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some divisors of Hermitian function fields. We also present a standard that tells us when a divisor with
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1. Introduction

The locally recoverable codes (LRC codes for short) have been significantly studied because of their
techniques which can repair the lost data by a local procedure. Local recovery techniques enable find
one value that is erased by accessing the other symbols in the code. Formally, an LRC code C ⊆ Kn

of length n with locality r can recover the missing coordinate from at most r symbols, where K is a
finite field. The LRC codes have attracted a lot of attention because they are more advanced coding
techniques that are applied to distributed and cloud storage systems. Most parts of many previous
works deal with construction methods [2, 4, 6, 7, 9, 11] and bounds of the minimum distances [1–3, 5,
10, 12] for LRC codes.

In coding theory, many researchers consider various constructions to obtain good codes; a code with
a large minimum distance for the given length and dimension. One of them is a Reed-Solomon code,
and the code can be viewed as a special code of an algebraic geometry code; Reed-Solomon code is
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one of the practical codes in this area. Many works obtain remarkable results from algebraic geometry
codes on various algebraic curves. Naturally, LRC codes can be considered on algebraic geometry
curves with their constructions and the bound of minimum distances [1, 2, 4, 6, 9]. These codes are
called algebraic geometry locally recoverable codes (shortly AG LRC codes). In the previous results,
for constructing AG LRC codes, a divisor consists of a unique place of a certain algebraic function field
(such as, [1, 2, 11]). We focus on this point; we deal with a divisor with two places of the Hermitian
function field in this work. From this, we get the advantage that is an improvement of the bound for
the minimum distance of an AG LRC code in Hermitian function field.

The goal of this work is twofold. First, we present explicit formulae for the dimension of divisors G1

and G2 with a certain one place and two places of the Hermitian function field, respectively. Both the
dimension and the lower bound b(C(G, h)) of minimum distance for AG LRC codes C(G, h) are related
with the dimension dim(G) and degree deg(G) of a divisor G. In detail, with dim(G1) = dim(G2), if
deg(G2) < deg(G1), then b(C(G2, h)) is bigger than b(C(G1, h)). It means that under certain conditions,
a divisor G2 with two places give better result for the bound than the result of a divisor G1 with one
place. Second, we provide a family of AG LRC codes in Hermitian function fields. The code has an
improved the lower bound of minimum distance using a divisor with a certain two places. We present
an explicit standard that tells us when a divisor with a certain two places suggests an improved lower
bound.

Layout of the paper This paper is organized as follows. In Section 2, we introduce the notations and
known facts for this work. Section 3 presents the dimensions of certain types of divisors of Hermitian
function fields over Fq2 , where q is a prime power. These results are explicit formulae for obtaining the
dimensions of the divisors. In Section 4, we obtain a family of algebraic geometry locally recoverable
codes in Hermitian function fields with an improved bounds for minimum distances using a certain
type of divisor. We suggest the standard when we can get an improved bound for AG LRC codes.

2. Preliminaries

A linear code of length n over a finite field K is a subspace of Kn; briefly, we call a code in this
paper. A codeword is an element of the code. If a code is a k-dimensional subspace of Kn, then the
code is called [n,k] code. The next definition is about locally recoverable code with locality r.

Definition 2.1. Let C be an [n,k] code over a finite field K, and [n] := {1, . . . , n}. Given a ∈ K, let
C(i, a) = {(c1, . . . , cn) ∈ C | ci = a}. Then C is said to have locality r if for every i ∈ [n], there is a set
Ai ⊂ [n] \ {i} with |Ai| ≤ r such that

CAi(i, a) ∩CAi(i, ã) = ∅ for all a , ã ∈ K,

(the notation CAi(i, a) is the restriction of C(i, a) to the coordinates of Ai). This code is called a locally
recoverable code (shortly, LRC code) with locality r. We use the notation (n,k, r) to present the
parameters of the code.

By using an LRC code C, we can find any coordinate of c ∈ C from at most r other coordinates of c.
In particular, if an i-th coordinate ci of c = (c1, . . . , cn) ∈ C is erased, then we can recover the codeword
by considering its coordinates in Ai. Here, the set Ai is called a recovering set for the coordinate ci.

