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Abstract: An immunogenic and safe vaccine against COVID-19 for use in the healthy population will 
become available in the near future. In this paper, we aim to determine the optimal vaccine 
administration strategy in refugee camps considering maximum daily administration and limited total 
vaccine supply. For this purpose, extended SEAIRD compartmental models are established to describe 
the epidemic dynamics with both single-dose and double-dose vaccine administration. Taking the 
vaccination rates in different susceptible compartments as control variables, the optimal vaccine 
administration problems are then solved under the framework of nonlinear constrained optimal control 
problems. To the best of our knowledge, this is the first paper that addresses an optimal vaccine 
administration strategy considering practical constraints on limited medical care resources. Numerical 
simulations show that both the single-dose and double-dose strategies can successfully control 
COVID-19. By comparison, the double-dose vaccination strategy can achieve a better reduction in 
infection and death, while the single-dose vaccination strategy can postpone the infection peak more 
efficiently. Further studies of the influence of parameters indicate that increasing the number of 
medical care personnel and total vaccine supply can greatly contribute to the fight against COVID-19. 
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The results of this study are instructive for potential forthcoming vaccine administration. Moreover, 
the work in this paper provides a general framework for developing epidemic control strategies in the 
presence of limited medical resources. 

Keywords: COVID-19; refugee camps; vaccine administration; optimal control; epidemic control; 
limited medical resources 
Mathematics Subject Classification: 49N90, 37N25, 93C10 
 

1. Introduction 

The world is in the midst of the COVID-19 (coronavirus disease 2019) pandemic caused by the 
new virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of November 30, 2020, 
over 61 million cases of COVID-19 have been confirmed, accounting for 1.5 million deaths globally [1]. 
More seriously, the COVID-19 epicentre has transferred to developing countries, such as Russia, 
Brazil and India, with rapidly increasing infection levels. Especially, the challenge of second wave 
would increase in the winter. Thus, more refugee camps have been exposed to the risk of COVID-19, 
with even more dire consequences than observed in general populations [2]. 

Due to the unavailability of both specific medications to treat the disease and extensive screening, 
COVID-19 has a high transmission rate, especially in refugee camps with poor access to water and 
limited sanitation. A safe and effective vaccine against SARS-CoV-2 would obviate the current need 
for social distancing, which is impractical for those who reside in settlements with high density. 
Fortunately, there are more than 100 COVID-19 vaccine candidates under development [3]. In 
particular, a phase 2 trial on the immunogenicity and safety of COVID-19 vaccines in healthy adults 
has been closed, and a vaccine is believed to be available soon [4–8]. These findings provide a 
foundation for identifying optimal vaccine administration strategies. However, in the short term, the 
vaccine supply could not cover the worldwide need. To facilitate equitable access and distribution of 
these vaccines [9], the criteria for COVID-19 vaccine prioritization are a focus of attention. Hence, it 
is worth studying optimal vaccine allocation and administration under limited resources. 

For decades, the role of mathematical models in evaluating the spread and control of infectious 
diseases cannot be overemphasized. These models can also proffer solutions for transmission control, 
treatment and vaccination by employing infection assumptions and mathematical approaches. 
Accurate outbreak prediction and setting of efficient control strategies significantly depend on high-
quality mathematical models. As an epidemic transmission prediction method, Kermack and 
McKendrick proposed the classic compartment model of infectious disease dynamics in 1927, which 
divides the population into compartments [10]. Thereafter, differential equations and kinetic systems 
methods have become the mainstream approaches for quantitative description of epidemic transmission. 
For COVID-19, the Susceptible-Infectious-Recovered (SIR) model and its variants [11–13] have been 
used to characterize transmission in the early stage. Soon afterwards, the Susceptible-Exposed-
Infectious-Recovered (SEIR) model with the latent compartment has become a consensus model 
among studies of SARS-CoV and has provided the basis for model settings for COVID-19 
epidemiological dynamics studies [14]. To date, studies based on the Susceptible-Exposed-
Asymptomatic-Infectious-Recovered (SEAIR) model have become mainstream [2,15,16]. Clearly, the 
model selection is updated as medical researchers gain deeper insights into the COVID-19 
transmission mechanism. Numerous models implying detection status, quarantine situations, and 
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asymptomatic/presymptomatic infections have boomed, with the aim of understanding the mechanisms 
underlying COVID-19 spread and to project transmission dynamics of the outbreak [17–21]. Thus, it is 
possible for us to study COVID-19 from a rigorous mathematical perspective by using the theory of 
differential equations. Specifically, according to the stability of equilibrium points, we can analyse 
whether COVID-19 will become endemic [22]. And based on sensitivity analysis, efficient control 
methods can be employed [23], which provides promising primary directions for governments to fight 
against the epidemic. 

However, it should be noted that many parameters are involved in compartment models, and the 
number of parameters increases as more complex transmission mechanisms are considered. To make 
the model in accordance with historical data, overfitting would occur, resulting in poor prediction 
ability. Hence, many researchers turn to artificial intelligence (AI) for help. For example, machine 
learning models, which are represented by deep learning models due to their extraordinary 
approximation capability, were established to predict the outbreak size in China and throughout the 
world in [24,25], respectively. Other methods that work directly with empirical data, such as the 
Bayesian method [26], Prophet forecasting procedure [27], and autoregressive integrated moving 
average method [28], have also been developed. The above modelling methods can achieve acceptable 
accuracy, and neither compartment division nor parameter estimation procedures are required, which is an 
advantage over traditional compartment model-based methods. We cannot ignore the significant 
contributions of AI techniques against COVID-19 (not only limited to the modelling processes discussed 
above but also including detection & diagnosis [29–31], infodemiology & infoveillance [32–34], and 
biomedicine & pharmacotherapy [35–37]). However, clear transmission mechanisms are not reflected 
in such models. In our opinion, it would be more appealing to develop AI-assisted modelling methods 
that consider fusion with physical laws. 

At the global level, to fight against the spread of COVID-19, control measures have been 
implemented by governments. Currently, in the absence of an effective and safe vaccine, control strategies 
primarily rely on home quarantine, public traffic bans, lockdowns and social distancing [21,38]. 
Mathematical models have been shown to provide factual guides in proffering mitigation measures for 
infectious diseases. More importantly, they can also be used to optimize containment and intervention 
measures, balancing cost-effectiveness and infection control. Especially under limited resources, 
optimal control techniques play a significant role in infectious disease intervention and have been 
widely applied in the Ebola, SARS, MERS and HPV epidemics [39,40]. Recently, an increasing number 
of studies have explored optimization leading to the best outcomes at the population outbreak level, taking 
into consideration the economic constraints concerning COVID-19. Among these studies, [41] solved an 
optimal control problem of minimizing deaths and control measure implementation costs using the 
forward-backward sweep method while waiting for the vaccine. A similar numerical method was also 
applied in [42], considering hospitalization rates and environmental spraying. In [22], an optimal 
control problem was formulated introducing governmental intervention measures and taking into 
account economic constraints. High-quality control problems containing various factors of contact rate 
and isolation rate using a multi-objective genetic algorithm have been proposed [43]. Along with the 
above studies in the context of open-loop optimal control, closed-loop control techniques have also 
been implemented in recent work. For example, [44] studied the optimal screening and testing level 
using the model predictive control (MPC) technique. Taking model uncertainty into account, [45] further 
developed a robust MPC-based feedback policy using interval arithmetic that adapts social distancing 
measures cautiously and safely. Advanced control techniques can greatly contribute to the fight against 
COVID-19. 

Optimal control theory offers a reliable approach to optimize a given objective in a nonlinear, 
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dynamic system. Treatments, including antiviral agents, antibodies and radiotherapy, are still 
ambiguous, and greater expectations have been placed on the efficiency of vaccines against SARS-
CoV-2. Vaccines are being developing in record time; mathematically, the optimal protocol for 
vaccination characterizes an optimal control problem. Meanwhile, studies on the optimal control of 
vaccination are still very few. In [46], researchers computed the threshold of a hypothetical imperfect 
vaccine that could lead to elimination of COVID-19 in the United States. In [47], a multi-objective 
optimal control problem was solved considering minimization of vaccine concentrations based on the 
SIR compartmental model using single/multi-objective differential algorithms. The global COVID-19 
pandemic is now severe, and this condition is considered to remain for the foreseeable future. Medical 
resources (including medicine, equipment and health workers) are still in seriously short supply, especially 
for regions such as refugee camps. However, in most studies on optimal control of COVID-19, only 
extremely simple constraints are imposed on the control variable (i.e., the control variable is simply 
restrained within the interval [0,1]), but practical constraints on limited resources cannot be mirrored 
faithfully. Hence, optimal vaccine administration under limited medical resources is worth further study. 

