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1. Introduction

Sturm-Liouville problem originates from various fields such as physics, engineering, finance
and medicine, and it has been widely researched [1, 2]. Nowadays, differential equations with
boundary conditions depending on eigenparameter are also widely used in acoustic scattering, quantum
mechanics theory and so on. Particularly, more and more researchers have paid close attention to
Sturm-Liouville problems with boundary conditions depending on eigenparameter, the distribution
of eigenvalues, asymptotic of eigenvalues and eigenfunctions, oscillation theory and inverse spectral
theory of such problrm are deeply researched, and many results are obtained. Up to now, it has
become an important research topic and has made great progress [3—7]. In recent years, the fourth-
order differential operators with eigenparameter dependent boundary conditions appear in elastic beam
models, the heat conduct problem and so on are also gained great progress. For more details, we refer
the readers to [8—11].

In the last two decades, the dependence of eigenvalues on coeflicients and parameters of differential
operator has attracted lots of the attention by many researchers. In [12], Kong and Zettl obtained
that the eigenvalues of regular Sturm-Liouville problems are differentiable functions with respect
to all the data and they gave expressions for their derivatives. Later, this problem was extended


http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2022512

9248

to Sturm-Liouville operators with discontiuity, third-order and fourth-order differential operators
etc. [13—18]. Recently, Zhang and Li in [19] showed that the eigenvalues of Sturm-Liouville problems
with eigenparameter dependent boundary conditions are differentiable functions of all the data. In [20],
Zinsou considered the dependence of eigenvalues of a general fourth-order differential equation with
transmission conditions and obtained similar results. These results provide a theoretical support for the
numerical calculation of eigenvalues and eigenfunctions [21,22].

Inspired by the above mentioned results, a natural question is that whether similar results still true
for fourth-order boundary value problems when eigenparameter appear in the the boundary conditions?
In this paper, we give a confirm answer. As we know, the problems with spectral parameter arise from
several physical or other applied problems, for instance, the free bending vibrations of rod [23, 24].
Therefore, in this paper, we try to discuss the dependence of eigenvalues of fourth-order differential
equations with eigenparameter dependent boundary conditions. It is worth mentioning that we consider
such a problem with both endpoints depending on the spectral parameter u. Compared with the
problem with spectral parameter at one end, the inner product and space constructed are different,
and it is more troublesome in the process of deriving the differential expression of the eigenvalues
with respect to the coefficient matrix of the boundary conditions with spectral parameter. The main
result is that each of the eigenvalues of the fourth-order boundary value problem can be embedded in
a continuous eigenvalue branch. Furthermore, we obtain the differential expression of the eigenvalues
with respect to all data in the sense of ordinary or Fréchet derivatives.

The rest of this paper is organized as follows. In Section 2, we introduce a fourth-order boundary
value problems and define a new self-adjoint operator ¥ such that the eigenvalues of such a problem
coincide with those of 7. In Section 3, we discuss the continuity of the eigenvalues and eigenfunctions.
In Section 4, we give the differential expressions of the eigenvalues with respect to each of parameters.

2. Fourth-order boundary value problem

We consider the fourth-order differential equation

If == (p(x)f" ()" = (q(0) f' (X)) + qo(x) f(x) = uw(x)f(x), (2.1)

on [a, b], with eigenparameter dependent boundary conditions at endpoints
Lf = pf(a) - fPla) =0, (2.2)
Lf = ufNa) + 2@ =0, (2.3)
Lf = p(r f(b) = y1fPUb)) = (r2f(b) = 2P (b)) = O, (2.4)
Lf = p@BifNB) = a fA®B)) + Bof" () - anfPU(b)) = 0, (2.5)

where —c0 < a < b < +00, u € C is the spectral parameter,
%, g.q0,w € L'[a,b], p,w > 0a.e. on [a, b], (2.6)
. N L ) _ B B

a,Bi, vioTi €ER, i=1,2, p; = ’ >0, pr = o @ > 0. (2.7)
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Note that the quasi-derivatives associated to (2.1) are

FOl = g = g2 = e B = (oY —gf. (2.8)

