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Abstract: In physics as well as mathematics, nonlinear partial differential equations are known as
veritable tools in describing many diverse physical systems, ranging from gravitation, mechanics, fluid
dynamics to plasma physics. In consequence, we analytically examine a two-dimensional generalized
Bogoyavlensky-Konopelchenko equation in plasma physics in this paper. Firstly, the technique of
Lie symmetry analysis of differential equations is used to find its symmetries and perform symmetry
reductions to obtain ordinary differential equations which are solved to secure possible analytic
solutions of the underlying equation. Then we use Kudryashov’s and (G′/G)-expansion methods
to acquire analytic solutions of the equation. As a result, solutions found in the process include
exponential, elliptic, algebraic, hyperbolic and trigonometric functions which are highly important
due to their various applications in mathematic and theoretical physics. Moreover, the obtained
solutions are represented in diagrams. Conclusively, we construct conservation laws of the underlying
equation through the use of multiplier approach. We state here that the results secured for the equation
understudy are new and highly useful.
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1. Introduction

Plasma physics simply refers to the study of a state of matter consisting of charged particles.
Plasmas are usually created by heating a gas until the electrons become detached from their parent atom
or molecule. In addition, plasma can be generated artificially when a neutral gas is heated or subjected
to a strong electromagnetic field. The presence of free charged particles makes plasma electrically
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conductive with the dynamics of individual particles and macroscopic plasma motion governed by
collective electromagnetic fields [1].

Nonlinear partial differential equations (NPDE) in the fields of mathematics and physics play
numerous important roles in theoretical sciences. They are the most fundamental models essential in
studying nonlinear phenomena. Such phenomena occur in plasma physics, oceanography, aerospace
industry, meteorology, nonlinear mechanics, biology, population ecology, fluid mechanics to mention
a few. We have seen in [2] that the authors studied a generalized advection-diffusion equation which
is a NPDE in fluid mechanics, characterizing the motion of buoyancy propelled plume in a bent-on
absorptive medium. Moreover, in [3], a generalized Korteweg-de Vries-Zakharov-Kuznetsov equation
was studied. This equation delineates mixtures of warm adiabatic fluid, hot isothermal as well as cold
immobile background species applicable in fluid dynamics. Furthermore, the authors in [4] considered
a NPDE where they explored important inclined magneto-hydrodynamic flow of an upper-convected
Maxwell liquid through a leaky stretched plate. In addition, heat transfer phenomenon was studied
with heat generation and absorption effect. The reader can access more examples of NPDEs in [5–16].

In order to really understand these physical phenomena it is of immense importance to solve
NPDEs which govern these aforementioned phenomena. However, there is no general systematic
theory that can be applied to NPDEs so that their analytic solutions can be obtained. Nevertheless,
in recent times scientists have developed effective techniques to obtain viable analytical solutions
to NPDEs, such as inverse scattering transform [16], simple equation method [17], Bäcklund
transformation [18], F-expansion technique [19], extended simplest equation method [20], Hirota
technique [21], Lie symmetry analysis [22–27], bifurcation technique [28, 29], the (G′/G)-
expansion method [30], Darboux transformation [31], sine-Gordon equation expansion technique [32],
Kudryashov’s method [33], and so on.

The (2+1)-dimensional Bogoyavlensky-Konopelchenko (BK) equation given as

utx + 6αuxuxx + 3βuxuxy + 3βuyuxx + αuxxxx + βuxxxy = 0, (1.1)

where parameters α and β are constants, is a special case of the KdV equation in [34] which was
introduced as a (2+1)-dimensional version of the KdV and it is described as an interaction of a long
wave propagation along x-axis and a Riemann wave propagation along the y-axis [35]. In addition
to that, few particular properties of the equation have been explored. The authors in [36] provided a
Darboux transformation for the BK equation and the obtained transformation was used to construct a
family of solutions of this equation. In [37], with 3β replaced by 4β and uy = vx in (1.1), the authors
integrated the result once to get

ut + αuxxx + βvxxx + 3αu2
x + 4βuxvx = 0, uy − vx = 0. (1.2)

Further, they utilized Lie group theoretic approach to obtain solutions of the system of Eq (1.2). They
also engaged the concept of nonlinear self-adjointness of differential equations in conjunction with
formal Lagrangian of (1.2) for constructing nonlocal conservation laws of the system. In addition,
various applications of BK equation (1.1) were highlighted in [37]. Further investigations on certain
particular cases of (1.1) were also carried out in [38, 39].

In [40], the 2D generalized BK equation that reads

utx + k1uxxxx + k2uxxxy +
2k1k3

k2
uxuxx + k3(uxuy)x + γ1uxx + γ2uxy + γ3uyy = 0 (1.3)
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was studied and lump-type and lump solutions were constructed by invoking the Hirota bilinear
method. Liu et al. [41] applied the Lie group analysis together with (G′/G)-expansion and power
series methods and obtained some analytic solutions of (1.3).