In this paper, we study the optimal strategy of a dose-escalation vaccination approach for COVID-19 
considering limited medical resources. The SEAIRD compartment model is taken as the basic model 
to characterize the transmission dynamics. Two vaccination strategies, i.e., the single-dose and double-
dose strategies, are considered by extending the basic model. Taking the vaccination rates in 
susceptible compartments as control variables, the issue is solved under the framework of nonlinear 
constrained optimal control problems. Along with the box constraint imposed on the control variable, 
two extra kinds of practical constraints on medical resources are considered. On the one hand, the total 
vaccine supply is restrained. On the other hand, considering the shortage of medical care personnel, 
the maximum number of individuals vaccinated daily is restrained. Taking the Kutupalong-Balukhali 
refugee camp in Bangladesh as the simulation background, the optimal control performances of the 
two vaccination strategies are simulated and then compared based on various indices. The results 
suggest that both strategies can effectively reduce COVID-19 dissemination, while the double-dose 
strategy would achieve better control. Further studies reveal that increasing the vaccine supply and 
providing more medical care personnel can greatly contribute to epidemic control. The main 
contribution can be summarized into the following four items: 

(1) The optimal vaccine administration strategy for COVID-19 is solved under the framework of 
nonlinear optimal control, meeting the balance between infection number and vaccine consumption. 

(2) Necessary constraints on medical resources are considered in the formulated optimal control 
problem, making the computed vaccine administration strategy more practical. 

(3) The optimal control performance under two scenarios, i.e., single-dose and double-dose 
vaccination administration, are considered and evaluated. 

(4) We reveal that better COVID-19 control can be achieved by increasing the vaccine supply and 
the number of medical care personnel. 

The remainder of the paper is organized as follows: Section 2 describes the formulation of the 
mathematical model representing the evolution of the COVID-19 pandemic in the setting of refugee 
camps. In Section 3, we present the optimal vaccination control problem. Section 4 analyses the 
characterization of the optimal control strategy. In Section 5, numerical simulations are carried out, 
and two vaccination strategies are compared and discussed from various aspects. Finally, conclusions 
and potential future research directions are summarized in Section 6. 
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2. Formulation of the epidemic model 

The mathematical model describes the high COVID-19 transmission rate in the setting of refugee 
camps is formulated in this section. Our model is adapted from the model proposed in [2] with the key 
parameters and initial values referred to in [2,16]. In Section 2.1, we introduce the classic SEIR model. 
In Section 2.2, a modified SEAIRD model is established to fit the COVID-19 outbreak in refugee 
camps. Then in Sections 2.3 and 2.4, the established SEAIRD model is extended to describe one-dose 
and double-dose vaccine administration, respectively. 

2.1. The basic SEIR model 

In the context of compartment models, in general, the total population 𝑁𝑁 can be divided into 
several typical compartments, e.g., 𝑆𝑆 (susceptible, not yet infected), 𝐸𝐸 (exposed, being infected, in 
the incubation period, no symptoms), 𝐼𝐼 (infected, infectious) and 𝑅𝑅 (recovered, no longer infectious). 
Considering the spreading pattern, the compartmental models can be represented as follows: 
Susceptible-infected (SI), susceptible-infected-removed (SIR), susceptible-infectious-susceptible (SIS), 
susceptible-exposed-infectious-removed (SEIR), etc. 

The classical SEIR model divides the population into four compartments: susceptible (𝑆𝑆), exposed (𝐸𝐸), 
infected (𝐼𝐼) and recovered (𝑅𝑅). Unlike the SIR model, the SEIR model further considers the latent 
period in which a virus carrier without immediate illness is capable of infecting other susceptible 
individuals. The presence of the latent period results in a longer pandemic transmission cycle. 

The total population 𝑁𝑁 is fixed in the classical SEIR model, which assumes that the virus spreads 
within a closed system. The individuals in the four compartments are homogeneously mixed, and the 
individuals move between compartments through a certain probability of interaction. The infected 𝐼𝐼 
would turn the susceptible 𝑆𝑆  into the exposed 𝐸𝐸  with the SARS-CoV-2 transmission rate 𝛽𝛽 ; 𝛼𝛼 
represents the portion of the exposed 𝐸𝐸  that would become the infected 𝐼𝐼 ; and the infected 
individuals 𝐼𝐼 become cured with a certain probability 𝛾𝛾 and turn into the recovered 𝑅𝑅. Meanwhile, 
𝑁𝑁 = 𝑆𝑆 + 𝐸𝐸 + 𝐼𝐼 + 𝑅𝑅 is satisfied. The set of differential equations is as follow: 

⎩
⎪
⎨

⎪
⎧𝑆̇𝑆(𝑡𝑡) = −𝛽𝛽𝛽𝛽(𝑡𝑡) 𝑆𝑆(𝑡𝑡)

𝑁𝑁(𝑡𝑡) ,

𝐸̇𝐸(𝑡𝑡) = 𝛽𝛽𝛽𝛽(𝑡𝑡) 𝑆𝑆(𝑡𝑡)
𝑁𝑁(𝑡𝑡) − 𝛼𝛼𝛼𝛼(𝑡𝑡),

𝐼𝐼(̇𝑡𝑡) = 𝛼𝛼𝛼𝛼(𝑡𝑡) − 𝛾𝛾𝛾𝛾(𝑡𝑡),
𝑅̇𝑅(𝑡𝑡) = 𝛾𝛾𝛾𝛾(𝑡𝑡).

       (2.1) 

2.2. An improved SEAIRD model 

The dynamic characteristic of COVID-19 transmission fitted to refugee camps is based on the 
SEIR model and considers asymptomatic individuals with reference to the potential COVID-19 
outbreak in the Kutupalong-Balukhali refugee camp in Bangladesh [2] and models describing the 
Italian COVID-19 epidemic [16]. The total population is divided into six compartments, i.e., susceptible 
(could fall ill through contact with infected individuals) 𝑆𝑆 , exposed (incubating, not infectious, no 
symptoms) 𝐸𝐸, asymptomatic infected (infected, infectious, no symptoms/presymptomatic) 𝐴𝐴, actively 
infected (infected, infectious, with symptoms) 𝐼𝐼 , recovered (healing) 𝑅𝑅  and dead (extinct) 𝐷𝐷 . 
Considering the extremely limited number of hospital beds in refugee camps, quarantine is not taken 
into account. Hence, the transmission dynamics can be established as 
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⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑆̇𝑆(𝑡𝑡) = −𝛽𝛽𝛽𝛽(𝑡𝑡) 𝑆𝑆(𝑡𝑡)

𝑁𝑁0(𝑡𝑡) − 𝛽𝛽𝛽𝛽(𝑡𝑡) 𝑆𝑆(𝑡𝑡)
𝑁𝑁0(𝑡𝑡) ,

𝐸̇𝐸(𝑡𝑡) = 𝛽𝛽𝛽𝛽(𝑡𝑡) 𝑆𝑆(𝑡𝑡)
𝑁𝑁0(𝑡𝑡) + 𝛽𝛽𝛽𝛽(𝑡𝑡) 𝑆𝑆(𝑡𝑡)

𝑁𝑁0(𝑡𝑡) − 𝛼𝛼𝛼𝛼(𝑡𝑡),

𝐴̇𝐴(𝑡𝑡) = (1 − 𝛿𝛿)𝛼𝛼𝛼𝛼(𝑡𝑡) − 𝛾𝛾𝐴𝐴𝐴𝐴(𝑡𝑡),
𝐼𝐼(̇𝑡𝑡) = 𝛿𝛿𝛿𝛿𝛿𝛿(𝑡𝑡) − 𝛾𝛾𝐼𝐼𝐼𝐼(𝑡𝑡) − 𝜎𝜎𝜎𝜎(𝑡𝑡),
𝑅̇𝑅(𝑡𝑡) = 𝛾𝛾𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝛾𝛾𝐼𝐼𝐼𝐼(𝑡𝑡),
𝐷̇𝐷(𝑡𝑡) = 𝜎𝜎𝜎𝜎(𝑡𝑡),

     (2.2) 

where 𝑁𝑁0(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) + 𝐸𝐸(𝑡𝑡) + 𝐴𝐴(𝑡𝑡) + 𝐼𝐼(𝑡𝑡) + 𝑅𝑅(𝑡𝑡) . Individuals in 𝑆𝑆  proceed into the exposed 
compartment 𝐸𝐸 at a rate 𝛽𝛽 through contact with infected individuals in 𝐴𝐴 or 𝐼𝐼, and then, they reside 
for an incubation period. Considering the lack of healthcare capacity and great survival pressure, the 
transmission rate is similar for asymptomatic infected individuals and symptomatic individuals. 
Exposed individuals become infected at a rate 𝛼𝛼 , where a fraction 𝛿𝛿  experiences symptomatic 
infection and the remainder experience asymptomatic infection. The recovery times for actively 
infected and asymptomatic infected patients are given by 1/𝛾𝛾𝐼𝐼 and 1/𝛾𝛾𝐴𝐴, respectively. The disease-
induced mortality rate in the 𝐴𝐴 compartment is denoted as 𝜎𝜎. 