We briefly introduce construction for algebraic geometry locally recoverable codes over a finite
field K (see [1, 2, 11]). Let X and Y be smooth projection absolutely irreducible curves over K. We
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denote the rational function field on X (resp. Y) by F(X) (resp. F(Y)). Let h : X → Y be a rational
separable map of curves of degree r + 1. Under those settings, there is a function x ∈ F(X) such that
F(X) = F(Y)(x) because the map h is separable. The function x gives the equation xr+1+brxr+· · ·+b0 =

0, where bi ∈ F(Y). Moreover, x is considered as a map x : X → P1(K), where P1(K) is a projective
line over K. We define an algebraic geometry locally recoverable code under the followings:
• S = {P1, · · · , Ps} ∈ F(Y) is a subset of K-rational points of Y .

• G is a positive divisor such that the support of G is different from S .
• A = h−1(S ) = {Pi j, 0 ≤ i ≤ r, 1 ≤ j ≤ s} ⊆ F(X) (i.e., h(Pi j) = P j for all i, j).
• { fi ∈ F(Y) : 1 ≤ i ≤ m} is a basis of L(G).
• V is K-subspace of F(Y) of dimension rm generated by { f jxi, 0 ≤ i ≤ r − 1, 1 ≤ j ≤ m}
• evA is the evaluation map V → K(r+1)s such that f 7→ ( f (Pi j), 0 ≤ i ≤ r, 1 ≤ j ≤ s).

The set of images ( f (Pi j), 0 ≤ i ≤ r, 1 ≤ j ≤ s) is a linear code of length (r + 1)s over K which is
called an algebraic geometry locally recoverable code (shortly, AG LRC code), denote by C(G, h).
The code coordinates are partitioned into s subsets A j = {Pi j, 0 ≤ i ≤ r} (1 ≤ j ≤ s) of size r + 1
each. If one symbol f (Pi j) is erased in the codeword, then this can be recoverable through polynomial
interpolation using the points of the recovering set A j. We denote deg(G) is degree of a divisor G, and
dim(G) is dimension of a divisor G.

Lemma 2.2. [2, Theorem 3.1] The subspace C(G, h) ∈ K(r+1)s forms an (n,k, r) linear LRC code with
the parameters

n = (r + 1)s,k = rdim(G), d ≥ n − deg(G)(r + 1) − (r − 1)deg(x),

where d is the minimum distance. Local recovery of an erased symbol F(Pi j) can be found by
polynomial interpolation through the points of the recovery set A j.

In this paper, we consider the Hermitian curve χ over Fq2 . The Hermitian function field H :=
Fq2(x, y)/Fq2 with the defining equation

χ : yq + y = xq+1

over Fq2 , where q is a prime power. The Hermitian function field has q3 + 1 places of degree 1. Let
P∞ be the point at infinity (0 : 1 : 0) of χ, and P0,0 be the point zero point (0 : 0 : 1) of χ. For any
(α, β) ∈ F2

q2 on χ, there is a unique rational point Pα,β which is the common zero of x − α and y − β.

The genus of the Hermitian function field H is equal to q(q−1)
2 .

In Hermitian function field over Fq2 , let h : χ→ P1(Fq2) is the natural projection defined by h(x, y) =

y; then deg(h) = q = r + 1. Let G = tP∞ be a positive divisor, where P∞ ∈ χ is a unique over the point
at infinity∞ ∈ P1(Fq2). Take S = Fq2 .

Lemma 2.3. [2, Proposition 4.1] There is a family of an AG LRC codes C(G, h) in Hermitian function
field over Fq2 with locality r = q − 1 which satisfies

n = q3, k = rdim(G), and d ≥ b(C(G, h)) = n − deg(G)(r + 1) − (r − 1)(r + 2).

The minimum distance d of C(G, h) has the lower bound b(C(G, h)).
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3. Dimensions of divisors of Hermitian function fields

In Section 3, we focus on the dimensions of divisors of Hermitian function fields over Fq2 , where
q is a prime power. The following lemma is about the dimension dim(G) of a divisor G of Hermitian
function field.

Lemma 3.1. [8, Theorem 3.6] Let H be the Hermitian function field over Fq2 , where q is a prime
power. Let G = rP∞ +

∑
β∈Kα

kβPα,β be a divisor, where α ∈ Fq2 , r ∈ Z, and kβ ∈ Z for each β ∈ Kα. The
dimension dim(G) of G is given by

dim(G) =

q∑
i=0

max


⌊
r − iq
q + 1

⌋
+
∑
β∈Kα

⌊
kβ + i
q + 1

⌋
+ 1, 0

 ≤ r +
∑
β∈Kα

kβ + 1. (3.1)

Using Lemma 3.1, we give explicit formulae for dimensions of divisors G1 and G2 which consist
of one place P∞ and two places P∞ and P0,0 of Hermitian function field H over Fq2 , respectively. For
comparing dim(G1) and dim(G2), we need to have explicit formulae in Lemmas 3.2 and 3.5. In Section
4, it will be crucial parts for obtaining one of our main results. First, we deal with a divisor which
consists of two places P∞ and P0,0 of H.