Let the weighted Hilbert space be defined as

b
H, = L.[a,b] :{f]f(x)isabsohneh/conﬁnuousand‘f‘If(xﬂzw(xyix<:+oo}

with inner product (f, g); = fa b f(x)g(x)w(x)dx for any f, g € H,;. We define a new Hilbert space
H=H eC
with the inner product
(F,GY=(fgh + fig1 + 28 + pilf3§3 + pizﬁt@,

for F = (f, f1, /. f3. f)T.G = (g, g1, &2, 3, 84)7 € H. Define an operator ¥ as

f w ' l(pf")" = (af’) + qof]
f(a) 1Pa)
F M@ = -1 a) )
71 f(b) = y1 fP(b) 2 f(b) = y2fPU(b)
BN (D) — a fP(b) a, fP(b) — BofM(b)

with the domain

DF) ={(f, fi, o 5. ST € HW ' [(pf"Y" = @f') + qof] € Lila,bl, f, f', 12, ) € ACla, b],
fi = f), o = fa), f = 11fB) =y D), fi = BLfYB) — a2 (D))

Lemma 2.1. The operator F is a self-adjoint operator in H.

Proof. The proof is similar to that of [25], the equation we considered is more complicated and the
derivatives in boundary conditions are quasi-derivatives, here we omit the details. O

Lemma 2.2. [25] The spectrum of  consists of isolated eigenvalues, which coincide with those of the
fourth-order boundary value problems (2.1)—(2.5). Furthermore, all the eigenvalues are real-valued.

3. Continuity of eigenvalues and eigenfunctions

Let y1(x, ), x2(x, W), x3(x, 1), x4(x, i) be the linearly independent solutions of Eq (2.1) satisfying
the initial conditions

xila,p)  xola,p)  xsla,p)  xala,p) 1 000
Xy @ x e xyem xy'@w || 0100 -
Y P ¥Paw xIaw |70 0 1 0 G-1)
XYaw xlaw xlaw xS 0001
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We define their Wronskian as

X160 xo(x, ) x3(o ) xalx, )
K ) xS ) X“](x,m
2](x 1) Xz](x 1 x20w xP
3](x 1 x5 Xy ) X[S](x,ﬂ)

D(x, 1) =

Lemma 3.1. The number i is an eigenvalue of operator ¥ if and only if

Au) = det (M + NO(b, 1)) = 0

where
u 0 0 -1 0 0 0 0
M= O u 1 O : 0 0 0 0
1000 0| | tiu—-1 0 0 —(yi = 2)
000 O 0 B+ B —(au+az) 0

Proof. By [26, Theorem 1.8], we see that boundary value problems (2.1)—(2.5) is well-posed. Let u be

an eigenvalue of (2.1)—(2.5), then there exists a non-trivial solution

FOo ) = e (o p) + coxa(x, ) + caxs(x, 1) + caya(x, 1),

of (2.1), where ¢y, ¢, c3, ¢4 are not all zero. Since f(x, u) satisfies the boundary conditions (2.2)—(2.5),

we have
OV (me) (He) (s
M| c ]EZ; + Cy Xz]EZ; + C3 ]EZ; + Cy ]EZ; +
%) W) m(a) m(a)
o | [do | [He] |5
b b b b
Yy =] Yy [#o 2y =< X || =0
APb) X?](b) X5b) XEE](b)

By the initial condition (3.1), we have
(M + NO(b, w))(c1, ¢z, c3,¢4)" = 0.

Since not all ¢y, ¢,, 3, ¢4 are zero, we get that det (M + NO(b, 1)) =0
On the other hand, if A(u) = 0, then Eq (3.2) has non-zero solution cy, ¢;, ¢3, c4. Let

) = cpxa(x, i) + coxa(x, i) + eaxs(x, ) + caxa(x, p),
then f(x, u) satisfies (2.1)—(2.5) and thus u is an eigenvalue. This completes the proof.