Yang et al. [42] recently examined a generalized combined fourth-order soliton equation
expressed as

α(6uxuxx + uxxxx) + β[3(uxut)x + uxxxt] + γ[3(uxuy)x + uxxxy]
+ δ1uyt + δ2uxx + δ3uxt + δ4uxy + δ5uyy + δ6utt = 0, (1.4)

with constant parameters α, β and γ which are not all zero, whereas all constant coefficients δi, 1 ≤
i ≤ 6, are arbitrary. It was observed that Eq (1.4) comprises three fourth-order terms and second-order
terms that consequently generalizes the standard Kadomtsev-Petviashvili equation. Soliton equations
are known to have applications in plasma physics and other nonlinear sciences such as fluid mechanics,
atomic physics, biophysics, nonlinear optics, classical and quantum fields theories.

Assuming α = 0, β = 1, γ = 0 and δ1 = δ2 = 1, δ3 = δ4 = δ5 = δ6 = 0, the authors gain an
integrable (1+2)-dimensional extension of the Hirota-Satsuma equation commonly referred to as the
Hirota-Satsuma-Ito equation in two dimensions [43] given as

uty + uxx + 3(uxut)x + uxxxt = 0 (1.5)

that satisfies the Hirota three-soliton condition and also admits a Hirota bilinear structure under
logarithmic transformation presented in the form

u = 2 (ln f )x , where
(
D3

xDt + DyDt + D2
x

)
f · f = 0, (1.6)

whose lump solutions have been calculated in [44]. On taking parameters α = 1, β = 0, γ = 0 along
with δ1 = δ4 = δ6 = 0 whereas δ2 = δ3 = δ5 = 1, they eventually came up with a two dimensional
equation [42]:

utx + 6uxuxx + uxxxx + uxxxy + 3
(
uxuy

)
x

+ uxx + uyy = 0, (1.7)

which is called a two-dimensional generalized Bogoyavlensky-Konopelchenko (2D-gBK) equation.
We notice that if one takes α = β = 1 in Eq (1.1) with the introduction of two new terms uxx and uyy,
the new generalized version (1.7) is achieved.

In consequence, we investigate explicit solutions of the new two-dimensional generalized
Bogoyavlensky-Konopelchenko equation (1.7) of plasma physics in this study. In order to achieve
that, we present the paper in the subsequent format. In Section 2, we employ Lie symmetry analysis
to carry out the symmetry reductions of the equation. In addition, direct integration method will be
employed in order to gain some analytic solutions of the equation by solving the resulting ordinary
differential equations (ODEs) from the reduction process. We achieve more analytic solutions of (1.7)
via the conventional (G′/G)-expansion method as well as Kudryashov’s technique. In addition, by
choosing suitable parametric values, we depict the dynamics of the solutions via 3-D, 2-D as well
as contour plots. Section 3 presents the conservation laws for 2D-gBK equation (1.7) through the
multiplier method and in Section 4, we give the concluding remarks.

2. Symmetry analysis and analytic solutions of (1.7)

In this section we in the first place compute the Lie point symmetries of Eq (1.7) and thereafter
engage them to generate analytic solutions.
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2.1. Lie point symmetries of (1.7)

A one-parameter Lie group of symmetry transformations associated with the infinitesimal
generators related to (gbk) can be presented as

t̄ = t + ε ξ1 (t, x, y, u) + O(ε2),
x̄ = x + ε ξ2 (t, x, y, u) + O(ε2),
ȳ = y + ε ξ3 (t, x, y, u) + O(ε2),
ū = u + ε φ (t, x, y, u) + O(ε2). (2.1)

We calculate symmetry group of 2D-gBK equation (1.7) using the vector field

R = ξ1(t, x, y, u)
∂

∂t
+ ξ2(t, x, y, u)

∂

∂x
+ ξ3(t, x, y, u)

∂

∂y
+ φ(t, x, y, u)

∂

∂u
, (2.2)

where ξi, i = 1, 2, 3 and φ are functions depending on t, x, y and u. We recall that (2.2) is a Lie point
symmetry of Eq (1.7) if

R[4](utx + 6uxuxx + uxxxx + uxxxy + 3
(
uxuy

)
x

+ uxx + uyy)|Q=0 = 0, (2.3)

where Q = utx + 6uxuxx + uxxxx + uxxxy + 3
(
uxuy

)
x
+ uxx + uyy. Here, R[4] denotes the fourth prolongation

of R defined by

R[4] = R + ηt∂ut + ηx∂ux + ηy∂uy + ηtx∂utx + ηxx∂uxx + ηyy∂uyy + ηxxxx∂uxxxx + ηxxxy∂uxxxy , (2.4)

where coefficient functions ηt, ηx, ηy, ηxt, ηxx, ηxy, ηyy, ηxxxx and ηxxxy can be calculated from [22–24].
Writing out the expanded form of the determining equation (2.3), splitting over various derivatives

of u and with the help of Mathematica, we achieve the system of linear partial differential
equations (PDEs):

ξ3
x = 0, ξ1

x = 0, ξ1
y = 0, ξ2

u = 0, ξ1
u = 0, ξ3

u = 0,

ξ1
tt + 5ξ2

yy = 0, ξ1
t + 5φu = 0, 5ξ2

x − ξ
1
t = 0,

5ξ2
y − 2ξ1

t = 0, 5ξ3
y − 3ξ1

t = 0, 3φxx − ξ
3
yy = 0, ξ3

t − 3φx + 2ξ2
y = 0,

4ξ1
t − 5ξ2

t + 30φx + 15φy = 0, φtx + φxx + φxxxx + φxxxy + φyy = 0.