Lemma 3.2. Let q be a prime power. Let u and k be integers such that u ≥ 0 and k ≥ 1. Set
r = (q + 1)u + τ ≥ 1, where 0 ≤ τ ≤ q. Let ε̃k = k (mod q + 1) and εk =

⌊
k

q+1

⌋
. Then for fixed r and k,

the values b r−iq
q+1 c + b k+i

q+1c + 1 can be calculated by the following formulae for all 0 ≤ i ≤ q:

Case 1. Suppose that τ = 0.

(i) If ε̃k = 0, then b r−iq
q+1 c + b k+i

q+1c + 1 = u − i + εk + 1 for 0 ≤ i ≤ q.
(ii) If ε̃k ≥ 1, then ⌊

r − iq
q + 1

⌋
+

⌊
k + i
q + 1

⌋
+ 1 =

u − i + εk + 1 if 0 ≤ i ≤ q − ε̃k,

u − i + εk + 2 if q − ε̃k + 1 ≤ i ≤ q.

Case 2. Suppose that τ ≥ 1.

(i) If ε̃k = τ, then ⌊
r − iq
q + 1

⌋
+

⌊
k + i
q + 1

⌋
+ 1 =

u − i + εk + 1 if 0 ≤ i ≤ q − ε̃k,

u − i + εk + 3 if q − ε̃k + 1 ≤ i ≤ q.

(ii) If ε̃k , τ, then

⌊
r − iq
q + 1

⌋
+

⌊
k + i
q + 1

⌋
+ 1 =


u − i + εk + 1 if 0 ≤ i ≤ q −max{τ, ε̃k},

u − i + εk + 2 if q −max{τ, ε̃k} + 1 ≤ i ≤ q −min{τ, ε̃k},

u − i + εk + 3 if q −min{τ, ε̃k} + 1 ≤ i ≤ q.

Proof. We note that the integer k can be written as k = εk(q + 1) + ε̃k.
Case 1 (i). τ = 0: suppose that ε̃k ≥ 1.
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• If 0 ≤ i ≤ q − ε̃k, then
⌊

r−iq
q+1

⌋
= u − i since 1 ≤ r − iq − (u − i)(q + 1) = i ≤ q − ε̃k. Moreover,⌊

k+i
q+1

⌋
=
⌊
εk(q+1)+ε̃k+i

q+1

⌋
= εk because 1 < ε̃k + i ≤ q. Hence we have

⌊
r−iq
q+1

⌋
+
⌊

k+i
q+1

⌋
+ 1 = u− i + εk + 1.

• If q − ε̃k + 1 ≤ i ≤ q, then
⌊

r−iq
q+1

⌋
= u − i and

⌊
k+i
q+1

⌋
= εk + 1 since q + 1 ≤ ε̃k + i ≤ ε̃k + q ≤ 2q.

Case 1 (ii). τ = 0: if ε̃k = 1, then we obtain the result by the similar way as Case 1 (i).
Case 2 (i). τ ≥ 1: suppose that ε̃k > τ.

• If 0 ≤ i ≤ q − ε̃k, then
⌊

r−iq
q+1

⌋
= u − i since 1 ≤ r − iq − (u − i)(q + 1) = τ + i ≤ q + τ − ε̃k < q. And

we get that
⌊

k+i
q+1

⌋
=
⌊
εk(q+1)+ε̃k+i

q+1

⌋
= εk because 1 < ε̃k + i ≤ q.

• If q − ε̃k + 1 ≤ i ≤ q − τ, then
⌊

r−iq
q+1

⌋
= u − i and

⌊
k+i
q+1

⌋
=
⌊
εk(q+1)+ε̃k+i

q+1

⌋
= εk + 1.

• If q− τ+ 1 ≤ i ≤ q, then
⌊

r−iq
q+1

⌋
= u− i + 1 since 0 ≤ r− iq− (u− i + 1)(q + 1) = (τ− q− 1) + i < q.

Similarly, we have that
⌊

k+i
q+1

⌋
=
⌊
εk(q+1)+ε̃k+i

q+1

⌋
= εk + 1 as above.