Now, we consider the Banach space

B:=L'{a,bl® L'[a,b]® L'[a,b] ® L'[a,b] ® R®

(3.2)
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with norm

b 1 b b b
= [+ f gldx + f goldi + f widx

+ il + ol + Iril + |7l + e | + ol + [Bi] + B2l
for any & = (%,q, qo, W, Y1, Y2, T1, T2, @1, @2, B1,B2) € B. Let
Q = {r € B| (2.6),(2.7) hold}.
Theorem 3.1. Letg = (%, 4,40, W, ¥1,Y2,T1, T2, &1, dz,ﬁl,ﬁz) € Q and ,u(g) be an isolated eigenvalue

of (2.1)~(2.5) with €. Then u is continuous on &. That is, given any & > 0, there exists a § > 0 such that
the problems (2.1)—(2.5) has exactly an isolated eigenvalue u(¢) satisfying

(@ - u@é)l < &,

if € = (5,9 9o, W, Y1, Y2, T To, @1, @2, B, B2) satisfies

B bl 1 b b b
|§—§|=f |;—5|dx+f Iq—éldX+f |QO—Cio|dX+f w — idx

+lyi = Vil +ly2 = ol + 11 = T1l + |12 — T2l + | — d

+lay — dl + |B1 = Bil + B2 — Bl
<.

Proof. By Lemma 3.1, u(€) is an eigenvalue of (2.1)—(2.5) if and only if A(€, u(€)) = 0. For any & € Q,
A(&, ) 1s an entire function of u and is continuous on & (see [27, Theorems 2.7 and 2.8]). It is easy
seen that A(&, ) is not a constant in u because u(€) is an isolated eigenvalue. Therefore, there exists
po > 0 such that A(§,u) # 0 foru € S, == {u € C: |u — u(é)| = po}. By the continuity of the roots of
an equation as a function of parameters (see [28, (9.17.4)]), the statement follows. O

By a normalized eigenvector (m,m;,my, ms,my)’ € H, we mean m satisfies the problems (2.1)—
(2.5), m; = m(a),my, = mN(a), m3 = ym(b) — yimP(b), my = BimM(b) — a;m® (b), and

T2 T T
|2, my, my, m3, my)" ||° = ((m, my, my, mz,my)", (m, my, my, ms3, my)" )

b
= f mmwdx + mny + momy + —mshiy + —Mmyhiy
a P1 P2

=1.
Now we give a result for normalized eigenfunctions.

Theorem 3.2. Assume that u(€) is an eigenvalue of (2.1)—(2.5) with & € Q and (m, m;, my, m3, my)" € H
is the corresponding normalized eigenvector for u(€). Then there exists a normalized eigenvector
(n,ny,n2,n3,n4)" € H for (&) with & € Q, which is specified in Theorem 3.1, such that

n(x) — m(x), "M (x) = mM(x), i (x) —» m?(x), P (x) = mP(x), (3.3)

ny(x) = my(x), ny(x) = my(x), n3(x) — ms(x), na(x) — my(x),

as & — & both uniformly on [a, b].
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Proof. (1) We know that u(¢) is an isolated eigenvalue of multiplicity j(j = 1,2,3,4) for all € in

some neighborhood N of & in Q. Suppose u(€) is simple. Let (£(x,€), fi(€), f2(€), (), f+(€)T be an
eigenvector for u(¢) with

b
ol = [ S ofergmdr= 1.
By Theorem 3.1, there exists u(€) such that
u(@&) — &) as & - &

Define the boundary condition matrix as

& 0 0 -1 0 0 0 0
0o owe 1 oo 0 0 0 0
(M, N)(¢) = 0 0 0 0 1@ -1 0 0 —(y1(€) — ¥2)
0 0 0 O 0 Biu€) + B —(a1u(€) + az) 0
then

(M,N)(€) = (M,N)§&) as & — &.
By Theorem 3.2 of [12], we can obtain an eigenfunction f(x, &) for u(€) such that || f(x, &)l = 1 and
f(x8) - f(x,8), N d - flxé), A - Ao, fPlxéd - Plxé), (3.4)

as & — £ both uniformly on [a, b]. Then we obtain

[@ = fi&), &) — L&), &) — f(E), f4d) — fu@ asé — & (3.5)
Let

(5.6, Fi©), L), SO, &)
1 G, ). L&), @ fu@)I
e ot = DK@, @, SO, (@

1FC. 8. @), 5@, HE. AV

T
(m9 m15m29m39m4) =

!l = M8 A1 = SN, &)

I(f (6, 6), i), £206), £56), LI I/ (6. 8), f1E), &), (&), f@)II
2l = SPx, €) P F2(x, 3

I(f (6, 6, 1), £2(6), f58), @I I(f(x, 8, A, L&), &), x@TII
3 = ) eI P8

I(f(x, ), £1(&), (&), (&), L ENTII I(f(x, &), @), @), D), L EDTII

Then (3.3) holds by (3.4) and (3.5).