The solution of the above system of PDEs is

ξ1 = A1 + A2t, ξ2 = F(t) +
1
5

A2(x + 2y), ξ3 = A4 −
4
5

A2t + 3A3t +
3
5

A2y,

η = G(t) −
1
5

A2u + A3x −
4

15
A2y − 2A3y +

1
3

yF′(t),

where A1–A3 are arbitrary constants and F(t), G(t) are arbitrary functions of t. Consequently, we secure
the Lie point symmetries of (1.7) given as

R1 =
∂

∂t
, R2 =

∂

∂y
, R3 = 3F(t)

∂

∂x
+ yF′(t)

∂

∂u
, R4 = 3t

∂

∂y
+ (x − 2y)

∂

∂u
,

R5 = G(t)
∂

∂u
, R6 = 15t

∂

∂t
+ (3x + 6y)

∂

∂x
+ (9y − 12t)

∂

∂y
− (4y + 3u)

∂

∂u
. (2.5)
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2.2. Lie group transformations associated to (2.5)

We contemplate the exponentiation of the vector fields (2.5) by computing the flow or one parameter
group generated by (2.5) via the Lie equations [22, 23]:

dt̄
dε

= ξ1 (t̄, x̄, ȳ, ū), t̄|ε=0 = t,

dx̄
dε

= ξ2 (t̄, x̄, ȳ, ū), x̄|ε=0 = x,

dȳ
dε

= ξ3 (t̄, x̄, ȳ, ū), ȳ|ε=0 = y,

dū
dε

= φ (t̄, x̄, ȳ, ū), ū|ε=0 = u.

Therefore, by taking F(t) = G(t) = t in (2.5), one computes a one parameter transformation group of
2D-gBK (1.7). Thus, we present the result in the subsequent theorem.

Theorem 2.1. Let T i
ε(t, x, y, u), i = 1, 2, 3, . . . , 6 be transformations group of one parameter generated

by vectors R1,R2,R3 . . . ,R6 in (2.5), then, for each of the vectors, we have accordingly

T 1
ε : (t̃, x̃, ỹ, ũ) −→(t + ε1, x, y, u),

T 2
ε : (t̃, x̃, ỹ, ũ) −→(t, x, y + ε2, u),

T 3
ε : (t̃, x̃, ỹ, ũ) −→(t, 3ε3t + x, y, ε3y + u),

T 4
ε : (t̃, x̃, ỹ, ũ) −→(t, x, 3ε4t + y, u + (x − 2y)ε4 − 3ε2

4 t),
T 5
ε : (t̃, x̃, ỹ, ũ) −→(t, x, y, ε5t + u),

T 6
ε : t̃, x̃, ỹ, ũ) −→

(
te15ε6 , (2e9ε6 − e3ε6 − e15ε6)t + xe3ε6 + (e9ε6 − e3ε6)y,

(2e9ε6 − 2e15ε6)t + ye9ε6 ,
1
9

[
(4e18ε6 − 6e12ε6 + 2)t + (3 − 3e12ε6)y + 9u

]
e−3ε6

)
,

where ε ∈ R is regarded as the group parameter.

Theorem 2.2. Hence, suppose u(t, x, y) = Θ(t, x, y) satisfies the 2D-gBK (1.7), in the same vein, the
functions given in the structure

u1(t, x, y) =Θ(t − ε1, x, y, z),
u2(t, x, y) =Θ(t, x, y − ε2, z, u),
u3(t, x, y) =Θ(t, x − 3ε3t, y) − ε3y,

u4(t, x, y) =Θ(t, x, 3ε4t + y) − (x − 2y)ε4 + 3ε2
4 t,

u5(t, x, y) =Θ(t, x, y) − ε5t,

u6(t, x, y) =Θ
[
te15ε6 , (2e9ε6 − e3ε6 − e15ε6)t + xe3ε6 + (e9ε6 − e3ε6)y,

(2e9ε6 − 2e15ε6)t + ye9ε6

]
−

2
3

te12ε6 +
4
9

te18ε6 +
2
9

t −
1
3

ye12ε6 +
1
3

y

will do, where ui(t, x, y) = T ε
i · Θ(t, x, y), i = 1, 2, 3, . . . , 6 with ε << 1 regarded as any positive real

number.
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2.3. Symmetry reduction of 2D-gBK equation (1.7)

In this subsection, we utilize symmetries (2.5) with a view to reduce Eq (1.7) to ordinary differential
equations and thereafter obtain the analytic solutions of Eq (1.7) by solving the respective ODEs.

Case 1. Invariant solutions via R1–R3

Taking F(t) = 1/3, we linearly combine translational symmetries R1–R3 as R = bR1 + cR2 + aR3

with nonzero constant parameters a, b and c. Subsequently utilizing the combination reduces 2D-gBK
equation (1.7) to a PDE with two independent variables. Thus, solution to the characteristic equation
associated with the symmetry R leaves us with invariants

r = ct − ay, s = cx − by, θ = u. (2.6)

Now treating θ above as the new dependent variable as well as r, s as new independent variables, (1.7)
then transforms into the PDE:

c2θrs + 6c3θsθss + c4θssss − 3ac2θsθsr − 6bc2θsθss − 3ac2θrθss − ac3θsssr

− bc3θssss + c2θss + a2θrr + 2abθsr + b2θss = 0. (2.7)

We now utilize the Lie point symmetries of (2.7) in a bid to transform it to an ODE. From (2.7), we
achieve three translation symmetries:

Q1 =
∂

∂r
, Q2 =

∂

∂s
, Q3 =

∂

∂θ
.