Such an SEAIRD compartmental model has been widely used to describe the evolution of 
COVID-19. Some preliminary results have been conducted by previous researches. Here, we present 
some important relevant results directly, and interesting readers can refer to [48]. By using the next 
generation method, the basic production number of model (2.2) can be derived as follow: 

ℛ0 = 𝛽𝛽(1−𝛿𝛿)
𝛾𝛾𝐴𝐴

+ 𝛽𝛽𝛽𝛽
𝛾𝛾𝐼𝐼+𝜎𝜎

.         (2.3) 

2.3. Introducing single-dose vaccine administration into the SEAIRD model 

In this paper, we assume that vaccines will be available to fight against SARS-CoV-2, and the 
effectiveness of a single-dose vaccine 𝜈𝜈1 is estimated according to trial phase 1/2 of the ChAdOx1 
nCoV-19 vaccine [6]. 
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    (2.4) 

where 𝑁𝑁1(𝑡𝑡) = 𝑆𝑆0(𝑡𝑡) + 𝑆𝑆1(𝑡𝑡) + 𝐸𝐸(𝑡𝑡) + 𝐴𝐴(𝑡𝑡) + 𝐼𝐼(𝑡𝑡) + 𝑅𝑅(𝑡𝑡). 
The corresponding compartment diagram is illustrated in Figure 1, where 𝑆𝑆0 denotes susceptible 

individuals without vaccination and 𝑆𝑆1 represents susceptible individuals with one-dose vaccination. 
Let the individuals in 𝑆𝑆0 be vaccinated at a rate of 𝑤𝑤1. The vaccinated individuals become immune 
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at a ratio of 𝜈𝜈1 , proceeding into the 𝑅𝑅  compartment. If neutralizing antibody responses against 
SARS-CoV-2 are not detected [5], the risk of the vaccinated individuals in 𝑆𝑆1 exposed to the infection 
is assumed as well as the general susceptible individuals in 𝑆𝑆0, and the identical transmission rate 𝛽𝛽 
is used. 

 

Figure 1. Compartment diagram of the model with single-dose vaccine administration. 

2.4. Introducing double-dose vaccine administration into the SEAIRD model 

A trial report of the ChAdOx1 nCoV-19 vaccine in the UK showed that anti-spike IgG responses 
rose after a booster dose [6]. Hence, we characterize how a double-dose vaccine administration policy 
would influence the dynamics of the COVID-19 epidemic as follow: 
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  (2.5) 

where 𝑁𝑁2(𝑡𝑡) = 𝑆𝑆0(𝑡𝑡) + 𝑆𝑆1(𝑡𝑡) + 𝑆𝑆2(𝑡𝑡) + 𝐸𝐸(𝑡𝑡) + 𝐴𝐴(𝑡𝑡) + 𝐼𝐼(𝑡𝑡) + 𝑅𝑅(𝑡𝑡). 
The corresponding compartment diagram is illustrated in Figure 2, where 𝑆𝑆0 denotes susceptible 

individuals without vaccination, 𝑆𝑆1 and 𝑆𝑆2 represent susceptible individuals administered the first 
and the second vaccine dose, respectively. 𝑆𝑆0 would be first vaccinated at a rate of 𝑢𝑢1, and 𝑢𝑢2 for 
𝑆𝑆1 with the second dose. 𝜈𝜈1 and 𝜈𝜈2 represent the effectiveness of the first and second vaccine dose, 
respectively. 
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Figure 2. Compartment diagram of the model with double-dose vaccine administration. 

3. Establishing optimal control problems 

3.1. Single-dose vaccine administration strategy 

We introduce the variable 𝑉𝑉 to record the number of vaccinated individuals in compartment 𝑆𝑆0 
as follow: 

𝑉̇𝑉(𝑡𝑡) = 𝑤𝑤1(𝑡𝑡)𝑆𝑆0(𝑡𝑡) with 𝑉𝑉(0) = 0.      (3.1) 

It is assumed that the maximum number of daily vaccinated individuals is proportional to the 
number of medical care personnel. The following three types of constraints are considered when 
constructing the optimal control problem: 

(1) Considering the limited medical care personnel, the maximum number of individuals 
vaccinated daily is constrained as follow: 

𝑤𝑤1(𝑡𝑡)𝑆𝑆0(𝑡𝑡) ≤ 𝛺𝛺.         (3.2) 

(2) The total vaccine supply is considered to be limited, which can be expressed as the following 
constraint: 

𝑉𝑉(𝑡𝑡) ≤ 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚.         (3.3) 

(3) The vaccination rate 𝑤𝑤1 naturally exists in the range of [0,1], i.e., 

0 ≤ 𝑤𝑤1 ≤ 1.          (3.4) 

With the above settings, we can formulate the optimal single-dose vaccine administration problem 
as the following nonlinear constrained optimal control problem, which is denoted as Problem 1: 
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( ) ( ) ( )( )
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( ) ( ) ( ) ( )
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( ) ( )
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min  + d
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
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∫

   (3.5) 

3.2. Double-dose vaccine administration strategy 

We introduce the following variable to record the number of vaccinated individuals in 
compartments 𝑆𝑆0 and 𝑆𝑆1: 

𝑉̇𝑉(𝑡𝑡) = 𝑢𝑢1(𝑡𝑡)𝑆𝑆0(𝑡𝑡) + 𝑢𝑢2(𝑡𝑡)𝑆𝑆1(𝑡𝑡) with 𝑉𝑉(0) = 0.     (3.6) 

Following the ideas in Section 3.1, the following constraints are taken into account in this scenario: 

𝑢𝑢1(𝑡𝑡)𝑆𝑆0(𝑡𝑡) + 𝑢𝑢2(𝑡𝑡)𝑆𝑆1(𝑡𝑡) ≤ 𝛺𝛺,       (3.7) 

𝑉𝑉(𝑡𝑡) ≤ 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,         (3.8) 

0 ≤ 𝑢𝑢1 ≤ 1,          (3.9) 

0 ≤ 𝑢𝑢2 ≤ 1.         (3.10) 

Thus, the optimal double-dose vaccine administration problem, which is denoted as Problem 2, 
can be formulated as follow: 

( ) ( ) ( ) ( )( )

( )
( ) ( ) ( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2
1 2 1 1 2 20

0 2 11

max
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1

2

0 00 1 10 2 20 0 0 0 0

min  + + d

s.t.
system equations in Eq 2.5 ,

,  0 0,

,

,

0 ( ) 1,
0 ( ) 1,

0 ,  0 ,  0 ,  0 ,  0 ,  0 ,  0 .
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u t S t u t S t

u t
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
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≤ ≤

≤ ≤
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

∫









 (3.11) 

4. Characterization of optimal control 

In this section, we characterize the structure of the optimal control problems proposed in Section 3 
by the parametric variational principle. Since Problem 2 is more complicated, only its characterization 
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is derived in detail. Before we derive the following results, it is necessary to guarantee existence and 
uniqueness of the solution to Problem 2, and related proofs are provided in Appendix A. 

First, the inequality constraints in Problem 2 are transformed into equality constraints by non-
negative parametric variables as follows: 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )
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( ) ( )

max 1
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1 3
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
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      (4.1) 

where 𝝎𝝎 = [𝜔𝜔1,𝜔𝜔2,𝜔𝜔3,𝜔𝜔4,𝜔𝜔5,𝜔𝜔6]𝑇𝑇  is the parametric variable list. Thus, according to [46], the 
Hamiltonian of Problem 2 is obtained as follow: 
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   (4.2) 

where 𝝀𝝀 = �𝜆𝜆𝑆𝑆0 , 𝜆𝜆𝑆𝑆1 , 𝜆𝜆𝑆𝑆2 , 𝜆𝜆𝐸𝐸 , 𝜆𝜆𝐴𝐴,𝜆𝜆𝐼𝐼 , 𝜆𝜆𝑅𝑅 , 𝜆𝜆𝑉𝑉�
𝑇𝑇
  is the adjoint variable (or the costate variable in the 
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context of optimal control) that introduces system equations into the Hamiltonian and 𝝁𝝁 =
[𝜇𝜇1, 𝜇𝜇2, 𝜇𝜇3, 𝜇𝜇4, 𝜇𝜇5, 𝜇𝜇6]𝑇𝑇 is the non-negative parametric variable list that introduces equality constraints 
into the Hamiltonian. Applying the parametric variational principle [49] to Problem 2, for the optimal 
solutions, the following first-order necessary conditions must be satisfied: 

𝒙̇𝒙 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝝀𝝀

,           (4.3) 

𝝀̇𝝀 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝒙𝒙

,          (4.4) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝒖𝒖

= 𝟎𝟎,           (4.5) 

𝝎𝝎 ≥ 𝟎𝟎, 𝝁𝝁 ≥ 𝟎𝟎,  𝝎𝝎𝑇𝑇𝝁𝝁 = 0,        (4.6) 

with the following transversality conditions: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 1 2

