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Abstract: This paper considers an optimal feedback control problem for a class of fed-batch
fermentation processes. Our main contributions are as follows. Firstly, a dynamic optimization
problem for fed-batch fermentation processes is modeled as an optimal control problem of switched
dynamical systems, and a general state-feedback controller is designed for this dynamic optimization
problem. Unlike the existing switched dynamical system optimal control problem, the
state-dependent switching method is applied to design the switching rule, and the structure of this
state-feedback controller is not restricted to a particular form. Then, this problem is transformed into
a mixed-integer optimal control problem by introducing a discrete-valued function. Furthermore, each
of these discrete variables is represented by using a set of 0-1 variables. By using a quadratic
constraint, these 0-1 variables are relaxed such that they are continuous on the closed interval [0, 1].
Accordingly, the original mixed-integer optimal control problem is transformed intoa nonlinear
parameter optimization problem. Unlike the existing works, the constraint introduced for these 0-1
variables are at most quadratic. Thus, it does not increase the number of locally optimal solutions of
the original problem. Next, an improved gradient-based algorithm is developed based on a novel
search approach, and a large number of numerical experiments show that this novel search approach
can effectively improve the convergence speed of this algorithm, when an iteration is trapped to a
curved narrow valley bottom of the objective function. Finally, numerical results illustrate the
effectiveness of this method developed by this paper.
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1. Introduction

Over the past decades, the use of biochemical reactors and correlation techniques has increased
greatly because of their fruitful application in converting biomass or cells into pharmaceutical or
chemical products, such as vaccines [1], antibiotics [2], beverages [3], and industrial solvents [4].
Among various classes or operation regions of bioreactors, the fed-batch modes have extensively used
in the biotechnological industry due to its considerable economic profits [5–7]. The main objective of
these reactors is to achieve a given or maximum concentration of production at the end of the
operation, which can be implemented by using some suitable feed rates [8–10]. Thus, in order to
ensure economic benefit and product quality of the fed-batch processes, the process control of this
units is an very important topic for the engineers [11–13].

Switched dynamical systems provide a flexible modeling method for a variety of different types of
engineering systems, such as financial system [14], train control system [15], hybrid electric vehicle
[16], chemical process system [17], and biological system [18–21]. Generally speaking, switched
dynamical systems are formed by some continuous-time or discrete-time subsystems and a switching
rule [22]. There usually exist four types of switching rules as follows: time-dependent switching [23],
state-dependent switching [24], average dwell time switching [25], and minimum dwell time
switching [26]. Recently, switched dynamical system optimal control problems are becoming
increasingly attractive due to their significance in theory and industry production [27–30]. Because of
the discrete nature of switching rules, it is very challenging that switched dynamical system optimal
control problems are solved by directly using the classical optimal control approaches such as the
maximum principle and the dynamic programming method [31–34]. In additions, analytical methods
also can not be applied to obtain an solution for switched dynamical system optimal control problems
due to their nonlinear nature [35–37]. Thus, in recent work, two kinds of well-known numerical
optimization algorithms are developed for switched dynamical system optimal control problems to
obtain numerical solutions. One is the bi-level algorithm [38,39]. The other is the embedding
algorithm [40,41]. Besides above two kinds of well-known numerical optimization algorithms, many
other available numerical optimization algorithms are also developed for obtaining the solution of
switched dynamical system optimal control problems [42]. Unfortunately, most of these numerical
optimization algorithms depend on the following assumption: the time-dependent switching strategy
is used to design the switching rules, which implies that the system dynamic must be continuously
differentiable with respect to the system state [43–45]. However, this assumption is not reasonable,
since some small perturbations of the system state may lead to the dynamic equations being changed
discontinuously. Thus, the solution obtained is usually not optimal. In additions, although these
approaches have demonstrated to be effective by solving many practical problems, they only
obtaining an open loop control [46–53]. Unfortunately, such open loop controls are not usually robust
in practice. Thus, an optimal feedback controller is more and more popular.