The linear combination Q = Q1 + ωQ2 (ω , 0 being an arbitrary constant) leads to two invariants:

z = s − ωr, θ = Θ, (2.8)

that secures group-invariant solution Θ = Θ(z). Thus, on using these invariants, (2.7) is transformed
into the fourth-order nonlinear ODE:

(c2 − ωc2 + a2ω2 − 2baω + b2)Θ′′(z) − 6(βbc2 − βc2aω − c3)Θ′(z)Θ′′(z)
+ (c3aω + c4 − bc3)Θ′′′′(z) = 0,

which we rewrite in a simple structure as

AΘ′′(z) − BΘ′(z)Θ′′(z) + CΘ′′′′(z) = 0, (2.9)

where A = c2 − ωc2 + a2ω2 − 2baω + b2, B = 6(bc2 − c2aω − c3), C = c3aω + c4 − bc3 and z =

cx + (aω − b)y − cωt.

2.4. Some analytic solutions of 2D-gBK equation (1.7)

In this section, we seek travelling wave solutions of the 2D-gBK equation (1.7).
A. Elliptic function solution of (1.7)
On integrating equation (2.9) once, we accomplish a third-order ODE:

AΘ′(z) −
1
2

BΘ′2(z) + CΘ′′′(z) + C1 = 0, (2.10)
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where C1 is a constant of integration. Multiplying Eq (2.10) by Θ′′(z), integrating once and simplifying
the resulting equation, we have the second-order nonlinear ODE:

1
2

AΘ′(z)2 −
1
6

BΘ′(z)3 +
1
2

CΘ′′(z)2 + C1Θ
′(z) + C2 = 0,

where C2 is a constant of integration. The above equation can be rewritten as

Θ′′(z)2 =
B

3C
Θ′(z)3 −

A
C

Θ′(z)2 −
2C1

C
Θ′(z) −

2C2

C
. (2.11)

Letting U(z) = Θ′(z), Eq (2.11) becomes

U′(z)2 =
B

3C
U(z)3 −

A
C

U(z)2 −
2C1

C
U(z) −

2C2

C
. (2.12)

Suppose that the cubic equation

U(z)3 −
3A
B

U(z)2 −
6C1

B
U(z) −

6C2

B
= 0 (2.13)

has real roots c1–c3 such that c1 > c2 > c3, then Eq (2.12) can be written as

U′(z)2 =
B

3C
(U(z) − c1)(U(z) − c2)(U(z) − c3), (2.14)

whose solution with regards to Jacobi elliptic function [45, 46] is

U(z) = c2 + (c1 − c2) cn2
{√

B(c1 − c2)
12C

z,∆2
}
, ∆2 =

c1 − c2

c1 − c3
, (2.15)

with (cn) being the elliptic cosine function. Integration of (2.15) and reverting to the original variables
secures a solution of 2D-gBK equation (1.7) as

u(t, x, y) =

√
12C(c1 − c2)2

B(c1 − c3)∆8

{
EllipticE

[
sn

(
B(c1 − c3)

12C
z,∆2

)
,∆2

] }
+

{
c2 − (c1 − c2)

1 − ∆4

∆4

}
z + C3, (2.16)

with z = cx + (aω− b)y− cωt and C3 a constant of integration. We note that (2.16) is a general solution
of (1.7), where EllipticE[p; q] is the incomplete elliptic integral [46, 47] expressed as

EllipticE[p; q] =

∫ p

0

√
1 − q2r2

1 − r2 dr.

We present wave profile of periodic solution (2.16) in Figure 1 with 3D, contour and 2D plots with
parametric values a = −4, b = 0.2, c = −0.1, ω = 0.1, c1 = 100, c2 = 50.05, c3 = −60, B = 10,
C = 70, where t = 1 and −10 ≤ x, y ≤ 10.
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Figure 1. Elliptic solution wave profile of (2.16) at t = 1.

However, contemplating a special case of (2.9) with B = 0, we integrate the equation twice and so
we have

CΘ′′(z) + AΘ(z) + K1z + K2 = 0, (2.17)

where K1 and K2 are integration constants. Solving the second-order linear ODE (2.17) and reverting
to the basic variables, we achieve the trigonometric solution of 2D-gBK equation (1.7) as

u(t, x, y) = A1 sin

 √
a2ω2 − ω

(
2ab + c2) + b2 + c2 z√

c3(aω − b + c)

 + A2 cos

 √
a2ω2 − ω

(
2ab + c2) + b2 + c2 z√

c3(aω − b + c)


−

K1z + K2

a2ω2 − ω
(
2ab + c2) + b2 + c2 , (2.18)

with A1 and A2 as the integration constants as well as z = cx + (aω − b)y − cωt. We depict the
wave dynamics of periodic solution (2.18) in Figure 2 via 3D, contour and 2D plots with dissimilar
parametric values a = 1, b = 0.2, c = −0.1, ω = 0.1, A1 = 20, A2 = −2, K1 = 1, K2 = 10, where t = 2
and −10 ≤ x, y ≤ 10.
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Figure 2. Wave profile of the trigonometric function solution (2.18) at t = 2.