Case 2 (ii). τ ≥ 1: ε̃k < τ, the result can be proved by the similar way as Case 2 (i).
Case 3. τ ≥ 1: For ε̃k = τ, we can also have the result; in detail, when q − ε̃k + 1 ≤ i ≤ q,⌊

r−iq
q+1

⌋
= u − i + 1 and

⌊
k+i
q+1

⌋
=
⌊
εk(q+1)+ε̃k+i

q+1

⌋
= εk + 1 as above. �

By Lemma 3.2, for a divisor G2 = rP∞ + kP0,0 of Hermitian function field H over Fq2 , we obtain the
dimension dim(G2) of G2 explicitly.

Theorem 3.3. Let G2 = rP∞ + kP0,0 be a divisor of Hermitian function field H over Fq2 , where r and
k are integers such that r ≥ 1 and k ≥ 1. For fixed r and k, let Γi,r,k :=

⌊
r−iq
q+1

⌋
+
⌊

k+i
q+1

⌋
+ 1 be the value

determined by Lemma 3.2 for all 0 ≤ i ≤ q. Then the dimension dim(G2) of G2 is
∑q

i=0 max{Γi,r,k, 0}.

Proof. The values Γi,r,k = b
r−iq
q+1 c+ b

k+i
q+1c+ 1 are determined for all cases by Lemma 3.2. By Lemma 3.1,

the dimension dim(G2) of G2 is
∑q

i=0 max{Γi,r,k, 0}. �

We present the following example.

Example 3.4. Let H be the Hermitian function field over F82 (i.e., q = 8). Let G2 = rP∞ + kP0,0 be a
divisor of H, where r and k are integers such that r ≥ 1 and k ≥ 1. Set r = u(q + 1) + τ = 9u + τ, where
0 ≤ τ ≤ 8 and u ≥ 0.

For example, we focus on u = 4 and k = 5; thus r = 36 + τ with 0 ≤ τ ≤ 8. The dimension dim(G2)
of G2 = (36 + τ)P∞ + 5P0,0 (0 ≤ τ ≤ 8) can be calculated by Magma program as follows:

dim(G2) =



17 for 0 ≤ τ ≤ 2,
18 for τ = 3,
19 for τ = 4,
20 for τ = 5,
21 for τ = 6,
22 for τ = 7,
23 for τ = 8.

(3.2)

AIMS Mathematics Volume 7, Issue 6, 9656–9667.



9661

Now, we check if our results in Theorem 4.1 are true; if our formulae give the same results as (3.2),
then these are correct. In Lemma 3.2, we obtain the values

Γi,r,k =

⌊
r − iq
q + 1

⌋
+

⌊
k + i
q + 1

⌋
+ 1 =

⌊
36 + τ − 8i

9

⌋
+

⌊
k + i

9

⌋
+ 1; (3.3)

here, εk = b k
9c = 0 and ε̃k = k = 5.

(i) τ = 0: in this case, we get that [Γi,36+τ,5]8
i=0= [5, 4, 3, 2, 2, 1, 0,−1,−2] since

Γi,36+τ,5 =

5 − i for 0 ≤ i ≤ 3,
6 − i for 4 ≤ i ≤ 8,

by (3.3) and Case 1 (ii) of Lemma 3.2. Hence,
∑8

i=0 max{Γi,36+τ,5, 0} = 17 in Theorem 3.3.

(ii) τ = ε̃k = 5: we have

Γi,36+τ,5 =

5 − i for 0 ≤ i ≤ 3,
7 − i for 4 ≤ i ≤ 8,

by (3.3) and Case 2 (i) of Lemma 3.2. Hence, we calculate the values as [Γi,36+τ,5]8
i=0=

[5, 4, 3, 2, 3, 2, 1, 0,−1] and
∑8

i=0 max{Γi,36+τ,5, 0} = 20 in Theorem 3.3.

(iii) τ , ε̃k(≥ 1): this case is matched with Case 2 (ii) of Lemma 3.2. So we obtain

Γi,36+τ,5 =


5 − i for 0 ≤ i ≤ 8 −max{τ, 5},
6 − i for 8 −max{τ, 5} + 1 ≤ i ≤ 8 −min{τ, 5},
7 − i for 8 −min{τ, 5} + 1 ≤ i ≤ 8.

By calculation for each cases,

8∑
i=0

max{Γi,36+τ,5, 0} =



17 for τ = 1 or τ = 2
18 for τ = 3,
19 for τ = 4,
21 for τ = 6,
22 for τ = 7,
23 for τ = 8.