In this paper, we consider an optimal feedback control problem for a class of fed-batch
fermentation processes by using switched dynamical system approach. Our main contributions are as
follows. Firstly, a dynamic optimization problem for a class of fed-batch fermentation processes is
modeled as a switched dynamical system optimal control problem, and a general state-feedback
controller is designed for this dynamic optimization problem. Unlike the existing works, the
state-dependent switching method is applied to design the switching rule, and the structure of this
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state-feedback controller is not restricted to a particular form. In generally, the traditional methods for
obtaining an optimal feedback control require solving the well-known Hamilton-Jacobi-Bellman
partial differential equation, which is a very difficult issue even for unconstrained optimal control
problems. Then, in order to overcome this difficulty, this problem is transformed into a mixed-integer
optimal control problem by introducing a discrete-valued function. Furthermore, each of these
discrete variables is represented by using a set of 0-1 variables. Then, by using a quadratic constraint,
these 0-1 variables are relaxed such that they are continuous on the closed interval [0, 1]. Accordingly,
the original mixed-integer optimal control problem is transformed into a nonlinear parameter
optimization problem, which can be solved by using any gradient-based numerical optimization
algorithm. Unlike the existing works, the constraint introduced for these 0-1 variables are at most
quadratic. Thus, it does not increase the number of locally optimal solutions of the original problem.
During the past decades, many iterative approaches have been proposed for solving the nonlinear
parameter optimization problem by using the information of the objective function. The idea of these
iterative approaches is usually that a iterative sequence is generated such that the corresponding
objective function value sequence is monotonically decreasing. However, the existing algorithms have
the following disadvantage: if an iteration is trapped to a curved narrow valley bottom of the objective
function, then the iterative methods will lose their efficiency due to the target with objective function
value monotonically decreasing may leading to very short iterative steps. Next, in order to overcome
this challenge, an improved gradient-based algorithm is developed based on a novel search approach.
In this novel search approach, it is not required that the objective function value sequence is always
monotonically decreasing. And a large number of numerical experiments shows that this novel search
approach can effectively improve the convergence speed of this algorithm, when an iteration is
trapped to a curved narrow valley bottom of the objective function. Finally, an optimal feedback
control problem of 1, 3-propanediol fermentation processes is provided to illustrate the effectiveness
of this method developed by this paper. Numerical simulation results show that this method
developed by this paper is low time-consuming, has faster convergence speed, and obtains a better
result than the existing approaches.

The rest of this paper is organized as follows. Section 2 presents the optimal feedback control
problem for a class of fed-batch fermentation processes. In Section 3, by introducing a
discrete-valued function and using a relaxation technique, this problem is transformed into a nonlinear
parameter optimization problem, which can be solved by using any gradient-based numerical
optimization algorithm. An improved gradient-based numerical optimization algorithm are developed
in Section 4. In Section 5, the convergence results of this numerical optimization algorithm are
established. In Section 6, an optimal feedback control problem of 1, 3-propanediol fermentation
processes is provided to illustrate the effectiveness of this algorithm developed by this paper.

2. Problem formulation

In this section, a general state-feedback controller is proposed for a class of fed-batch fermentation
process dynamic optimization problems, which will be modeled as an optimal control problem of
switched dynamical systems under state-dependent switching.

Let α1 =
[
α11, · · · , α1r1

]T
∈ Rr1 and α2 =

[
α21, · · · , α2r2

]T
∈ Rr2 be two parameter vectors satisfying

ai 6 α1ri 6 āi, i = 1, · · · , r1, (2.1)
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and
b j 6 α2r j 6 b̄ j, j = 1, · · · , r2, (2.2)

respectively, where ai, āi, i = 1, · · · , r1; b j, b̄ j, j = 1, · · · , r2 present given constants. Suppose that t f >

0 presents a given terminal time. Then, a class of fed-batch fermentation process dynamic optimization
problems can be described as choose two parameter vectors α1 ∈ Rr1 , α2 ∈ Rr2 , and a general state-
feedback controller

u (t) = Υ (x (t) , ϑ) , t ∈
[
0, t f

]
, (2.3)

to minimize the objective function

J (u (t), α1, α2) = φ
(
x
(
t f

))
, (2.4)

subject to the switched dynamical system under state-dependent switching{
S ubsystem 1 : dx(t)

dt = f1 (x (t) , t) , i f g1 (x (t) , α1, t) = 0,
S ubsystem 2 : dx(t)

dt = f2 (x (t) , u (t) , t) , i f g2 (x (t) , α2, t) = 0,
t ∈

[
0, t f

]
, (2.5)

with the initial condition
x (0) = x0, (2.6)

where x (t) ∈ Rn presents the system state; x0 presents a given initial system state; u (t) ∈ Rm presents
the control input; ϑ =

[
ϑ1, · · · , ϑr1

]T
∈ Rr3 presents a state-feedback parameter vector satisfying

ck 6 ϑk 6 c̄k, k = 1, · · · , r3, (2.7)

ck and c̄k, k = 1, · · · , r present given constants. Υ : Rn × Rr → Rm; φ : Rn → R, f1 : Rn ×
[
0, t f