B. Weierstrass elliptic solution of 2D-gBK equation (1.7)
We further explore Weierstrass elliptic function solution of (1.7), which is a technique often

involved in getting general exact solutions to NPDEs [47, 48]. In order to accomplish this, we use
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the transformation
U(z) = W(z) +

A
B

(2.19)

and transform the nonlinear ordinary differential equation (NODE) (2.12) to

W2
ξ = 4W3 − g2W − g3, ξ =

√
B

12C
z, (2.20)

with the invariants g2 and g3 given by

g2 = −
12A2

B2 −
24C1

B
and g3 = −

8A3

B3 −
24AC1

B2 −
24C2

B
.

Thus, we have the solution of NODE (2.12) as

U(z) =
A
B

+ ℘

√ 1
12C

(z − z0); g2; g3

 , (2.21)

where ℘ denotes the Weierstrass elliptic function [46]. In consequence, integration of (2.21) and
reverting to the basic variables gives the solution of 2D-gBK equation (1.7) as

u(t, x, y) =
A
B

(z − z0) −

√
12B
C

ζ

√ B
12C

(z − z0); g2, g3

 , (2.22)

with arbitrary constant z0, z = cx + (aω − b)y − cωt and ζ being the Weierstrass zeta function [46].
We give wave profile of Weierstrass function solution (2.22) in Figure 3 with 3D, contour and 2D plots
using parameter values a = 1, b = 0.2, c = −0.1, ω = 0.1, A = 10, B = −2, z0 = 0, C = 1, C1 = 1,
C2 = 10, where t = 2 and −10 ≤ x, y ≤ 10.
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Figure 3. Wave profile of (2.22) at t = 2 of the Weierstrass zeta function solution.

2.4.1. Solution of (1.7) by Kudrayshov’s approach

This part of the study furnishes the solution of 2D-gBK equation (1.7) through the use of
Kudryashov’s approach [33]. This technique is one of the most prominent way to obtain closed-form
solutions of NPDEs. Having reduced Eq (1.7) to the NODE (2.9), we assume the solution of (2.9) as

Θ(z) =

N∑
n=0

BnQn(z), (2.23)
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with Q(z) satisfying the first-order NODE

Q′(z) = Q2(z) − Q(z). (2.24)

We observe that the solution of (2.24) is

Q(z) =
1

1 + exp(z)
. (2.25)

The balancing procedure for NODE (2.9) produces N = 1. Hence, from (2.23), we have

Θ(z) = B0 + B1Q(z). (2.26)

Now substituting (2.26) into (2.9) and using (2.24), we gain a long determining equation and splitting
on powers of Q(z), we get algebraic equations for the coefficients B0 and B1 as

Q(z)5 : 2aB1c3ω + aB2
1c2ω − 2bB1c3 − bB2

1c2 + 2B1c4 + B2
1c3 = 0,

Q(z)4 : 2bB1c3 − 2aB1c3ω − aB2
1c2ω + bB2

1c2 − 2B1c4 − B2
1c3 = 0,

Q(z)3 : a2B1ω
2 − 2abB1ω + 25aB1c3ω + 12aB2

1c2ω + b2B1 − 25bB1c3

− 12bB2
1c2 + 25B1c4 + 12B2

1c3 − B1c2ω + B1c2 = 0,
Q(z)2 : 2abB1ω − a2B1ω

2 − 5aB1c3ω − 2aB2
1c2ω − b2B1 + 5bB1c3

+ 2bB2
1c2 − 5B1c4 − 2B2

1c3 + B1c2ω − B1c2 = 0,
Q(z) : a2B1ω

2 − 2abB1ω + aB1c3ω + b2B1 − bB1c3 + B1c4 − B1c2ω

+ B1c2 = 0. (2.27)

The solution of the above system gives

B0 = 0, B1 = −2c, a =
2bω − c3ω ∓

√
c2ω2 (

c4 − 4c2 + 4ω − 4
)

2ω2 . (2.28)

Hence, the solution of 2D-gBK equation (1.7) associated with (2.28) is given as

u(t, x, y) =
−2c

1 + exp {cx + (aω − b)y − cωt}
. (2.29)

The wave profile of solution (2.29) is shown in Figure 4 with 3D, contour and 2D plots using parameter
values a = 1, b = −0.2, c = 20, ω = 0.05, B0 = 0 with t = 7 and −6 ≤ x, y ≤ 6.
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Figure 4. The wave profile of solution (2.29) at t = 7.
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2.4.2. Solution of (1.7) through (G′/G)-expansion technique

We reckon the (G′/G)-expansion technique [30] in the construction of analytic solutions of 2D-gBK
equation (1.7) and so we contemplate a solution structured as

Θ(z) =

M∑
j=0

B j

(
Q′(z)
Q(z)

) j

, (2.30)

where Q(z) satisfies
Q′′(z) + λQ′(z) + µQ(z) = 0 (2.31)

with λ and µ taken as constants. Here, B0, . . . , BM are parameters to be determined. Utilization of
balancing procedure for (2.9) produces M = 1 and as a result, the solution of (1.7) assumes the form

Θ(z) = B0 + B1

(
Q′(z)
Q(z)

)
. (2.32)

Substituting the value of Θ(z) from (2.32) into (2.9) and using (2.31) and following the steps earlier
adopted, leads to an algebraic equation in B0 and B1, which splits over various powers of Q(z) to give
the system of algebraic equations whose solution is secured as