0,λ λ λ λ λ λ λ λ= = = = = = = =S f S f S f E f A f I f R f V ft t t t t t t t    (4.7) 

where Eq (4.3) is equivalent to the system equation; Eq (4.4) is called the adjoint equation, which 
can be further expressed as 
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     (4.8) 
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

    (4.9) 

𝜆̇𝜆𝑆𝑆2 = −𝐾𝐾 �𝜆𝜆𝑆𝑆0𝑆𝑆0 + 𝜆𝜆𝑆𝑆1𝑆𝑆1 + 𝜆𝜆𝑆𝑆2(𝑁𝑁2 − 𝑆𝑆2) + 𝜆𝜆𝐸𝐸(𝑁𝑁2 − 𝑆𝑆0 − 𝑆𝑆1 − 𝑆𝑆2)�,  (4.10) 

𝜆̇𝜆𝐸𝐸 = 𝛼𝛼(𝜆𝜆𝐸𝐸 − (1− 𝛿𝛿)𝜆𝜆𝐸𝐸 − 𝛿𝛿𝜆𝜆𝐼𝐼)− 𝐾𝐾 �𝜆𝜆𝑆𝑆0𝑆𝑆0 + 𝜆𝜆𝑆𝑆1𝑆𝑆1 + 𝜆𝜆𝑆𝑆2𝑆𝑆2 + 𝜆𝜆𝐸𝐸(𝑆𝑆0 + 𝑆𝑆1 + 𝑆𝑆2)�,  (4.11) 

( ) ( ) ( )( )0 1 21 2 0 1 2 0 1 2 ,λ γ λ λ β λ λ λ λ= − − + − + + − + +
A A A R S S S Eb N K S S S S S S    (4.12) 

( ) ( ) ( )( )0 1 22 2 0 1 2 0 1 2 ,λ γ λ λ σλ β λ λ λ λ= − + − + − + + − + +
I I I R I S S S Eb N K S S S S S S   (4.13) 

( )( )0 1 20 1 2 0 1 2 ,λ λ λ λ λ= − + + − + +
R S S S EK S S S S S S      (4.14) 

1,λ µ= −V          (4.15) 

where 𝐾𝐾 = 𝛽𝛽(𝐴𝐴+𝐼𝐼)
𝑁𝑁22

, and the time variable 𝑡𝑡 is omitted for simplicity. 

The optimal control and corresponding state trajectory are denoted as 𝒖𝒖∗ = [𝑢𝑢1∗, 𝑢𝑢2∗]𝑇𝑇 and 𝒙𝒙∗ =
[𝑆𝑆0∗, 𝑆𝑆1∗, 𝑆𝑆2∗,𝐸𝐸∗,𝐴𝐴∗, 𝐼𝐼∗,𝑅𝑅∗,𝑉𝑉∗]𝑇𝑇, respectively. By solving Eq (4.5), the optimal control is determined as 
follows: 

𝑢𝑢1∗ =
�𝜆𝜆𝑆𝑆0−(1−𝜈𝜈1)𝜆𝜆𝑆𝑆1−𝜈𝜈1𝜆𝜆𝑅𝑅−𝜆𝜆𝑉𝑉�𝑆𝑆0−𝜇𝜇2𝑆𝑆0+𝜇𝜇3−𝜇𝜇4

2𝑐𝑐1
,      (4.16) 

𝑢𝑢2∗ =
�𝜆𝜆𝑆𝑆1−(1−𝜈𝜈2)𝜆𝜆𝑆𝑆2−𝜈𝜈2𝜆𝜆𝑅𝑅−𝜆𝜆𝑉𝑉�𝑆𝑆1−𝜇𝜇2𝑆𝑆1+𝜇𝜇5−𝜇𝜇6

2𝑐𝑐2
.      (4.17) 
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In most epidemic control problems where only box constraints are imposed on control variables 
(i.e., Eqs (3.9) and (3.10)), when arriving at equations similar to Eqs (4.16) and (4.17), one can 
further characterize optimal control as min-max formulations where no parametric variable is involved 
by using the standard argument for control bounds [50]. Though an extra mixed state-control constraint 
(i.e., Eq (3.7)) and pure-state constraint (i.e., Eq (3.8)) are also involved in Problem 1, one can follow 
the analysis in [51] to obtain similar characterization, i.e., 

𝑤𝑤1∗ = 𝑚𝑚𝑚𝑚𝑚𝑚 �0,𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑆𝑆0�𝜆𝜆𝑆𝑆0−(1−𝜈𝜈1)𝜆𝜆𝑆𝑆1−𝜈𝜈1𝜆𝜆𝑅𝑅−𝜆𝜆𝑉𝑉�

2𝑑𝑑
, 𝛺𝛺
𝑆𝑆0

, 𝑉𝑉−𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆0

��.    (4.18) 

Then, together with the system equations and the adjoint equations, the forward-backward sweep 
method [50] that is commonly used in epidemic control can be used to solve the problem. 

However, two control variables are coupled in the mixed state-control constraint in Problem 2. 
Hence, it is not possible to further simplify Eqs (4.16) and (4.17), which suggests that the forward-
backward sweep method cannot guarantee numerical stability herein. Actually, the forward-backward 
sweep method is only applicable to optimal control problems with fixed initial state boundary 
conditions and free terminal state boundary conditions. The characterization of optimal control in a 
simple formulation must be provided to implement the numerical process. However, such limitations do 
not exist in advanced computational optimal control techniques, such as direct collocation methods [52, 53] 
and indirect symplectic pseudospectral methods [49,51,54,55]. 

5. Numerical simulations and discussion 

In this section, we evaluate the effectiveness of the two vaccine administration strategies. The 
optimal control problem was solved using the ICLOCS [52] software package. In detail, the Hermite 
method with 1000 nodes was used to implement the discretization, and the IPOPT software package [56] 
was used to solve the resultant nonlinear programming problem. By using ICLOCS, under the 
framework of direct transcription method, the optimal control problem is transcribed into a nonlinear 
programming (NLP) in the following fashion: 

�

𝑚𝑚𝑚𝑚𝑚𝑚 𝐹𝐹 (𝑿𝑿)
s.t.
𝑮𝑮(𝑿𝑿) < 𝟎𝟎,
𝑯𝑯(𝑿𝑿) = 𝟎𝟎,

           (5.1) 

where 𝑿𝑿, as the unknown quantities to be determined, consists of state and control variable at the 
discretization points. 

5.1. Parameter settings 

The parameters used for numerical simulations mainly refer to the literature [2,6,16,57,58] and 
are listed in Table 1. The effectiveness of vaccines is based on the phase 1/2 trial report of the ChAdOx1 
nCoV-19 vaccine [6]. The initial total population was set as 600000. In both scenarios, we set 𝑆𝑆0 =
599988, 𝐸𝐸0 = 10 and 𝐼𝐼0 = 𝐴𝐴0 = 1, while the initial populations in other compartments are zero. 
The final time is set as 𝑡𝑡𝑓𝑓 = 90. 
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Table 1. Parameter settings in numerical simulations. 

Parameter Description Value Source 
𝛼𝛼 Incubation rate  0.19 [57] 
𝛽𝛽 Transmission rate 0.65 [2] 
𝛾𝛾𝐴𝐴 Recovery rate of asymptomatic infected individuals 0.156 [16] 
𝛾𝛾𝐼𝐼 Recovery rate of symptomatic infected individuals 0.078 [16] 
𝛿𝛿 Fraction of the infected with symptoms 0.868 [58] 
𝜎𝜎 Death rate 0.009 [2] 

𝜈𝜈1 Proportion of susceptible individuals that gain 
immunity after the first vaccine dose 

0.7 [6] 

𝜈𝜈2 Proportion of susceptible individuals that gain 
immunity after the second vaccine dose 

0.99 [6] 

𝛺𝛺 The maximum number of individuals vaccinated 
daily 

10000 Assumed 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 The total number of vaccines 600000 Assumed 

5.2. Comparison between two vaccination strategies 

We explore the control effects of two vaccination strategies in this sub-section. Observing the cost 
functional in both Problems 1 and 2, they are both constituted of two parts, i.e., one term related to 
infected individuals and another term related to control intensity. In the following simulations, we set 
𝑏𝑏1 = 𝑏𝑏2 = 0.001 in both two vaccination strategies. As in the single-dose scenario, we set 𝑑𝑑 = 1; 
and 𝑐𝑐1 = 𝑐𝑐2 = 1  are selected in the double-dose scenario. The optimal state trajectory of two 
scenarios are reported in Figure 3. And the profiles of corresponding optimal control are given in 
Figures 4 and 5. The cost functions obtained in the single-dose and the double-dose scenarios are 979.26 
and 581.99, respectively. 