By (i), (ii) and (iii), we can check the results of Lemma 3.2 and Theorem 3.3 are correct. �

From now on, we focus on a divisor G1 = (r +k +`)P∞ which consists of one point P∞ of Hermitian
function field over Fq2 .

Lemma 3.5. Let q be a prime power. Let u, k and ` be integers such that u ≥ 0, k ≥ 1 and ` ≥ 1. Set
r = (q + 1)u + τ ≥ 1, where 0 ≤ τ ≤ q. Let δ̃k,`,τ = k + τ + ` (mod q + 1) and δk,`,τ =

⌊
k+τ+`

q+1

⌋
. Then for

fixed r, k and `, the values b r+k+`−iq
q+1 c can be calculated by the following formulae for all 0 ≤ i ≤ q:

(i) If δ̃k,`,τ = 0, then b r+k+`−iq
q+1 c + 1 = u − i + δk,`,τ + 1 for 0 ≤ i ≤ q.
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(ii) If δ̃k,`,τ ≥ 1, then⌊
r + k + ` − iq

q + 1

⌋
+ 1 =

u − i + δk,`,τ + 1 if 0 ≤ i ≤ q − δ̃k,`,τ,

u − i + δk,`,τ + 2 if q − δ̃k,`,τ + 1 ≤ i ≤ q.

Proof. First, the value k + τ + ` can be written as k + τ + ` = δk,`,τ(q + 1) + δ̃k,`,τ. Here,

r + k + ` − iq = (u − i)q + u + k + τ + `,

= (u − i)q + u + δk,`,τ(q + 1) + δ̃k,`,τ.

Then (r + k + ` − iq) − (u − i)(q + 1) = δk,`,τ(q + 1) + δ̃k,`,τ + i and⌊
r + k + ` − iq

q + 1

⌋
=

⌊
(u − i + δk,`,τ)(q + 1) + δ̃k,`,τ + i

q + 1

⌋
(3.4)

by the previous equations.

(i) If δ̃k,`,τ = 0, then the value b r+k+`−iq
q+1 c = u − i + δk,`,τ since 0 ≤ δ̃k,`,τ + i ≤ q by (3.4) and 0 ≤ i ≤ q.

(ii) Suppose that δ̃k,`,τ ≥ 1. If 0 ≤ i ≤ q − δ̃k,`,τ, then b r+k+`−iq
q+1 c = u − i + δk,`,τ for 0 ≤ i ≤ q − δ̃k,`,τ by

(3.4). For q − δ̃k,`,τ + 1 ≤ i ≤ q, we have that b r+k+`−iq
q+1 c = u − i + δk,`,τ + 1 by q + 1 ≤ δ̃k,`,τ + i ≤ 2q

and (3.4).

From (i) and (ii), the results are follow. �

Lemma 3.5, for a divisor G1 = (r + k + `)P∞ of Hermitian function field H over Fq2 , present the
explicit formula for the dimension dim(G1) of G1.

Theorem 3.6. Let G1 = (r+k+`)P∞ be a divisor of Hermitian function field H over Fq2 , where r, k and
` are integers such that r ≥ 1, k ≥ 1 and ` ≥ 1. For fixed r, k and `, let Γ̃i,r,k,` =

⌊
r+k+`−iq

q+1

⌋
+1 be the value

determined by Lemma 3.5 for all 0 ≤ i ≤ q. Then the dimension dim(G1) of G1 is
∑q

i=0 max{Γ̃i,r,k,`, 0}.

Proof. Lemma 3.5 determines the all values Γ̃i,r,k,` =
⌊

r+k+`−iq
q+1

⌋
+ 1 . By Lemma 3.1, the dimension

dim(G1) of G1 is
∑q

i=0 max{Γ̃i,r,k,`, 0}. �

The following examples say our results (Lemma 3.5 and Theorem 3.6) are true.

Example 3.7. Let H be the Hermitian function field over F82 (i.e., q = 8). Let G1 = (r + k + `)P∞ be a
divisor of H, where r, k, and ` are positive integers. Set r = u(q + 1) + τ = 9u + τ ≥ 1, where 0 ≤ τ ≤ 8.
For instance, we consider u = 1, τ = 0, k = 1 and 1 ≤ ` ≤ 8; thus r = 9.

The dimension dim(G1) of the divisor G1 = (10 + `)P∞ is calculated by Magma program as

dim(G1) =


3 for 1 ≤ ` ≤ 5,
4 for ` = 6,
5 for ` = 7,
6 for ` = 8.