B0 = 0, B1 = 2c, a =
16bω − B3

1λ
2ω ±

√
Ω0 + 64B2

1ω
3 − 64B2

1ω
2 + 4B3

1µω

16ω2 ,

where Ω0 = B6
1λ

4ω2 − 8B6
1λ

2µω2 − 16B4
1λ

2ω2 + 16B6
1µ

2ω2 + 64B4
1µω

2. Thus, we have three types of
solutions of the 2D-gBK equation (1.7) given as follows:

When λ2 − 4µ > 0, we gain the hyperbolic function solution

u(t, x, y) = B0 + B1

(
∆1

A1 sinh (∆1z) + A2 cosh (∆1z)
A1 cosh (∆1z) + A2 sinh (∆1z)

−
λ

2

)
, (2.33)

with z = cx + (aω − b)y − cωt, ∆1 = 1
2

√
λ2 − 4µ together with A1, A2 being arbitrary constants. The

wave profile of solution (2.33) is shown in Figure 5 with 3D, contour and 2D plots using parameter
values a = 3, b = 0.5, c = 10, ω = −0.1, B0 = 0, λ = −0.971, µ = 10, A1 = 5, A2 = 1, where t = 10
and −10 ≤ x, y ≤ 10.
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Figure 5. The wave profile of solution (2.33) at t = 10.
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When λ2 − 4µ < 0, we achieve the trigonometric function solution

u(t, x, y) = B0 + B1

(
∆2

A2 cos (∆2z) − A1 sin (∆2z)
A1 cos (∆2z) + A2 sin (∆2z)

−
λ

2

)
, (2.34)

with z = cx + (aω − b)y − cωt, ∆2 = 1
2

√
4µ − λ2 together with A1 and A2 are arbitrary constants. The

wave profile of solution (2.34) is shown in Figure 6 with 3D, contour and 2D plots using parameter
values a = 1, b = 0.5, c = 0.3, ω = 0.3, B0 = 0, λ = −0.971, µ = 2, A1 = 5, A2 = 1 with t = 10 and
−10 ≤ x, y ≤ 10.
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Figure 6. The wave profile of solution (2.34) at t = 10.

When λ2 − 4µ = 0, we gain the rational function solution

u(t, x, y) = B0 + B1

(
A2

A1 + A2z
−
λ

2

)
, (2.35)

with z = cx + (aω−b)y− cωt and A1, A2 being arbitrary constants. We plot the graph of solution (2.35)
in Figure 7 via 3D, contour and 2D plots using parametric values a = 1, b = 1.01, c = 100, ω = 0.1,
B0 = 10, λ = 10, A1 = 3, A2 = 10, where t = 2.4 and −5 ≤ x, y ≤ 5.
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Figure 7. The wave profile of solution (2.35) at t = 2.4.
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Case 2. Group-invariant solutions via R4

Lagrange system associated with the symmetry R4 = 3t∂/∂y + (x − 2y)∂/∂u is

dt
0

=
dx
0

=
dy
3t

=
du

(x − 2y)
, (2.36)

which leads to the three invariants T = t, X = x, Q = u+(y2/3t)−(xy/3t). Using these three invariants,
the 2D-gBK equation (1.7) is reduced to

18T QXQXX + 3T QT X + 3T QXX + 3XQXX + 3QX + 3T QXXXX − 2 = 0. (2.37)

Case 3. Group-invariant solutions via R1, R2 and R5

We take G(t) = 1 and by combining the generators R1, R2 as well as R5, we solve the characteristic
equations corresponding to the combination and get the invariants X = x, Y = y−t with group-invariant
u = Q(X,Y) + t. With these invariants, the 2D-gBK equation (1.7) transforms to the NPDE

QXX + QYY − QXY + 3QXQXY + 3QY QXX + 6QXQXX + QXXXX + QXXXY = 0, (2.38)

whose solution is given by

Q(X,Y) = 2A2 tanh
[
A2X + A2

(
1
2
−

1
2

√
16A4

2 − 24A2
2 − 3 − 2A2

2

)
Y + A1

]
+ A3, (2.39)

with arbitrary constants A1–A3. Thus, we achieve the hyperbolic solution of (1.7) as

u(t, x, y) = t + 2A2 tanh
[
1
2

A2(t − y)
√

16A4
2 − 24A2

2 − 3 +
1
2

(4t − 4y)A3
2

+
1
2

(y + 2x − t)A2 + A1

]
+ A3. (2.40)

The wave profile of solution (2.40) is shown in Figure 8 with 3D, contour and 2D plots using parameter
values A1 = 70.1, A2 = −30, A3 = 0, where t = 0.5 and −10 ≤ x, y ≤ 10.
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Figure 8. The wave profile of solution (2.40) at t = 0.5.
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Besides, symmetries of (2.38) are found as

P1 =
∂

∂X
, P2 =

∂

∂Y
, P3 =

∂

∂Q
, P4 =

(
1
3

X +
2
3

Y
)
∂

∂X
+ Y

∂

∂Y
+

(
2
3

X − 2Y −
1
3

Q
)
∂

∂Q
.