From Figure 3, it is seen that both two vaccination strategies can effectively control the spread 
the COVID-19. To give a better comparison between these two strategies, we summarize their control 
effects in Table 2. Additionally, the profiles of accumulated vaccinated individuals and accumulated 
death are reported in Figure 6. One can read that the double-dose vaccination strategy was found to 
further lower the peaks of 𝐴𝐴 and 𝐼𝐼 compared with those in the single-dose vaccination strategy. A 
smaller number of deaths occurred with the double-dose vaccination strategy than with the other 
strategy, which is approximately only 10% of the uncontrolled case. The population in 𝐴𝐴 at 𝑡𝑡𝑓𝑓 in the 
single-dose vaccination scenario was much higher than that in the uncontrolled scenario. Moreover, 
we note that available vaccines are not used up in the single-dose scenario. It is mainly because that, 
when compared with the double-dose scenario, more individuals in the susceptible compartments 
become infected and then proceed into other compartments. The above comparisons suggest that the 
double-dose vaccination strategy can achieve better COVID-19 control than the single-dose strategy. 
However, we also noted that the single-dose vaccination strategy postpones the times corresponding 
to the peaks of 𝐴𝐴 and 𝐼𝐼 more efficiently. More susceptible individuals could be vaccinated under the 
single-dose vaccination strategy. In contrast, fewer individuals would gain immunity limited to vaccine 
supply under the double-dose vaccination strategy. Subsequently, individuals with a single-dose 
vaccine might also be infected, and thus, the peak of infection and death would be higher but come 
later than with the double-dose vaccination scenario. 
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Figure 3. Optimal state trajectories in the controlled scenarios together with those in the 
uncontrolled scenario, including (a) the susceptible, (b) the susceptible administered one 
or two vaccine dose, (c) the exposed, (d) the asymptomatic infected, (e) the actively 
infected and (f) the recovered. 

One may get confused that at the final time, population of the 𝑅𝑅 compartment in the single-dose 
vaccination is slightly lower than that in the uncontrolled scenario. It can be drawn from Figures 4 and 5 
that vaccination stops at approximately the 65th day. It suggests that from that day on, the simulation 
is almost a free-spread process. When we look back at the system dynamics in Eqs (2.4) and (2.5), 
without vaccination, only infected individuals (individuals in the 𝐴𝐴 or 𝐼𝐼 compartments) can proceed 
into the 𝑅𝑅  compartment by recovery. From Figure 3(d),(e), it is seen that there’re more infected 
individuals in the uncontrolled scenarios when compared with the controlled scenario. Hence, the 
population in the 𝑅𝑅 compartment at a much higher speed. 

(c)

(e) (f)

(d)

(a) (b)
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Figure 4. Optimal control in the single-dose vaccine administration strategy, including (a) 
optimal vaccination rate and (b) daily vaccinated individuals. 

 

Figure 5. Optimal control in the double-dose vaccination strategy, including (a) optimal 
vaccination rate and (b) daily vaccinated individuals. 

Table 2. Control performance of the two vaccination strategies. 

Performance Without 
vaccination 

Single-dose 
vaccination 

Double-dose 
vaccination 

Peak of 𝐴𝐴 20424 2497 (-85.57%) 1272 (-93.77%) 
Time corresponding to peak of 𝐴𝐴 59 78 (+19 days) 68 (+9 days) 
Individuals in 𝐴𝐴 at 𝑡𝑡𝑓𝑓  1146 2173 (+89.61%) 1037 (-9.51%) 
Peak of 𝐼𝐼 197947 27586 (-86.06%) 14061 (-92.90%) 
Time corresponding to peak of 𝐼𝐼 61 82 (+21 days) 76 (+15 days) 
Individuals in 𝐼𝐼 at 𝑡𝑡𝑓𝑓 35833 26042 (-27.32%) 12719 (-64.50%) 
Total Death 50012 8582 (-82.84%) 5112 (-89.78%) 
Vaccine consumption - 579071 600000 

(a) (b)

(a) (b)
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Figure 6. Profiles of (a) accumulated vaccinated individuals and (b) accumulated deaths. 

5.3. Effects of daily vaccination capabilities and total vaccine supply 

Figures 4(b) and 5(b) show that in both vaccination strategies, the number of daily vaccinations 
arrives at a maximum level in the initial period. This partially suggests that further increasing the 
number of medical care personnel, which results in a higher daily vaccination capability 𝛺𝛺, would 
lead to better control performance. Moreover, noting that the supplied vaccines are exhausted in the 
double-dose vaccination strategy, we may infer that further increasing the total vaccine supply 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 
would reach a more satisfactory control performance. To validate the above two conjectures, in Figure 7, 
we test the effect of 𝛺𝛺 and 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 on several indices in the double-dose scenario. 

 

Figure 7. Control performance under different daily vaccination capabilities 𝛺𝛺 and total 
vaccine supply 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚, including (a) the peak of 𝐴𝐴, (b) the peak of 𝐼𝐼 and (c) the number 
of deaths. 

The results remind us that increasing the vaccine supply and equipping more medical care 
personnel are critical in the fight against COVID-19. If the single-dose and double-dose vaccination 
simulations are combined, a more feasible strategy could be proposed. In the early stage, more 
susceptible individuals are supposed to be vaccinated with the first dose to postpone the infection peak 
and thus buy time for vaccine production. A double-dose vaccination strategy should be implemented 
at a later period. In this way, the objectives of both the number and peak of infections could be balanced. 
  

(a) (b)

(a) (b) (c)
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6. Conclusions and future research directions 

6.1. Conclusions 

Two vaccine administration strategies, i.e., single-dose and double-dose strategies, for COVID-19 in 
refugee camps considering limited medical resources were studied in this paper based on extended 
SEAIRD models. Numerical simulations show that both strategies can control the spread and 
efficiently reduce the total infections by integrating the optimal control technique. Interestingly, the 
double-dose strategy performs better on infection demonstration than the signal-dose strategy under 
the same vaccine constraints. This result implies that standard vaccine administration with a double 
dose for a portion of the population should be satisfied, rather than more populations being vaccinated 
with one dose first. However, if additional control measures are implemented or medical resources are 
replenished, postponing the peak of infection would be more significant. For the challenging settings 
of refugee camps, vaccines alone are not enough; epidemic control also depends on the maximum level 
of daily vaccination, which demonstrates that additional health workers are as important as vaccines 
themselves. 

As the simulations show, the vaccines cannot entirely stop the spread of COVID-19, and 
discovery of effective drugs for treatment is still necessary and expected. Moreover, the trial results 
for different vaccine types and different trial phases are inconsistent, and SARS-CoV-2 has been 
mutating [59]. Thus, the availability of a vaccine could decline. We make optimistic presumptions in 
this work, while the challenges in the real world are more severe. 

6.2. Future research directions 

(1) Recent research has revealed that the successful immune rate severely depends on age [7]. 
Hence, it seems interesting to consider the age-structure in future work. One simple idea is to further 
divide the 𝑆𝑆0, 𝑆𝑆1 and 𝑆𝑆2 compartments into more sub-compartments according to the age-structure. 
Another interesting idea is to describe the epidemic dynamics with partial differential equations 
(PDEs), where the coefficients are functions of the age variable. Correspondingly, efficient numerical 
techniques to solve optimal control problems for PDEs are required therein. 

(2) Vaccination strategies are formulated over a relatively long time span. Thus, it seems more 
practical to set the parameters in the model to be time-dependent [51]. For example, the successful 
immune rate will generally decrease over time considering drug resistance. In addition, the incidence 
rate would vary seasonally. 

(3) Minimal numerical analysis is given in this paper. In the following works, numerical analysis 
such as the stability, parameter sensitivity, second derivative of Lyapunov and strength number [20] 
will be supplemented. 

(4) Only one control measure, i.e., vaccination, is considered in this paper. In future work, 
compound control strategies should be studied to attain more satisfactory control performance. 

Appendix A: Existence and uniqueness of the solution to Problem 2 

Problem 2 can be rewritten into the following fashion: 

min 𝐽𝐽 = ∫ �𝑏𝑏1𝐴𝐴(𝑡𝑡) + 𝑏𝑏2𝐼𝐼(𝑡𝑡) + 𝑐𝑐1𝑢𝑢12(𝑡𝑡) + 𝑐𝑐2𝑢𝑢22(𝑡𝑡)�d𝑡𝑡,𝑡𝑡𝑓𝑓
0      (A.1) 
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subject to system dynamics and initial conditions 
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and state and control constraints 
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       (A.3) 

Compared with Eq (3.11), the total vaccine supply constraints are transformed into an equivalent 
form on the terminal value of state 𝑉𝑉. 

