C2

x, E(e0e1) = λρyxCyCx

√
ρ∗yρ

∗
x,

where
ρ∗y = 1 + (n − 1)ρy, ρ

∗
x = 1 + (n − 1)ρx,

Cy =
S y

Ȳ
, S y =

√√
1

N − 1

N∑
i=1

(yi − Ȳ2),

Cx =
S x

X̄
, S x =

√√
1

N − 1

N∑
i=1

(xi − X̄2),

Cy, Cx are the coefficients of Y and X respectively, and

ρy =
E
[
(yi j − Ȳ)(ýi j − Ȳ)

]
E(yi j − Ȳ)

and ρx =
E
[
(xi j − X̄)(x́i j − X̄)

]
E(xi j − X̄)

,

correlation coefficients within a single systematic sample between two or more individuals,

ρyx =
E(yi j − Ȳ)(xi j − X̄)√
E(yi j − Ȳ)2E(xi j − X̄)2

,
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is the correlation between y and x.
Reference [10] suggested the following an unbiased estimator:

ȳs =


ȳ + c, if sample contains ymin but not ymax,

ȳ − c, if sample contains ymax but not ymin,

ȳ, for all samples.

(2.1)

The variance of ȳs is given by

V(ȳs) = λS 2
y −

2λnc
N − 1

(ymax − ymin − nc), (2.2)

where S 2
y is the population variance, and c is the constant. The optimum value of c is,

copt =
(ymax − ymin)2

2n
.

The minimum mean square error of ȳs:

V(ȳs)min = V(ȳ) −
λ(ymax − ymin)2

2(N − 1)
. (2.3)

The minimum variance of ȳs is always smaller than the variance of ȳ.
The usual ratio and product estimators in systematic sampling scheme are given by:

ȳRsys = ȳsys

( X̄
x̄sys

)
(2.4)

ȳPsys = ȳsys

( x̄sys

X̄

)
. (2.5)

Biases and first-degree approximation mean square errors of ȳRsys and ȳPsys are, respectively,
provided by:

B(ȳRsys) = λȲ
(
C2

xρ
∗
x − ρyxCyCx

√
ρ∗yρ

∗
x
)
, (2.6)

B(ȳPsys) = λȲ
(
ρyxCyCx

√
ρ∗yρ

∗
x
)
, (2.7)

and
MS E(ȳRsys) = λ

[
S ∗yρ

∗
y + R2S ∗xρ

∗
x − 2RS yx

√
ρ∗yρ

∗
x

]
, (2.8)

MS E(ȳPsys) = λ
[
S ∗yρ

∗
y + R2S ∗xρ

∗
x + 2RS yx

√
ρ∗yρ

∗
x

]
. (2.9)

The usual regression estimator under systematic random sampling scheme, is given by:

ȳlrsys = ȳsys + b(X̄ − x̄sys). (2.10)

The sample regression coefficient b is represented by this equation. b is the least square estimates of
the population regression coefficient (β), therefore ȳlrsys, has the variance provided by:

V(ȳlrsys) = λρ∗yS 2
y
(
1 − ρ2

yx
)
. (2.11)
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3. Purposed estimator

On the lines of [10], we provide estimators of the ratio, product, and regression types in the presence
of maximum and minimum values using a systematic sampling approach. As follows, we propose a
better estimator for each of the following situations.

3.1. Case (1): When correlation between y and x is positive

When y and x have a positive correlation, it is considered that a higher value of x equals a much
higher value of y. A lower value of x is regarded to be equivalent to a smaller value of y when y equals
x. As a consequence, the following ratio type estimator is defined.

ˆ̄YR(sys) = ȳsys(c11)
X̄

x̄sys(c21)

or

ˆ̄YR(sys) =


ȳsys+c1

x̄sys+c2
X̄

ȳsys−c1

x̄sys−c2
X̄

ȳsys

x̄sys
X̄

. (3.1)

The regression type estimator is:

ˆ̄Ylr1(sys) = ȳsys(c11) + b(X̄ − x̄sys(c21)), (3.2)

where b is the sample regression coefficient.
Consider (ȳsys(c11) = ȳsys + c1, x̄sys(c21) = x̄sys + c2) if the sample contains ymin and xmin, (ȳsys(c11) =

ȳsys − c1, x̄sys(c21) = x̄sys − c2) if the sample contains ymax and xmax and (ȳsys(c11) = ȳsys, x̄sys(c21) = x̄sys) for
all the other combinations of sample.