(i) Assume that u(¢) is an eigenvalue of multiplicity j(j = 2,3,4). Then we can choose
eigenfunctions of u(¢) such that all of them satisfy the same initial conditions at ¢, for some ¢, € [a, b]
since a linear combination of j linearly independent eigenfunctions can be chosen to satisfy arbitrary
initial conditions.

Similarly, we obtain (3.3) as (i), This completes the proof.

O
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4. Differential expression of eigenvalues

In this section, we focus on giving the derivative formulas of the eigenvalues for all the parameters.

First we give the definition of the Fréchet derivative.

Definition 4.1. A map ¥ from a Banach space X into Banach space Y is differentiable at a point x € X,

if there exists a bounded linear operator d¥, : X — Y such that for k € X
|F (x + k) — F(x) —dF(k)| = o(k) as k — 0.

Theorem 4.1. Assume that u(€) is an eigenvalue of (2.1)—(2.5) with & € Q and (m, m;, my, m3,my)" € H
is the corresponding normalized eigenvector for u(¢). Suppose u(€) is a simple eigenvalue or u(o) is
an eigenvalue of multiplicity j (j = 2,3,4) for each o in some neighborhood N C Q of ¢&. Then u is

differentiable with respect to all the data in &.
(1) Let all the data of & be fixed except the boundary condition parameter matrix

mz(“Tﬂ,
Y Y2

du, (L) = (m(b), =mN b)) E - K, (K, + L)"'] (

and u(Ky) := u(&). Then

mPl(b)
m(b)

for all L satisfying det(K; + L) = detK; = p;.
(2) Let all the data of & be fixed except the boundary condition parameter matrix

k(60
and u(Ky) := u(&). Then
— (Ul 02 iy [ MP(B)
wmm—em(wm<ww—&Mﬁ¢)mem)

for all L satisfying det(K, + L) = det K, = p;.
(3) Let all the data of & be fixed except p and ,u(l—lj) := u(é). Then

dus (k) = - f ’ |pm”|*kdx, k € L'[a, b].
(4) Let all the data of & be fixed except q ;nd w(q) := u(&). Then
du, (k) = f b im"*kdx, k € L'[a,b].
(5) Let all the data of & be fixed except qs and u(qoy) := u(€). Then

b
dug, (k) = f im|*kdx, k € L'[a, b].

(6) Let all the data of & be fixed except w and u(w) := u(¢). Then

b
dpt (k) = —p(w) - f m|*kdx, k € L'[a, b].

(4.1)

4.2)

4.3)

4.4)

4.5)

(4.6)
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Proof. Let all the data of & be fixed except one and u(€) be the eigenvalue satisfying Theorem 3.1 when

i€ — €] < & for sufficiently small & > 0. For the above six cases, we replace u(€) by u(K; + L), u(K, +

L), ,u(ﬁ + k), u(qg + k), u(qo + k), u(w + k), respectively. Let (n,n;,n,,n3,n4)" be the corresponding
normalized eigenvector.
(1) By (2.1) we have

(pm”)" = (gm’)" + qom = p(Ky)wm, 4.7)

(p")" = (gn’)" + qont = p(K, + Lywn. (4.8)

It follows from (4.7) and (4.8) that
[W(K; + L) — u(Ky)maw = (pi”")'m — (gi'Y'm — (pm”)"'n + (gm’) n.

Integrating from a to b implies that

b
[(Ky + L) — p(Ky)] f miwdx =m(b)[(pn”) (b) — (gi")(D)] — m(a)[(pi”") (@) — (g7")(a)]

= [(pm”) (b) = (gm")(D)](b) + [(pm"") (a) — (gm’)(a)]7i(a)

— pi”(b)ym’(b) + pi” (a)ym’(a) + (pm")(b)i' (b) — (pm” ) @)it' (a)
=m(b)a(b) — m(a)i®!(a) — mP (b)Ab) + mP(a)a(a)

— mM®»)a?(b) + mM ()i (a) + mP )" (b) — mP (a)aM(a).