(3.5)

From now on, we check our results are matched with (3.5); if these are matched, then Lemma 3.5 and
Theorem 3.6 are correct. By Lemma 3.5, we calculate the values b r+k+`−iq

q+1 c+1 = b 10+`−8i
9 c+1 as follows:

first, δ̃k,τ = k + τ + ` = ` + 1 (mod 9).
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(a) ` = 1: we have δ̃k,τ = ` + 1 = 2 and δk,τ = 0. Furthermore, the sequence [Γ̃i,9,1,1]8
i=0 is obtained

[Γ̃i,9,1,1]8
i=0 = [2, 1, 0,−1,−2,−3,−4,−4,−5]

since

Γ̃i,9,1,1 =

2 − i for 0 ≤ i ≤ 6,
3 − i for 7 ≤ i ≤ 8.

Hence, by Lemma 3.5,
∑8

i=0 max{Γ̃i,9,1,1, 0} = 2 + 1 = 3.
(b) 2 ≤ ` ≤ 7: by Lemma 3.5, we get the following results as the same reason:

([Γ̃i,9,1,`]8
i=0,

8∑
i=0

max{Γ̃i,9,1,`, 0}) =



([2, 1, 0,−1,−2,−3,−3,−4,−5], 3) for ` = 2,
([2, 1, 0,−1,−2,−2,−3,−4,−5], 3) for ` = 3,
([2, 1, 0,−1,−1,−2,−3,−4,−5], 3) for ` = 4,
([2, 1, 0, 0,−1,−2,−3,−4,−5], 3) for ` = 5,
([2, 1, 1, 0,−1,−2,−3,−4,−5], 4) for ` = 6,
([2, 2, 1, 0,−1,−2,−3,−4,−5], 5) for ` = 7.

(c) ` = 8: the values δ̃k,τ = 0 and δk,τ = 1 are obtained. And then [Γ̃i,9,1,`]8
i=0 =

[3, 2, 1, 0,−1,−2,−3,−4,−5]. That is,
∑8

i=0 max{Γ̃i,9,1,8, 0} = 3 + 2 + 1 = 6.

The results in (a), (b) and (c) are matched with (3.5) by Theorem 3.6, that is, our results of Lemma
3.5 and Theorem 3.6 are correct. �

4. LRC codes with two-point divisors

In this section, we consider the lower bounds of minimum distances for AG LRC codes in Hermitian
function fields over Fq2 (q: a prime power). We set that G1 = (r + k + `)P∞ is a divisor, and G2 =

rP∞ + kP0,0 is a divisor, where r, k, and ` are integers such that r ≥ 1, k ≥ 1 and ` ≥ 1; then
deg(G1) = r + k + ` > deg(G2) = r + k. We compare the lower bounds of minimum distances of AG
LRC codes C(G1, h) and C(G2, h); the map h is introduced in Section 2.

As we can see in Lemma 2.2, both the dimension and the lower bound for minimum distance of
C(G, h) are related to deg(G) and dim(G). We use a divisor G2 for obtaining an improved lower bound
for minimum distance of AG LRC codes. The key point is that we find the divisors G2 satisfying both
dim(G2) = dim(G1) and deg(G2) < deg(G1); and then, b(C(G2, h)) is bigger than b(C(G1, h)) with
dim(C(G1, h)) = dim(C(G2, h)).

In Lemma 4.1, we give an exact standard to check when deg(G1) > deg(G2) with dim(G1) =

dim(G2). It means that this lemma tells us when we can get an improved lower bound of minimum
distance for AG LRC codes in Hermitian function field over Fq2 (q: a prime power).

Lemma 4.1. Let H be the Hermitian function field over Fq2 , where q is a prime power. Let δ̃k,`,τ =

k + τ + ` (mod q + 1), ε̃k = k (mod q + 1), and δk,`,τ =
⌊

k+τ+`
q+1

⌋
, where k, ` and τ are non-negative

integers (k ≥ 1, ` ≥ 1 and 0 ≤ τ ≤ q). Let G1 = (r + k + `)P∞ and G2 = rP∞ + kP0,0 be divisors of H,
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where r = u(q + 1) + τ ≥ 1 with a non-negative integer u.
Suppose that ε̃k + τ + ` < q + 1. Then

δk,`,τ + δ̃k,`,τ ≤ q − u − 1 if and only if deg(G1) > deg(G2) and dim(G1) = dim(G2).