3.2. Case (2): When correlation between y and x is negative

When y and x have a negative correlation, it is considered that a higher value of x equals a much
lower value of y. A lower value of x is regarded to be equivalent to a smaller value of y when y equals
x. As a consequence, the following ratio type estimator is defined.

ˆ̄YP(sys) = ȳsys(c12)
x̄sys(c22)

X̄
(3.3)

or

ˆ̄YP(sys) =


(ȳsys+c1)(x̄sys−c2)

X̄
(ȳsys−c1)(x̄sys+c2)

X̄
ȳsys

x̄sys
X̄

. (3.4)

The regression type estimator is:

ˆ̄Ylr2(sys) = ȳsys(c11) + b(X̄ − x̄sys(c22)), (3.5)

where b is the sample regression coefficient.
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Consider (ȳsys(c12) = ȳsys + c1, x̄sys(c22) = x̄sys − c2) if the sample contains ymin and xmin, (ȳsys(c12) =

ȳsys − c1, x̄sys(c22) = x̄sys + c2) if the sample contains ymax and xmax and (ȳsys(c12) = ȳsys, x̄sys(c22) = x̄sys) for
all the other combinations of sample. Let

e0 =
ȳsys(c1) − Ȳ

Ȳ
, e1 =

x̄sys(c1) − X̄
X̄

,

E(e2
0) =

(
λ

Ȳ2

) [
S 2

yρ
∗
y −

2nc1

N − 1

(
∆y − nc1

)]
,

E(e2
1) =

(
λ

X̄2

) [
S 2

xρ
∗
x −

2nc2

N − 1
(∆x − nc2)

]
,

E(e0e1) =

(
λ

Ȳ X̄

) [
S uv

√
ρ∗yρ

∗
x −

n
N − 1

{
c2∆y + c1∆x − 2nc1c2

}]
,

where
∆y = (ymax − ymin), ∆x = (xmax − xmin).

Expressing ˆ̄YR(sys) in terms of e′s,

ˆ̄YR(sys) = Ȳ(1 + e0)(1 + e1)−1. (3.6)

By right hand side of (3.6) up-to first order of approximation, we have

( ˆ̄YR(sys) − Ȳ) = Ȳ(e0 + e1 − e0e1 + e2
1). (3.7)

Using the above equation, the bias of ˆ̄YR(sys), is given by:

B( ˆ̄YR(sys)) �
λ

X̄

[(
RS 2

xρ
∗
x − S yx

√
ρ∗yρ

∗
x
)
−

n
N − 1

{
2c2(∆x − nc2)

+
(
c2∆y + c1∆x − 2nc1c2

)}]
. (3.8)

Using (3.7), the mean error of ˆ̄YR(sys) up to the first order of approximation, is given by:

MS E( ˆ̄YR(sys)) �λ
[
S 2

yρ
∗
y −

2nc1

N − 1

(
∆y − nc1

)
+ R2

{
S 2

xρ
∗
x −

2nc2

N − 1
(∆x − nc2)

}
− 2R

{
S yx

√
ρ∗yρ

∗
x −

n
N − 1

(
c2∆y + c1∆x − 2nc1c2

)} ]
, (3.9)

where R = Ȳ
X̄ , or

MS E( ˆ̄YR(sys)) �
[
S 2

yρ
∗
y + R2S 2

xρ
∗
x − 2RS yx

√
ρ∗yρ

∗
x

]
−

2nλ
N − 1

{
c1(∆y − nc1)

+c2R2(∆x − nc2) − R(c2∆y + c1∆x − 2nc1c2)
}

(3.10)

or
MS E( ˆ̄YR(sys)) � MS E(ȳRsys) −

2λn
N − 1

[
(c1 − Rc2)

{
∆y − R∆x − n (c1 − Rc2)

}]
. (3.11)
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Optimum values of c1 and c2, we differentiate (3.11) with respect to c1 and c2 as:

∂M( ˆ̄YR(sys))
∂c1

= ∆y − R∆x − 2n (c1 − Rc2) = 0,

∂M( ˆ̄YR(sys))
∂c2

= ∆y − R∆x − 2n (c1 − Rc2) = 0.