The boundedness of system (A.1) for the finite time interval is proved first. We note that the 
populations in compartments 𝑆𝑆0 , 𝑆𝑆1 , 𝑆𝑆2 , 𝐸𝐸 , 𝐴𝐴  and 𝐼𝐼  decreases proportionally to their current 
quantities, it guarantees that all these variables remain non-negative as their initial values are non-
negative. As for state variables 𝑉𝑉 and 𝑅𝑅, their initial values and derivatives are non-negative, thus 
their non-negativity can be guaranteed. To establish the upper bounds for state variables, we consider 
the total population size 𝑁𝑁2. The change in 𝑁𝑁2 satisfies that 𝑁̇𝑁2(𝑡𝑡) = −𝛼𝛼𝛼𝛼(𝑡𝑡) and is 𝑁𝑁2 bounded 
by its initial condition 𝑁𝑁2(0) . Since 𝑆𝑆0 , 𝑆𝑆1 , 𝑆𝑆2 , 𝐸𝐸 , 𝐴𝐴 , 𝐼𝐼  and 𝑅𝑅  are all non-negative, the upper 
bound of 𝑁𝑁2 is also their upper bound. As for the upper bound for state variable 𝑉𝑉, it allows from the 
boundedness of control variables 𝑢𝑢1 and 𝑢𝑢2 as well as state variables 𝑆𝑆1 and 𝑆𝑆2. 

We give a generalized formulation of the problem (A.1)–(A.3) as follow: 

min∫ 𝐹𝐹(𝒙𝒙,𝒖𝒖, 𝑡𝑡)d𝑡𝑡𝑡𝑡1
𝑡𝑡0

 (𝑡𝑡0 and 𝑡𝑡1 are fixed),      (A.4) 

subject to system dynamics 

𝒙̇𝒙 = 𝒇𝒇(𝒙𝒙,𝒖𝒖, 𝑡𝑡),         (A.5) 

initial boundary conditions 
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𝒙𝒙(𝑡𝑡0) = 𝒙𝒙0,          (A.6) 

terminal boundary conditions 

𝒙𝒙𝑖𝑖(𝑡𝑡1) = 𝒙𝒙𝑖𝑖,1, 𝑖𝑖 = 1, 2,⋯ ,𝑚𝑚,        (A.7) 

𝒙𝒙𝑖𝑖(𝑡𝑡1) is free, 𝑖𝑖 = 𝑚𝑚 + 1,𝑚𝑚 + 2,⋯ ,𝑛𝑛,      (A.8) 

and constraints 

𝒖𝒖(𝑡𝑡) ∈ 𝒰𝒰, 𝒰𝒰 is a fixed set in ℝ𝑟𝑟 ,        (A.9) 

𝒈𝒈(𝒙𝒙,𝒖𝒖, 𝑡𝑡) ≥ 𝟎𝟎.         (A.10) 

Assume that the functions 𝐹𝐹:ℝ𝑛𝑛 × ℝ𝑟𝑟 × ℝ → ℝ , 𝒇𝒇:ℝ𝑛𝑛 × ℝ𝑟𝑟 × ℝ → ℝ𝑛𝑛  and 𝒈𝒈:ℝ𝑛𝑛 × ℝ𝑟𝑟 ×
ℝ → ℝ𝑠𝑠 are 𝐶𝐶1-continuous with respect to all their arguments. We call �𝒙𝒙(𝑡𝑡),𝒖𝒖(𝑡𝑡)� an admissible 
pair if 𝒖𝒖(𝑡𝑡) is any piecewise control and 𝒙𝒙(𝑡𝑡) is 𝐶𝐶1-continuous such that (A.5)–(A.10) are satisfied. 

(Filippov-Cesari’s Theorem, [60]) Suppose that there exists an admissible pair �𝒙𝒙(𝑡𝑡),𝒖𝒖(𝑡𝑡)� and 
further that 

(1) 𝒰𝒰 is closed. 
(2) 𝐺𝐺(𝒙𝒙, 𝑡𝑡) = {𝒚𝒚� ≡ (𝒚𝒚,𝒚𝒚𝑛𝑛+1):𝒚𝒚 = 𝒇𝒇(𝒙𝒙,𝒖𝒖, 𝑡𝑡),𝒚𝒚𝑛𝑛+1 ≥ 𝐹𝐹(𝒙𝒙,𝒖𝒖, 𝑡𝑡),𝒈𝒈(𝒙𝒙,𝒖𝒖, 𝑡𝑡) ≥ 𝟎𝟎,𝒖𝒖(𝑡𝑡) ∈ 𝒰𝒰}  is 

convex for all (𝒙𝒙, 𝑡𝑡) ∈ ℝ𝑛𝑛 × [𝑡𝑡0, 𝑡𝑡1]. 
(3) There exists a number 𝜀𝜀 > 0 such that ‖𝒙𝒙‖ < 𝜀𝜀 for all admissible pairs �𝒙𝒙(𝑡𝑡),𝒖𝒖(𝑡𝑡)� and 

all 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡1]. 
(4) There exists an open ball ℬ(𝟎𝟎, 𝜉𝜉) ⊂ ℝ𝑟𝑟  which contains the set 𝒲𝒲(𝒙𝒙, 𝑡𝑡) = {𝒖𝒖(𝑡𝑡) ∈

𝒰𝒰:𝒈𝒈(𝒙𝒙,𝒖𝒖, 𝑡𝑡) ≥ 𝟎𝟎} for all 𝒙𝒙 ∈ ℬ(𝟎𝟎, 𝜉𝜉). 
Then there exists an optimal pair �𝒙𝒙∗(𝑡𝑡),𝒖𝒖∗(𝑡𝑡)� to (A.4)–(A.10) with 𝒖𝒖∗(𝑡𝑡) measurable. 

For (A.1)–(A.3), the Filippov-Caseri’s Theorem can be easily verified. Hence, the existence and 
uniqueness of Problem 2 is guaranteed. 

Acknowledgments 

The authors are grateful for the National Key Research and Development Plan 
(2019YFB1706502); the Natural Science Foundation of Shandong Province (ZR2020QG055); the 
National Natural Science Foundation of China (12102077); the Fundamental Research Funds for the 
Central Universities (DUT20YG125). 

Conflict of interest 

The authors declare no conflicts of interest. 

References 

1. World Health Organization, Coronavirus disease (COVID-2019) situation reports, 2020. 
Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-
reports. 

2. S. Truelove, O. Abrahim, C. Altare, S. A. Lauer, K. H. Grantz, A. S. Azman, et al., The potential 
impact of COVID-19 in refugee camps in Bangladesh and beyond: A modeling study, PLOS Med., 
17 (2020), 1–15. https://doi.org/10.1371/journal.pmed.1003144 

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://doi.org/10.1371/journal.pmed.1003144


9307 

AIMS Mathematics  Volume 7, Issue 5, 9288–9310. 

3. World Health Organization, The push for a COVID-19 vaccine, 2020. Available from: 
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines. 

4. F. C. Zhu, Y. H. Li, X. H. Guan, L. H. Hou, W. J. Wang, J. X. Li, et al., Safety, tolerability, and 
immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: A dose-
escalation, open-label, non-randomised, first-in-human trial, Lancet, 395 (2020), 1845–1854. 
https://doi.org/10.1016/S0140-6736(20)31208-3 

5. F. C. Zhu, X. H. Guan, Y. H. Li, J. Y. Huang, T. Jiang, L. H. Hou, et al., Immunogenicity and 
safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 
years or older: A randomised, double-blind, placebo-controlled, phase 2 trial, Lancet, 396 (2020), 
479–488. https://doi.org/10.1016/S0140-6736(20)31605-6 

6. P. M. Folegatti, K. J. Ewer, P. K. Aley, B. Angus, S. Becker, S. Belij-Rammerstorfer, et al., Safety 
and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary 
report of a phase 1/2, single-blind, randomised controlled trial, Lancet, 396 (2020), 467–478. 
https://doi.org/10.1016/S0140-6736(20)31604-4 

7. L. A. Jackson, E. J. Anderson, N. G. Rouphael, P. C. Roberts, M. Makhene, R. N. Coler, et al., An 
mRNA vaccine against SARS-CoV-2—Preliminary report, N. Engl. J. Med., 383 (2020), 1920–
1931. https://doi.org/10.1056/NEJMoa2022483 

8. M. J. Mulligan, K. E. Lyke, N. Kitchin, J. Absalon, A. Gurtman, S. Lockhart, et al., Phase I/II 
study of COVID-19 RNA vaccine BNT162b1 in adults, Nature, 586 (2020), 589–593. 
https://doi.org/10.1038/s41586-020-2639-4 

9. World Health Organization, Criteria for COVID-19 vaccine prioritization, 2020. Available from: 
https://www.who.int/publications/m/item/criteria-for-covid-19-vaccine-prioritization. 