Now, the symmetry P1 furnishes the solution Q(X,Y) = f (z), z = Y . So, Eq (2.38) gives the ODE
f ′′(z) = 0. Hence, we have a solution of (1.7) as

u(t, x, y) = t + A0(y − t) + A1, (2.41)

with A0, A1 as constants. Further, the symmetry P2 yields Q(X,Y) = f (z), z = X and so Eq (2.38)
reduces to

f ′′(z) + 6 f ′(z) f ′′(z) + f ′′′′(z) = 0. (2.42)

Integration of the above equation three times with respect to z gives

f ′(z)2 + 2 f (z)3 + f (z)2 + 2A0 f (z) + 2A1 = 0, (2.43)

and taking constants A0 = A1 = 0 and then integrating it results in the solution of (1.7) as

u(t, x, y) = t −
1
2

1 + tan
(
1
2

A1 −
1
2

x
)2
 . (2.44)

The wave profile of solution (2.44) is shown in Figure 9 with 3D, contour and 2D plots using parameter
values A1 = 40, t = 3.5 and −10 ≤ x ≤ 10.
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Figure 9. The wave profile of solution (2.44) at t = 3.5.

On combining P1–P3 as P = c0P1 + c1P2 + c2P3, we accomplish

Q(X,Y) =
c2

c0
X + f (z), where z = c0Y − c1X. (2.45)

Using the newly acquired invariants (2.45), Eq (2.38) transforms to the NODE:
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c0c2
1 f ′′(z) + 6c2

1c2 f ′′(z) − 3c0c1c2 f ′′(z) + c2
0c1 f ′′(z) + c3

0 f ′′(z) + 6c2
0c2

1 f ′(z) f ′′(z)
− 6c0c3

1 f ′(z) f ′′(z) + c0c4
1 f ′′′′(z) − c2

0c3
1 f ′′′′(z) = 0. (2.46)

Engaging the Lie point symmetry P4, we obtain

Q(X,Y) = X − 2Y + Y−1/3 f (z) with z = Y−1/3(X − Y), (2.47)

and Eq (2.38) reduces to the NODE

6z f ′(z) + z2 f ′′(z) − 18 f ′(z)2 − 9 f (z) f ′′(z) + 4 f (z) − 18z f ′(z) f ′′(z) − 12 f ′′′(z) − 3z f ′′′′(z) = 0. (2.48)

Case 4. Group-invariant solutions via R6

Lie point symmetry R6 dissociates to the Lagrange system

dt
15t

=
dx

3x + 6y
=

dy
9y − 12t

=
du

−(4y + 3u)
,

which gives

u = t−1/5Q(T, X) −
2
9

t −
1
3

y, with T = (2t + y)t−3/5 and X = (x − t − y)t−1/5. (2.49)

Substituting the expression of u in (1.7), we obtain the NPDE

5QTT − 3T QT X − XQXX − 2QX + 15QXQT X + 15QT QXX + 5QT XXX = 0, (2.50)

which has two symmetries:

P1 =
∂

∂Q
, P2 =

∂

∂X
+

1
15

T
∂

∂Q
.

The symmetry P2 gives Q(X,Y) = f (z) + (1/15)T X, z = T and hence (2.50) reduces to

75 f ′′(z) − 4z = 0.

Solving the above ODE and reverting to the basic variables gives the solution of (1.7) as

u(t, x, y) =
1
5√t

{
(2t + y)(x − t − y)

15t4/5 +
2(2t + y)3

225t9/5 +
(2t + y)

t3/5 A1 + A2

}
−

2t
9
−

y
3
, (2.51)

where A1 and A2 are integration constants. The wave profile of solution (2.51) is shown in Figure 10
with 3D, contour and 2D plots using parameter values A1 = −0.3, A2 = −50 with t = 1.1 and −10 ≤
x, y ≤ 10.
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Figure 10. The wave profile of solution (2.51) at t = 1.1.

Next, we invoke the symmetry P1 + P2. This yields Q(X,Y) = f (z) + X + (1/15)T X, z = T .
Consequently, we have the transformed version of (2.50) as

75 f ′′(z) − 4z − 15 = 0.

Solving the above ODE and reverting to basic variables gives the solution of (1.7) as

u(t, x, y) =
1
5√t

{
(2t + y)(x − t − y)

15t4/5 +
2(2t + y)3

225t9/5 +
(2t + y)2

10t6/5

+
(2t + y)

t3/5 A1 + A2

}
−

2t
9
−

y
3
. (2.52)

The wave profile of solution (2.52) is shown in Figure 11 with 3D, contour and 2D plots using
parameter values A1 = −3.6, A2 = 50 with t = 1.1 and −10 ≤ x, y ≤ 10.
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Figure 11. The wave profile of solution (2.52) at t = 1.1.

3. Conservation laws of (1.7)

In this section, we construct the conservation laws for 2D-gBK equation (1.7) by making use of the
multiplier approach [22, 49, 50], but first we give some basic background of the method that we are
adopting.
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3.1. Fundamental operators and their relationship

Consider the n independent variables x = (x1, x2, . . . , xn) and m dependent variables u =

(u1, u2, . . . , um). The derivatives of u with respect to x are defined as

uαi = Di(uα), uαi j = D jDi(ui), . . . , (3.1)

where

Di =
∂

∂xi + uαi
∂

∂uα
+ uαi j

∂

∂uαj
+ · · · , i = 1, ..., n, (3.2)

is the operator of total differentiation. The collection of all first derivatives uαi is denoted by u(1), i.e.,
u(1) = {uαi }, α = 1, ...,m, i = 1, ..., n. In the same vein u(2) = {uαi j}, α = 1, ...,m, i, j = 1, ..., n and
u(3) = {uαi jk} and likewise u(4) etc. Since uαi j = uαji, u(2) contains only uαi j for i ≤ j.