As a result, a one-of-a-kind solution is not attainable. The ideal values of c1 and c2 are:

c1opt =
∆y

2n
and c2opt =

∆x

2n
.

For optimum values of c1 and c2, the minimum MS E of ˆ̄YR( sys), is given as:

MS E( ˆ̄YR(sys))min � MS E(ȳR(sys)) −
λ

2(N − 1)

[
∆y − R∆x

]2
. (3.12)

Similarly the bias and mean squared error of ˆ̄YP(sys) are respectively, given by:

B( ˆ̄YP(sys)) �
λ

X̄

[
S yx

√
ρ∗yρ

∗
x −

n
N − 1

{(
c2∆y + c1∆x − 2nc1c2

)}]
(3.13)

and

MS E( ˆ̄YP(sys)) � MS E(ȳP(sys)) −
2λn

N − 1

[
(c1 + Rc2)

{
∆y + R∆x − n (c1 + Rc2)

}]
. (3.14)

For optimum values of c1 and c2, the MS E of ˆ̄YP(sys) is given as:

MS E( ˆ̄YP(sys))min � MS E(ȳP(sys)) −
λ

2(N − 1)

[
∆y − R∆x

]2
. (3.15)

The variance of regression estimator ˆ̄Ylr1(sys) in case of positive correlation, is given by:

V( ˆ̄Ylr1(sys)) = V(ȳlr(sys)) −
2λn

N − 1

[
(c1 − βc2)

{
4y −β 4x −2n (c1 − βc2)

}]
, (3.16)

where β = ρyx
S yρ

∗
y

S xρ
∗
x

is the population regression coefficient of y on x . For

c1opt =
∆y

2n
and c2opt =

∆x

2n
,

the minimum variance of ( ˆ̄Ylr1sys), is given as:

V( ˆ̄Ylr1(sys)) = V(ȳlr(sys)) −
λ

2(N − 1)

[
∆y − β∆x

]2
. (3.17)

For negative correlation, variance of the regression estimator ( ˆ̄Ylr2(sys)), is given by:

V( ˆ̄Ylr2(sys)) = V(ȳlr(sys)) −
2λn

N − 1

[
(c1 + βc2)

{
∆y + β∆x − 2n

(
c1 + βc2

)}]
. (3.18)

AIMS Mathematics Volume 7, Issue 6, 9825–9834.



9831

For optimum values of c1 and c2 i.e:

c1opt =
∆y

2n
and c2opt =

∆x

2n
.

The minimum variance of (Ȳlr2(sys)), is given by:

V( ˆ̄Ylr2(sys))min = V(ȳlr(sys)) −
λ

2(N − 1)

[
∆y + β∆x

]2
. (3.19)

In general we can write

V( ˆ̄Ylr(g)(sys))min = V(ȳlr(sys)) −
λ

2(N − 1)

[
∆y − |β|∆x

]2
. (3.20)

4. Comparison of estimators

This section compares the proposed estimators to the conventional ratio, product, and regression
type estimators in systematic sampling.

4.1. Condition (i)

The purposed ratio type estimator ˆ̄YR(sys) systematic sampling will outperform the conventional ratio
type estimator, by (2.8) and (3.12), if[

MS E(ȳR(sys)) − MS E( ˆ̄YR(sys))min

]
≥ 0

or

min
[
Rc2,Rc2 −

{
R∆x − ∆y

n

} ]
< c1 < max

[
Rc2,Rc2 −

{
R∆x − ∆y

n

} ]
. (4.1)

4.2. Condition (ii)

The purposed product type estimator ˆ̄YP(sys) systematic sampling will outperform the conventional
ratio type estimator, by (2.9) and (3.15), if[

MS E(ȳP(sys)) − MS E( ˆ̄YP(sys))min

]
≥ 0

or

min
[
− Rc2,−Rc2 +

{
R∆x + ∆y

n

} ]
< c1 < max

[
− Rc2,−Rc2 +

{
R∆x + ∆y

n

} ]
. (4.2)

4.3. Condition (iii)

The proposed regression type estimator ˆ̄Ylr1(sys) better than the standard regression estimator in the
case of random sampling, by (2.11) and (3.17), if[