10. W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. 
R. Soc. A Math. Phys. Eng. Sci., 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 

11. Y. C. Chen, P. E. Lu, C. S. Chang, T. H. Liu, A time-dependent SIR model for COVID-19 with 
undetectable infected persons, In: Ieee transactions on network science and engineering, 7 (2020), 
3279–3294. https://doi.org/10.1109/TNSE.2020.3024723 

12. N. Crokidakis, Modeling the early evolution of the COVID-19 in Brazil: Results from a 
Susceptible-Infectious-Quarantined-Recovered (SIQR) model, Int. J. Mod. Phys. C, 31 (2020), 
2050135. https://doi.org/10.1142/S0129183120501351 

13. G. Gaeta, A simple SIR model with a large set of asymptomatic infectives, Math. Eng., 3 (2021), 
1–39. https://doi.org/10.3934/mine.2021013 

14. J. T. Wu, K. Leung, G. M. Leung, Nowcasting and forecasting the potential domestic and 
international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study, 
Lancet, 395 (2020), 689–697. https://doi.org/10.1016/S0140-6736(20)30260-9 

15. H. Salje, C. T. Kiem, N. Lefrancq, N. Courtejoie, P. Bosetti, J. Paireau, et al., Estimating the 
burden of SARS-CoV-2 in France, Science, 369 (2020), 208–211. 
https://doi.org/10.1126/science.abc3517 

16. M. Gatto, E. Bertuzzo, L. Mari, S. Miccoli, L. Carraro, R. Casagrandi, et al., Spread and dynamics 
of the COVID-19 epidemic in Italy: Effects of emergency containment measures, Proc. Natl. Acad. 
Sci. USA, 117 (2020), 10484–10491. https://doi.org/10.1073/pnas.2004978117 

17. R. Chowdhury, K. Heng, M. S. R. Shawon, G. Goh, D. Okonofua, C. Ochoa-Rosales, et al., 
Dynamic interventions to control COVID-19 pandemic: A multivariate prediction modelling 
study comparing 16 worldwide countries, Eur. J. Epidemiol., 35 (2020), 389–399. 
https://doi.org/10.1007/s10654-020-00649-w 

  

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines
https://doi.org/10.1016/S0140-6736(20)31208-3
https://doi.org/10.1016/S0140-6736(20)31605-6
https://doi.org/10.1016/S0140-6736(20)31604-4
https://doi.org/10.1056/NEJMoa2022483
https://doi.org/10.1038/s41586-020-2639-4
https://www.who.int/publications/m/item/criteria-for-covid-19-vaccine-prioritization
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1109/TNSE.2020.3024723
https://doi.org/10.1142/S0129183120501351
https://doi.org/10.3934/mine.2021013
https://doi.org/10.1016/S0140-6736(20)30260-9
https://doi.org/10.1126/science.abc3517
https://doi.org/10.1073/pnas.2004978117
https://doi.org/10.1007/s10654-020-00649-w


9308 

AIMS Mathematics  Volume 7, Issue 5, 9288–9310. 

18. Y. J. Tang, S. X. Wang, Mathematic modeling of COVID-19 in the United States, Emerg. Microbes 
Infec., 9 (2020), 827–829. https://doi.org/10.1080/22221751.2020.1760146 

19. M. Higazy, Novel fractional order SIDARTHE mathematical model of COVID-19 pandemic, 
Chaos Soliton. Fract., 139 (2020), 110007. https://doi.org/10.1016/j.chaos.2020.110007 

20. M. S. Ullah, M. Higazy, K. M. A. Kabir, Modeling the epidemic control measures in overcoming 
COVID-19 outbreaks: A fractional-order derivative approach, Chaos Soliton. Fract., 155 (2021), 
111636. https://doi.org/10.1016/j.chaos.2021.111636 

21. G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. D. Filippo, A. D. Matteo, et al., Modelling 
the COVID-19 epidemic and implementation of population-wide interventions in Italy, Nat. Med., 
26 (2020), 855–860. https://doi.org/10.1038/s41591-020-0883-7 

22. M. Mandal, S. Jana, S. K. Nandi, A. Khatua, S. Adak, T. K. Kar, A model based study on the 
dynamics of COVID-19: Prediction and control, Chaos Soliton. Fract., 136 (2020), 109889. 
https://doi.org/10.1016/j.chaos.2020.109889 

23. D. Okuonghae, A. Omame, Analysis of a mathematical model for COVID-19 population 
dynamics in Lagos, Nigeria, Chaos Soliton. Fract., 139 (2020), 110032. 
https://doi.org/10.1016/j.chaos.2020.110032 

24. R. Dandekar, G. Barbastathis, Neural network aided quarantine control model estimation of 
COVID spread in Wuhan, China, arXiv Preprint, 2020. 
https://doi.org/10.48550/arXiv.2003.09403 

25. R. Dandekar, G. Barbastathis, Neural network aided quarantine control model estimation of global 
Covid-19 spread, arXiv Preprint, 2020. https://doi.org/10.48550/arXiv.2004.02752 

26. C. Bayes, V. S. Y. Rosas, L. Valdivieso, Modelling death rates due to COVID-19: A Bayesian 
approach, arXiv Preprint, 2020. https://doi.org/10.48550/arXiv.2004.02386 

27. B. M. Ndiaye, L. Tendeng, D. Seck, Analysis of the COVID-19 pandemic by SIR model and machine 
learning technics for forecasting, arXiv Preprint, 2020. https://doi.org/10.48550/arXiv.2004.01574 

28. G. Perone, An ARIMA model to forecast the spread and the final size of COVID-2019 epidemic 
in Italy, medRxiv Preprint, 2020. https://doi.org/10.1101/2020.04.27.20081539 

29. A. Altan, S. Karasu, Recognition of COVID-19 disease from X-ray images by hybrid model 
consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique, 
Chaos Soliton. Fract., 140 (2020), 110071. https://doi.org/10.1016/j.chaos.2020.110071 

30. L. D. Wang, Z. Q. Lin, A. Wong, COVID-net: A tailored deep convolutional neural network design 
for detection of COVID-19 cases from chest X-ray images, Sci. Rep., 10 (2020), 1–12. 
https://doi.org/10.1038/s41598-020-76550-z 

31. A. Imran, I. Posokhova, H. N. Qureshi, U. Masood, M. S. Riaz, K. Ali, et al., AI4COVID-19: AI 
enabled preliminary diagnosis for COVID-19 from cough samples via an app, Inform. Med. 
Unlocked, 20 (2020), 100378. https://doi.org/10.1016/j.imu.2020.100378 

32. Z. Y. Hou, F. X. Du, H. Jiang, X. Y. Zhou, L. Lin, Assessment of public attention, risk perception, 
emotional and behavioural responses to the COVID-19 outbreak: Social media surveillance in 
China, medRxiv Preprint, 2020. https://doi.org/10.1101/2020.03.14.20035956 

33. B. W. Schuller, D. M. Schuller, K. Qian, J. Liu, H. Y. Zheng, X. Li, COVID-19 and computer 
audition: An overview on what speech & sound analysis could contribute in the SARS-CoV-2 
corona crisis, Front. Digit. Health, 3 (2021), 1–10. https://doi.org/10.3389/fdgth.2021.564906 

34. Y. F. Ye, S. F. Hou, Y. J. Fan, Y. Y. Qian, Y. M. Zhang, S. Y. Sun, et al., α-Satellite: An AI-driven 
system and benchmark datasets for hierarchical community-level risk assessment to help combat 
COVID-19, arXiv Preprint, 2020. https://doi.org/10.48550/arXiv.2003.12232 

  

https://doi.org/10.1080/22221751.2020.1760146
https://doi.org/10.1016/j.chaos.2020.110007
https://doi.org/10.1016/j.chaos.2021.111636
https://doi.org/10.1038/s41591-020-0883-7
https://doi.org/10.1016/j.chaos.2020.109889
https://doi.org/10.1016/j.chaos.2020.110032
https://doi.org/10.48550/arXiv.2003.09403
https://doi.org/10.48550/arXiv.2004.02752
https://doi.org/10.48550/arXiv.2004.02386
https://doi.org/10.48550/arXiv.2004.01574
https://doi.org/10.1101/2020.04.27.20081539
https://doi.org/10.1016/j.chaos.2020.110071
https://doi.org/10.1038/s41598-020-76550-z
https://doi.org/10.1016/j.imu.2020.100378
https://doi.org/10.1101/2020.03.14.20035956
https://doi.org/10.3389/fdgth.2021.564906
https://doi.org/10.48550/arXiv.2003.12232


9309 

AIMS Mathematics  Volume 7, Issue 5, 9288–9310. 