Proof. As in the previous lemmas and theorems of Section 3, we denote the followings: δ̃k,`,τ = k+τ+`

(mod q + 1), δk,`,τ =
⌊

k+τ+`
q+1

⌋
, ε̃k = k (mod q + 1), and εk =

⌊
k

q+1

⌋
.

First, we check that the condition ε̃k + τ + ` < q + 1 is necessary. If ε̃k + τ + ` ≥ q + 1, then we have
that for k + ` + τ = (q + 1)εk + ε̃k + ` + τ,

δk,`,τ ≥ εk + 1 (4.1)

since ε̃k + ` + τ ≥ q + 1 and δk,`,τ =
⌊

k+τ+`
q+1

⌋
=
⌊

(q+1)εk+ε̃k+`+τ

q+1

⌋
≥ εk + 1. In this case, we obtain that

Γ0,r,k = u + εk + 1, and Γ̃0,r,k,` = u + δk,`,τ + 1 ≥ u + εk + 2; the value Γ0,r,k is from Lemma 3.2, and Γ̃0,r,k,`

is given by (4.1) and Lemma 3.5 (for i = 0). It means that dim(G1) > dim(G2) by Theorems 3.3 and
3.6. Hence, we should assume that ε̃k + τ + ` < q + 1.
By the following two cases, we prove our results.

(i) Suppose that ε̃k = 0. We have that δ̃k,`,τ = k + τ + ` (mod q + 1) = τ + `; this is because
k + ` + τ = (q + 1)εk + ε̃k + ` + τ and ε̃k + ` + τ = ` + τ < q + 1. It follows that

δk,`,τ = εk =

⌊
k

q + 1

⌋
. (4.2)

Then we have
Γi,r,k = u − i + εk + 1 for all 0 ≤ i ≤ q, (4.3)

and

Γ̃i,r,k,` =

u − i + εk + 1 for 0 ≤ i ≤ q − δ̃k,`,τ,

u − i + εk + 2 for q − δ̃k,`,τ + 1 ≤ i ≤ q,
(4.4)

by (4.2), Lemmas 3.2 and 3.5.
We claim that dim(G1) = dim(G2) if and only if u − i + εk + 2 ≤ 0 for i = q − δ̃k,`,τ + 1.
Suppose that dim(G1) = dim(G2). In (4.4), u − i + εk + 2 ≤ 0 for i = q − δ̃k,`,τ + 1 since εk = δk,`,τ.
That is, δk,`,τ + δ̃k,`,τ ≤ q − u − 1; if not, clearly we have dim(G1) > dim(G2).
Conversely, if δk,`,τ + δ̃k,`,τ ≤ q − u − 1, then we say that u − i + εk + 2 ≤ 0 for q − δ̃k,`,τ + 1 = i.
This implies u − i + εk + 1 ≤ 0 for q − δ̃k,`,τ + 1 ≤ i ≤ q. Hence

dim(G1) =

q−δ̃k,`,τ∑
i=0

max{Γ̃i,r,k,`, 0} =

q−δ̃k,`,τ∑
i=0

max{Γi,r,k, 0} = dim(G2) (4.5)

since Γ̃i,r,k,` = Γi,r,k = u − i + εk + 1 for 0 ≤ i ≤ q − δ̃k,`,τ by (4.3) and (4.4). Thus we obtain the
result.

(ii) Suppose that 1 ≤ ε̃k ≤ q. The similar arguments show that δ̃k,`,τ = k + ` + τ (mod q + 1) =

ε̃k + ` + τ = ε̃k + ` + τ. Hence δk,`,τ = εk is also followed. As (i), the results are obtained.

�
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In Lemma 2.3, a divisor with one place P∞ is considered to construct AG LRC code. In our work,
we use a divisor G2 = rP∞ + kP0,0 with two places P∞ and P0,0, where r and k are integers such that
r ≥ 1 and k ≥ 1; by Lemma 2.2, we can constructing AG LRC codes with a divisor G2. And we
set a divisor G1 = (r + k + `)P∞ with a place P∞. An AG LRC code C(G2, h) in Hermitian function
field over Fq2 has the length n = q2(q − 1) since we should take S = Fq2 \ {0} (See Section 2). We
compare the lower bounds of minimum distances for AG LRC codes C(G1, h) and C(G2, h); under
certain conditions, we say that the lower bound of minimum distance for C(G2, h) is better than the
bound for C(G1, h).