V(ȳlr(sys)) − V( ˆ̄Ylr1(sys))
]
≥ 0

or

min
[
βc2, βc2 −

{
β∆x − ∆y

n

} ]
< c1 < max

[
βc2, βc2 −

{
β∆x − ∆y

n

} ]
. (4.3)
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4.4. Condition (iv)

The proposed regression type estimator ˆ̄Ylr2(sys) will perform better than the usual regression type
estimator in systematic sampling, by (2.11) and (3.19).[

V(ȳlr(sys)) − V( ˆ̄Ylr2(sys))
]
> 0

or

min
[
− βc2,−βc2 +

{
β∆x − ∆y

n

} ]
< c1 < max

[
− βc2,−βc2 +

{
β∆x − ∆y

n

} ]
. (4.4)

If the conditions outlined in (i) − (iv) are met, the suggested estimators outperform the current ones.

5. Numerical study

In this part, we compare the recommended estimators against various other estimators using four
different sets of data sets. The following are the population data descriptions that are required.

Population 1: [Source: [12]].
First 32 observations are considered as a population.

y = Cultivated area in acres in 1974 census,
x =Cultivated area in 1971 census.

Data statistics are given as:
N = 32, n = 10, Ȳ = 199.2813, X̄ = 207.8438, Cy = 0.7738, Cx = 0.7459, ρ∗y = 0.0235, ρ∗x = 0.0144,
ρyx = 0.9815, ymax = 634, ymin = 6, xmax = 564, xmin = 5.

Population 2: [Source: PSLM(2007-2008)].
y= Age of students.
x=Total monthly expenditure on education.

Data statistics are given as:
N = 144, n = 70, Ȳ = 18.0833, X̄ = 4200.1390, Cy = 0.6738, Cx = 0.8459, ρ∗y = 0.0235, ρ∗x = 0.0144,
ρyx = 0.7815, ymax = 80, ymin = 1, xmax = 30000, xmin = 250.

Population 3: [Source: [3]].
First 12 observations are considered as a population.

y=Merchandise imports in dollars million,
x=Gross national product in dollars billion.

Data statistics are given as:
N = 12, n = 5, Ȳ = 132.7323, X̄ = 1781.125, Cy = 0.5665, Cx = 0.3451, ρ∗y = 0.2867, ρ∗x = 0.2991,
ρyx = 0.9954, ymax = 265.086, ymin = 39.866, xmax = 2957.8, xmin = 992.7.

Population 4: [Source: [9]].
y= Output production of 40 factories.
x= The number of workers.

Data statistics are given as:
N = 40, n = 10, Ȳ = 5078.575, X̄ = 230.3251, Cy = 0.329525, Cx = 0.84056, ρ∗y = 0.23, ρ∗x = 0.086,
ρyx = 0.8005, ymax = 8512, ymin = 1451, xmax = 662, xmin = 52.
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The results are given in Table 1.

Table 1. MS E values of all considered estimators.

Estimator Population 1 Population 2 Population 3 Population 4
ȳR(sys) 3.38671 0.01101 28.07364 40019.90
ˆ̄YR(sys) 3.37638 0.01094 28.03744 39976.72
ȳP(sys) 117.1967 0.08969 496.58950 291680.30
ˆ̄YP(sys) 117.1864 0.08962 496.55330 291637.10
ȳlr(sys) 1.40830 0.00997 1.73586 14634.74
ˆ̄Ylr(g)(sys) 0.92753 0.00979 1.49143 14583.30

Table 1 shows the results based on four populations. For all four data sets, the recommended
estimators’ mean square error values are lower than the existing estimators. Among all the estimators
investigated, the recommended regression estimator ˆ̄Ylr(g)(sys) outperforms and is preferred.

6. Conclusions

When employing maximum and minimum values, we provided certain ratio, product, and regression
type estimators in a systematic sampling strategy. Under certain situations, the suggested estimators
are expected to be more efficient than traditional ratio, product, and regression estimators. In all four
populations, the performance of the recommended estimators is better than the standard estimators, as
shown in Table 1. As a result, it’s possible that the proposed estimators will be favored over the existing
estimators. The recommended regression estimator has the best performance of all the estimators.
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