4.9)
According to the boundary condition (2.2), we have
u(Km(@)i(a) = m*(a)i(a),
w(Ky + Lym(a)i(a) = m(a)i(a).
Thus
[u(Ky + L) — u(K)miity = m(a)it(a) — mP a)ia(a). (4.10)
Analogously, the boundary condition (2.3) implies that
[u(K; + L) — u(K)Imaiiy = mP(@)at(a) — mMN(@)a(a). (4.11)
Let K, +L = ( :71 :72 ) . Then according to the boundary condition (2.4), we have
Y2
w(KD[Tim(b) — yimPl(B)] = Tom(b) — yomP(b),
u(Ky + L)[717i(b) — 71iiP(b)] = T2ii(b) — 77 (D).
Thus
1 1
[u(Ky + L) — p(K)]—msity =—[6:i1(b) — v, (b)][T1m(b) — y1mP(b)]
P1 P1 (4.12)

1
- p—l[nm(b) — yamPD)1[F17(b) — 7172 (b)].
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Analogously, the boundary condition (2.5) implies that

[u(Ky + L) - ﬂ(Kl)]pim4’7l4 = m(B)a (b) — m* (b)a"(b). (4.13)
2

From (4.9)—(4.13), we get

b
[/.I(Kl + L) —/J(Kl)][f mnwdx + mn, + mon, + lI’I’lg;1713 + lI’I’l41714
a P1 P2
=m(b)a?!(b) — mP\(b)i(b)
1
+ p—l[fzﬁ(b) — i (D) [T im(b) — yimP(b)]
1
~ p—l[sz(b) — ymP (D)[F17(b) — 717 (b)]
_ 3] all(b)
=(m(b), ~m (b))E( A(b) )
1 ooy [ T ) [T (4.14)
+ —m(b), —m (b))( ” )( 7’2,72)( ()

_1 PE T\ s [ 0
—m(b). - (”))(n )( 71,71)( i

1 1 (3]
=) -n )|+ ( ) )(_%’ﬁ) “h ( ) )(—il,ﬂ >]( "y )

:(m(b), _mB](b))[E " i( 7'2'}71 - Tl')72 T1Th — ToT} ):|( 771[3](1?) )

P1 72’}71 - ')’]’)72 ’ylfz - 727:1 fl(b)
(3]
=(m(b), -m* (B))E - Ki(K, + L)™] ( nﬁ(z(»[;) ) .

Dividing both sides of (4.14) by L and taking the limit as L — 0, by Theorem 3.2, we get

duk, (L) = (m(b), -mP(b))[E — Ki(K, + L)‘l]( ml(b) )

m(b)

Then (4.1) follows. In a similar discussion, we can obtain (4.2).
(2) For k € L'[a, b], let 117 +k= % Using (2.1) and integration by parts, we have

1 1 b _[3] ~[3] A Bl N7
[,u(—+k)— ﬂ(—)] f miwdx =m0 (b) — m(@)iN(a) — mPBYa(b) + mP(@)i(a)

—m" bR (b) + m"N@)a? (@) + mP (b)Y (b) - mP ()i (a)

b b
+ f ﬁﬁ"m”dx _ f pm//ﬁ//dx’
a a
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where ii?! = pin”’, i1 = (pin”’)’ — qi’. Then by (2.2)—~(2.5), we obtain

1 1 b 1 1
[,u(— + k) —,u(—)][f mnwdx + miny + moity + —msiz + —myiiy
P p a P1 P2

b b
:f ﬁfl”m”dx—f pmllﬁ/ldx
‘ “ (4.15)
= f (= pym""dx
ab
= f [—ppkm”' i ]dx.
Dividing both sides of (4.15) by k and taking the limit as k — 0, by Theorem 3.2 we get

b
dui (k) = — f |pm”’ |*kdx.

Then (4.3) follows. Similar to the proof of (4.3), we can obtain (4.4).
(3) For k € L'[a, b]. By (2.1), we have

b
[1(gqo + k) = 1(qo)] f miwdx =m(b)i* (b) — m(@)i (@) — mPB)i(b) + m (a)i(a)

—m"B)a? (b) + m"N@)a? (@) + mP By (b) - mP (@) (a)

b
+ f kmndx.