Now consider a kth-order system of PDEs:

Gα(x, u, u(1), . . . , u(k)) = 0, α = 1, 2, . . . ,m. (3.3)

The Euler-Lagrange operator, for every α, is presented as

δ

δuα
=

∂

∂uα
+

∑
s≥1

(−1)sDi1 . . .Dis

∂

∂uαi1i2...is

, α = 1, . . . ,m. (3.4)

An n-tuple T = (T 1,T 2, . . . ,T n), such that

DiT i = 0 (3.5)

holds for all solutions of (3.3) is known as the conserved vector of system (3.3).
The multiplier Ωα(x, u, u(1), . . .) of system (3.3) has the property that

DiT i = ΩαGα (3.6)

holds identically [22]. The determining equations for multipliers are obtained by taking the variational
derivative of (3.6), namely

δ

δuα
(ΩαGα) = 0. (3.7)

The moment multipliers are generated from (3.7), the conserved vectors can be derived systematically
using (3.6) as the determining equation.

3.2. Construction of conservation laws for (1.7)

Conservation laws of 2D-gBK equation (1.7) are derived by utilizing second-order multiplier
Ω(t, x, y, u, ut, ux, uy, uxx, uxy), in Eq (3.7), where G is given as

G ≡ utx + 6uxuxx + uxxxx + uxxxy + 3
(
uxuy

)
x

+ uxx + uyy,

and the Euler operator δ/δu is expressed in this case as
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δ

δu
=
∂

∂u
− Dt

∂

∂ut
− Dx

∂

∂ux
− Dy

∂

∂uy
+ DtDx

∂

∂utx
+ DxDy

∂

∂uxy

+ D2
x
∂

∂uxx
+ D2

y
∂

∂uyy
+ D4

x
∂

∂uxxxx
+ D3

xDy
∂

∂uxxxy
.

Expansion of Eq (3.7) and splitting on diverse derivatives of dependent variable u gives

Ωu = 0, Ωx = 0, Ωyy = 0, Ωyux = 0, Ωuxux = 0,
Ωtux = 0, Ωut = 0, Ωuxx = 0, Ωuxy = 0, Ωuy = 0. (3.8)

Solution to the above system of equations gives Ω(t, x, y, u, ut, ux, uy, uxx, uxy) as

Ω(t, x, y, u, ut, ux, uy, uxx, uxy) = C1ux + f1(t)y + f2(t), (3.9)

with C1 being an arbitrary constant and f1(t), f2(t) being arbitrary functions of t. Using Eq (3.6),
one obtains the following three conserved vectors of Eq (1.7) that correspond to the three multipliers
ux, f1(t) and f2(t):
Case 1. For the first multiplier Q1 = ux, the corresponding conserved vector (T t

1,T
x
1 ,T

y
1) is given by

T t
1 =

1
2

u2
x,

T x
1 =

1
2

u2
x + 2u3

x −
1
2

u2
xx −

1
2

uxxuxy +
1
2

uxuxxy + uxxxux

+
1
2

uxxxuy +
1
2

uuxxxy +
1
2

uuyy + uuxuxy + 2uyu2
x,

T y
1 =

1
2

uyux − uuxuxx −
1
2

uuxy −
1
2

uuxxxx.

Case 2. For the second multiplier Q2 = f1(t), we obtain the corresponding conserved vector
(T t

2,T
x
2 ,T

y
2) as

T t
2 = ux f1(t)y,

T x
2 = 3y f1(t)u2

x + 3y f1(t)uxuy − y f ′1(t)u
+ y f1(t)ux + y f1(t)uxxx + y f1(t)uxxy,

T y
2 = uy f1(t)y − u f1(t).

Case 3. Finally, for the third multiplier Q3 = f2(t), the corresponding conserved vector (T t
3,T

x
3 ,T

y
3) is

T t
3 = ux f2(t),

T x
3 = 3u2

x f2(t) + 3uxuy f2(t) − u f ′2(t) + ux f2(t)
+ uxxx f2(t) + uxxy f2(t),

T y
3 = uy f2(t).

Remark 3.1. We notice that this method assists in the construction of conservation laws of (1.7) despite
the fact that it possesses no variational principle [51]. Moreover, the presence of arbitrary functions
in the multiplier indicates that 2D-gBK (1.7) has infinite number of conserved vectors.
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4. Conclusions

In this paper, we carried out a study on two-dimensional generalized Bogoyavlensky-
Konopelchenko equation (1.7). We obtained solutions for Eq (1.7) with the use of Lie symmetry
reductions, direct integration, Kudryashov’s and (G′/G)-expansion techniques. We obtained solutions
of (1.7) in the form of algebraic, rational, periodic, hyperbolic as well as trigonometric functions.
Furthermore, we derived conservation laws of (1.7) by engaging the multiplier method were we
obtained three local conserved vectors. We note here that the presence of the arbitrary functions f1(t)
and f2(t) in the multipliers, tells us that one can generate unlimited number of conservation laws for
the underlying equation.
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