Theorem 4.2. Let H be the Hermitian function field over Fq2 . Let b(C(G, h)) be the lower bound of
minimum distance for an AG LRC code C(G, h). Set G1 = (r + k + `)P∞ and G2 = rP∞ + kP0,0 are
divisors of H satisfying deg(G1) > deg(G2) and dim(G1) = dim(G2) (the divisors G1 and G2 can be
determined by Lemma 4.1). There is a family of AG LRC codes C(G2, h) in H over Fq2 which satisfy

dim(C(G2, h)) = dim(C(G1, h)) and b(C(G2, h)) > b(C(G1, h)),

that is, the bound b(C(G2, h)) of minimum distance for C(G2, h) is better than the bound b(C(G1, h)) of
minimum distance for C(G1, h).

Proof. By Lemma 2.2, both the dimension and the lower bound of minimum distance for an AG
LRC code on Hermitian curve can be obtained. First, dimensions of codes C(G1, h) and C(G2, h)
are the same; the dimension of the codes are rdim(G1) and rdim(G2), respectively. That is, we have
dim(C(G1, h)) = dim(C(G2, h)).

Furthermore, the lower bound of minimum distance for an AG LRC code C(G, h) is improving
when deg(G) is getting smaller by Lemma 2.2. In our settings, deg(G1) = r + k + ` and deg(G2) = r + k
with ` ≥ 1, that is, deg(G1) > deg(G2). So we get that b(C(G2, h)) > b(C(G1, h)). We proved the
results. �

The following examples stand for Lemma 4.1 and Theorem 4.2.

Example 4.3. The dimensions of divisors G1 = (r + k + `)P∞ and G2 = rP∞ + kP0,0 are double checked
by Magma software; the results are matched with ours.

(i) Let H be the Hermitian function field over F72 , that is, q = 7. Set ` = 1; then deg(G1) =

deg((r + k + `)P∞) is equal to deg(G2) + 1 = deg(rP∞+ kP0,0) + 1. In the followings, we will check

ε̃k + τ + ` < q + 1 and δk,`,τ + δ̃k,`,τ ≤ q − u − 1. (4.6)

For instance, we consider r = 9 and k = 8. Thus,

deg(G1) = 18 > deg(G2) = 17.

We obtain u = 1 and τ = 1 since r = u(q + 1) + τ in our settings in Lemma 4.1. Then we have
ε̃k = 0, δ̃k,`,τ = k + τ + ` (mod 8) = 2, and δk,`,τ = b 10

8 c = 1. Thus, (4.6) is satisfied. By Lemma
4.1,

dim(G1) = dim(G2) = 6;

the second equality is from Lemma 3.5 (ii) and Theorem 3.6.
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(ii) Let H be the Hermitian function field over F132 (i.e., q = 13). Set ` = 8, r = 29 and K = 14; it
means that

deg(G1) = 69 > deg(G2) = 61.

Then τ = 1, u = 2, ε̃k = 0 and δ̃k,`,τ = 9 and δk,`,τ = 1. Clearly, the above values satisfy (4.6).
Similarly, by Lemma 3.5 and Theorem 3.6, we have

dim(G1) = dim(G2) = 10.

As a result, in both (i) and (ii),

dim(C(G1, h)) = dim(C(G2, h)) and b(C(G2, h)) > b(C(G1, h))

by Lemma 2.2; that is, the lower bound b(C(G2, h)) of minimum distance for C(G2, h) is better than the
lower bound b(C(G1, h)) of minimum distance for C(G1, h).

Remark 4.4. We can find many cases that satisfy conditions of Lemma 4.1. We calculate the number
of divisors which are convincing cases for our results.

For examples, for 2 ≤ q ≤ 15 and 1 ≤ u, τ, k ≤ 50 (q: a prime power), we get that

the number of divisors G2 =



1391 for ` = 1,
1024 for ` = 2,
717 for ` = 3,
474 for ` = 4,
293 for ` = 5,

where the divisor G2 satisfies the conditions of Lemma 4.1. Hence, using these divisors G2, we can
improve the lower bound of minimum distance for AG LRC codes on Hermitian curve over Fq2 . And so
on, we can find more cases on the other ranges for q, u, τ, k and `.

5. Conclusions

We study locally recoverable codes in Hermitian function fields over Fq2 (q: a prime power). We
give explicit formulae of the dimension for some divisors of Hermitian function fields. From this, we
obtain an improved lower bound of the minimum distance for locally recoverable codes in Hermitian
function fields with a certain type of divisor. These results can be extended to various algebraic function
fields in future research.
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