Using the boundary conditions (2.2)—(2.5), we have

b b
1 1
[u(qo + k) —u(qo)][f miawdx + miiy + myiy + —mzig + —m4ﬁ4] = f kmndx. (4.16)
a P1 P2 a
Then (4.5) follows. The proof of (4.6) is similar as that of (4.5), hence we omit the details. |

Theorem 4.2. Let u(&) be an eigenvalue of (2.1)—(2.5) with & € Q and (m,my, my, m3,my)" € H be a
normalized eigenvector for u(¢). Assume that u(€) is a simple eigenvalue or u(o) is an eigenvalue of
multiplicity j (j = 2,3,4) for each o in some neighborhood N C Q of &. Then u is differentiable with
respect to the data in &.

(1) Let all the data of & be fixed except T| and u(ty) := u(¢). Then

H(T) = m(b)P, (4.17)

HY1 =72

where py, — vy, # 0.
(2) Let all the data of & be fixed except T, and u(t;) := u(&). Then

W) =~ m(b)I*, (4.18)

HY1 =72
where py; — vy, # 0.
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(3) Let all the data of & be fixed except vy, and u(y,) := u(¢). Then

©n) = —E— )P,
HT1 — T2

where uty — 1, # 0.
(4) Let all the data of & be fixed except vy, and u(y,) := u(¢). Then

W (y2) = ImP(b)P,
MT] — T2

where uty — 1, # 0.

(5) Let all the data of & be fixed except ay and u(a,) := u(&). Then

/ _ H 21 )2
M (@) BT b +,32|m ®)I°,

where ufy + B, # 0.
(6) Let all the data of & be fixed except a, and u(a,) := u(&). Then

1
H“pL + B2

W) = Im(b)I%,

where up; + 3, # 0.
(7) Let all the data of & be fixed except By and u(B;) := u(&). Then

’ H
#(Br) = ————Im" ()P,
MO+ ap

where ua; + a; # 0.
(8) Let all the data of & be fixed except B, and u(B;) := u(¢). Then

, 1
H(B2) = ————Im"(D)P,
MO + Q)

where ua; + a, # 0.

Proof. (1) For k € L'[a, b]. Using (2.1) and integration by parts, we have

b
[u(ty + k) — ()] f miwdx =m(b)a?!(b) — m(a)i™ (@) — mP'(D)ab) + m (a)i(a)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

—m"B)a? (b) + m"(@)ia(a) + mP (B (b) - mP (@)l (a).

It follows from (2.2)—(2.5) that
[u(r1 + k) — p(r)Imiy = m(a)i™(a) — mPla)i(a),
[u(r1 + k) = u(r)lmai, = mP(@il" @) - m"N @7 a),

[u(r1 + k) - p(r)] pimu-u = m" 1B (b) ~ m B\ b),
2

(4.25)

(4.26)
(4.27)

(4.28)
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and

1
[u(T) + k) — p(T)) ] —msiiy
P1

1 1
=p—1[f2ﬁ(b) — Yoii P ()] [T 1m(b) — yimP(b)] - p—l[sz(b) — yomPN(b)1[717(b) — 717 (b)]

=i(ﬁ)’2 — ) [mMP(B)Ab) — m(b)a (b)] + i[—szm(b)ﬁ(b) + ky,mP (b)i(b)]
P P (4.29)

1 _
=[P BY(b) — mBAPBY] + — | — kram(BYA(b) + kyy 2 m(b)(b))|
P1 HY1 =72
1k —
I by(h) — m(byi (b)) + —[EL2ZIT), )
P1 myr—72
=[mP (b)A(b) — m(b)a* (b)] + m(b)(b).
Y1 =72
Combining (4.25)—(4.29), we obtain
b _ S R B _
[u(ty + k) —u(n)][ mnwdx + mny + moity + —msiz + — Mgl | = m(b)n(b). (4.30)
y P P2 1YL =72
Dividing both sides of (4.30) by k and taking the limit as k — 0, by Theorem 3.2, we get
W) = —E—m)P, (431)
HYr =72
where uy; — vy, # 0. Then (4.17) follows. The proofs of (4.18)—(4.24) are similar as that of (4.17),
hence we omit the details. O

5. Conclusions

This paper gives the dependence of eigenvalues of a fourth-order differential operator with
eigenparameter dependent boundary conditions. The novelty lies in the fact that the fourth-
order differential operator we considered has eigenparameter dependent boundary conditions at two
endpoints. By a newly defined operator # such that the eigenvalues of the fourth-order boundary
problem being consistent with those of #, we give the differential expressions of the eigenvalues with
respect to all data.
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