35. F. Hu, J. X. Jiang, P. Yin, Prediction of potential commercially inhibitors against SARS-CoV-2 by 
multi-task deep model, arXiv Preprint, 2020. https://doi.org/10.48550/arXiv.2003.00728 

36. Y. Y. Ge, T. Z. Tian, S. L. Huang, F. P. Wan, J. X. Li, S. Y. Li, et al., A data-driven drug 
repositioning framework discovered a potential therapeutic agent targeting COVID-19, Sig. 
Transduct. Target. Ther., 6 (2021), 1–16. https://doi.org/10.1038/s41392-021-00568-6 

37. V. Chenthamarakshan, P. Das, S. C. Hoffman, H. Strobelt, I. Padhi, K. W. Lim, et al., Cogmol: 
Target-specific and selective drug design for covid-19 using deep generative models, arXiv 
Preprint, 2020. https://doi.org/10.48550/arXiv.2004.01215 

38. H. Y. Tian, Y. H. Liu, Y. D. Li, C. H. Wu, B. Chen, M. U. G. Kraemer, et al., An investigation of 
transmission control measures during the first 50 days of the COVID-19 epidemic in China, 
Science, 368 (2020), 638–642. https://doi.org/10.1126/science.abb6105 

39. X. F. Yan, Y. Zou, Optimal and sub-optimal quarantine and isolation control in SARS epidemics, 
Math. Comput. Model., 47 (2008), 235–245. https://doi.org/10.1016/j.mcm.2007.04.003 

40. D. Aldila, H. Padma, K. Khotimah, B. Desjwiandra, H. Tasman, Analyzing the MERS disease 
control strategy through an optimal control problem, Int. J. Appl. Math. Comput. Sci., 28 (2018), 
169–184. https://doi.org/10.2478/amcs-2018-0013 

41. R. Djidjou-Demasse, Y. Michalakis, M. Choisy, M. T. Sofonea, S. Alizon, Optimal COVID-19 
epidemic control until vaccine deployment, medRxiv Preprint, 2020. 
https://doi.org/10.1101/2020.04.02.20049189 

42. S. E. Moore, E. Okyere, Controlling the transmission dynamics of COVID-19, arXiv Preprint, 
2020. https://doi.org/10.48550/arXiv.2004.00443 

43. A. Yousefpour, H. Jahanshahi, S. Bekiros, Optimal policies for control of the novel coronavirus 
disease (COVID-19) outbreak, Chaos Soliton. Fract., 136 (2020), 109883. 
https://doi.org/10.1016/j.chaos.2020.109883 

44. J. Köhler, L. Schwenkel, A. Koch, J. Berberich, P. Pauli, F. Allgöwer, Robust and optimal 
predictive control of the COVID-19 outbreak, Annu. Rev. Control, 51 (2021), 525–539. 
https://doi.org/10.1016/j.arcontrol.2020.11.002 

45. C. Tsay, F. Lejarza, M. A. Stadtherr, M. Baldea, Modeling, state estimation, and optimal control 
for the US COVID-19 outbreak, Sci. Rep., 10 (2020), 1–12. https://doi.org/10.1038/s41598-020-
67459-8 

46. E. A. Iboi, C. N. Ngonghala, A. B. Gumel, Will an imperfect vaccine curtail the COVID-19 pandemic 
in the U. S.? Infect. Dis. Model., 5 (2020), 510–524. https://doi.org/10.1016/j.idm.2020.07.006 

47. G. B. Libotte, F. S. Lobato, G. M. Platt, A. J. S. Neto, Determination of an optimal control strategy 
for vaccine administration in COVID-19 pandemic treatment, Comput. Meth. Prog. Bio., 196 
(2020), 105664. https://doi.org/10.1016/j.cmpb.2020.105664 

48. Z. H. Shen, Y. M. Chu, M. A. Khan, S. Muhammad, O. A. Al-Hartomy, M. Higazy, Mathematical 
modeling and optimal control of the COVID-19 dynamics, Results Phys., 31 (2021), 105028. 
https://doi.org/10.1016/j.rinp.2021.105028 

49. X. W. Wang, H. J. Peng, S. Zhang, B. S. Chen, W. X. Zhong, A symplectic pseudospectral method 
for nonlinear optimal control problems with inequality constraints, ISA Trans., 68 (2017), 335–
352. https://doi.org/10.1016/j.isatra.2017.02.018 

50. S. Lenhart, J. T. Workman, Optimal control applied to biological models, New York: Chapman 
and Hall/CRC, 2007. https://doi.org/10.1201/9781420011418 

51. X. W. Wang, H. J. Peng, B. Y. Shi, D. H. Jiang, S. Zhang, B. S. Chen, Optimal vaccination strategy 
of a constrained time-varying SEIR epidemic model, Commun. Nonlinear Sci. Numer. Simul., 67 
(2019), 37–48. https://doi.org/10.1016/j.cnsns.2018.07.003 

https://doi.org/10.48550/arXiv.2003.00728
https://doi.org/10.1038/s41392-021-00568-6
https://doi.org/10.48550/arXiv.2004.01215
https://doi.org/10.1126/science.abb6105
https://doi.org/10.1016/j.mcm.2007.04.003
https://doi.org/10.2478/amcs-2018-0013
https://doi.org/10.1101/2020.04.02.20049189
https://doi.org/10.48550/arXiv.2004.00443
https://doi.org/10.1016/j.chaos.2020.109883
https://doi.org/10.1016/j.arcontrol.2020.11.002
https://doi.org/10.1038/s41598-020-67459-8
https://doi.org/10.1038/s41598-020-67459-8
https://doi.org/10.1016/j.idm.2020.07.006
https://doi.org/10.1016/j.cmpb.2020.105664
https://doi.org/10.1016/j.rinp.2021.105028
https://doi.org/10.1016/j.isatra.2017.02.018
https://doi.org/10.1201/9781420011418
https://doi.org/10.1016/j.cnsns.2018.07.003


9310 

AIMS Mathematics  Volume 7, Issue 5, 9288–9310. 

52. Y. B. Nie, O. Faqir, E. C. Kerrigan, ICLOCS2: Try this optimal control problem solver before you 
try the rest, In: 2018 UKACC 12th international conference on control (CONTROL), 2018. 
https://doi.org/10.1109/CONTROL.2018.8516795 

53. M. A. Patterson, A. V. Rao, GPOPS-II: A MATLAB software for solving multiple-phase optimal 
control problems using hp-adaptive Gaussian quadrature collocation methods and sparse 
nonlinear programming, ACM Trans. Math. Software, 41 (2014), 1–37. 
https://doi.org/10.1145/2558904 

54. X. W. Wang, J. Liu, X. Z. Dong, C. W. Li, Y. Zhang, A symplectic pseudospectral method for 
constrained time-delayed optimal control problems and its application to biological control 
problems, Optimization, 70 (2021), 2527–2557. https://doi.org/10.1080/02331934.2020.1786568  

55. K. Zhang, X. W. Wang, H. Liu, Y. P. Ji, Q. W. Pan, Y. M. Wei, et al., Mathematical analysis of a 
human papillomavirus transmission model with vaccination and screening, Math. Biosci. Eng., 17 
(2020), 5449–5476. https://doi.org/10.3934/mbe.2020294 

56. F. E. Curtis, O. Schenk, A. Wächter, An interior-point algorithm for large-scale nonlinear 
optimization with inexact step computations, SIAM J. Sci. Comput., 32 (2010), 3447–3475. 
https://doi.org/10.1137/090747634 

57. Q. Li, X. H. Guan, P. Wu, X. Y. Wang, L. Zhou, Y. Q. Tong, et al., Early transmission dynamics 
in Wuhan, China, of novel coronavirus-infected pneumonia, N. Engl. J. Med., 382 (2020), 1199–
1207. https://doi.org/10.1056/NEJMoa2001316 

58. B. Tang, N. L. Bragazzi, Q. Li, S. Y. Tang, Y. N. Xiao, J. H. Wu, An updated estimation of the risk 
of transmission of the novel coronavirus (2019-nCov), Infect. Dis. Model., 5 (2020), 248–255. 
https://doi.org/10.1016/j.idm.2020.02.001 

59. K. Kupferschmidt, The pandemic virus is slowly mutating. But does it matter? Science, 369 (2020), 
238–239. https://doi.org/10.1126/science.369.6501.238 

60. L. Cesari, Optimization-theory and applications: Problems with ordinary differential equations, 
New York: Springer, 1983. https://doi.org/10.1007/978-1-4613-8165-5 

© 2022 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 

https://doi.org/10.1109/CONTROL.2018.8516795
https://doi.org/10.1145/2558904
https://doi.org/10.1080/02331934.2020.1786568
https://doi.org/10.3934/mbe.2020294
https://doi.org/10.1137/090747634
https://doi.org/10.1056/NEJMoa2001316
https://doi.org/10.1016/j.idm.2020.02.001
https://doi.org/10.1126/science.369.6501.238
https://doi.org/10.1007/978-1-4613-8165-5

	1. Introduction
	2. Formulation of the epidemic model
	2.1. The basic SEIR model
	2.2. An improved SEAIRD model
	2.3. Introducing single-dose vaccine administration into the SEAIRD model
	2.4. Introducing double-dose vaccine administration into the SEAIRD model

	3. Establishing optimal control problems
	3.1. Single-dose vaccine administration strategy
	3.2. Double-dose vaccine administration strategy

	4. Characterization of optimal control
	5. Numerical simulations and discussion
	5.1. Parameter settings
	5.2. Comparison between two vaccination strategies
	5.3. Effects of daily vaccination capabilities and total vaccine supply

	6. Conclusions and future research directions
	6.1. Conclusions
	6.2. Future research directions

	Appendix A: Existence and uniqueness of the solution to Problem 2