]
→ Rn,

f2 : Rn × Rm ×
[
0, t f

]
→ Rn, g1 : Rn × Rr1 ×

[
0, t f

]
→ Rn, g2 : Rn × Rr2 ×

[
0, t f

]
→ Rn present five

continuously differentiable functions. For convenience, this problem is called as Problem 1.
Remark 1. In the switched dynamical system (2.5), Subsystem 1 presents the batch mode, during
which there exists no input feed (i.e., control input) u (t), and Subsystem 2 presents the feeding mode,
during which there exists input feed (i.e., control input) u (t). This fed-batch fermentation process will
oscillate between Subsystem 1 (the batch mode) and Subsystem 2 (the feeding mode), and
g1 (x (t) , α1, t) = 0 and g2 (x (t) , α2, t) = 0 present the active conditions of Subsystems 1 and 2,
respectively.
Remark 2. Note that an integral term, which is used to measure the system running cost, can be easily
incorporated into the objective function (2.4) by augmenting the switched dynamical system (2.5) with
an additional system state variable (see Chapter 8 of this work [54] ). Thus, it is not a serious restriction
that the integral term does not appear in the objective function (2.4).
Remark 3. The structure for this general state-feedback controller (2.3) can be governed by the given
continuously differentiable function Υ, and the state-feedback parameter vector ϑ is decision variable
vector, which will be chosen optimally. For example, the linear state-feedback controller described by
u (t) = Kx (t) is a very common state-feedback controller, where K ∈ Rm×n presents a state-feedback
gain matrix to be found optimally.
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3. Problem transformation and relaxation

3.1. Problem transformation

In Problem 1, the state-dependent switching strategy is adopted to design the switching rule, which
is unlike the existing switched dynamical system optimal control problem. Then, the solution of
Problem 1 can not be obtained by directly using the existing numerical computation approaches for
switched dynamical systems optimal control problem, in which the switching rule is designed by
using time-dependent strategy. In order to overcome this difficulty, by introducing a discrete-valued
function, the problem will be transformed into a equivalent nonlinear dynamical system optimal
control problem with discrete and continuous variables in this subsection.

Firstly, by substituting the general state-feedback controller (2.3) into the switched dynamical
system (2.5), Problem 1 can be equivalently written as the following problem:
Problem 2. Choose (α1, α2, ϑ) ∈ Rr1 × Rr2 × Rr3 to minimize the objective function

J̄ (α1, α2, ϑ) = φ
(
x
(
t f

))
, (3.1)

subject to the switched dynamical system under state-dependent switching{
S ubsystem 1 : dx(t)

dt = f1 (x (t) , t) , i f g1 (x (t) , α1, t) = 0,
S ubsystem 2 : dx(t)

dt = f̄2 (x (t) , ϑ, t) , i f g2 (x (t) , α2, t) = 0,
t ∈

[
0, t f

]
, (3.2)

and the three bound constraints (2.1), (2.2) and (2.7), where f̄2 (x (t) , ϑ, t) = f2 (x (t) ,Υ (x (t) , ϑ) , t).
Next, note that the solution of Problem 1 can not be obtained by directly using the existing

numerical computation approaches for switched dynamical systems optimal control problem, in
which the switching rule is designed by using time-dependent strategy and not state-dependent
strategy. In order to overcome this difficulty, a novel discrete-valued function y (t) is introduced as
follows:

y (t) =

{
1, i f g1 (x (t) , α1, t) = 0,
2, i f g2 (x (t) , α2, t) = 0,

t ∈
[
0, t f

]
. (3.3)

Then, Problem 2 can be transformed into the following equivalent optimization problem with discrete
and continuous variables:
Problem 3. Choose (α1, α2, ϑ, y (t)) ∈ Rr1 × Rr2 × Rr3 × {1, 2} to minimize the objective function

J̃ (α1, α2, ϑ, y (t)) = φ
(
x
(
t f

))
, (3.4)

subject to the nonlinear dynamical system

dx (t)
dt

= (2 − y (t)) y (t) f1 (x (t) , t) + (y (t) − 1) f̄2 (x (t) , ϑ, t) , t ∈
[
0, t f

]
, (3.5)

the equality constraint

(2 − y (t)) y (t) g1 (x (t) , α1, t) + (y (t) − 1) g2 (x (t) , α2, t) = 0, t ∈
[
0, t f

]
, (3.6)

and the three bound constraints (2.1), (2.2), and (2.7).
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3.2. Problem relaxation

Note that standard nonlinear numerical optimization algorithms are usually developed for
nonlinear optimization problems only with continuous variables, for example the sequential quadratic
programming algorithm, the interior-point method, and so on. Thus, the solution of Problem 3, which
has discrete and continuous variables, can not be obtained by directly using these existing standard
algorithms. In order to overcome this difficulty, this subsection will introduce a relaxation problem,
which has only continuous variables.

Define

P (σ (t)) =

2∑
i=1

i2σi (t) −

 2∑
i=1

iσi (t)

2

, (3.7)

where σ (t) = [σ1 (t) , σ2 (t)]T. Then, a theorem can be established as follows.
Theorem 1. If the nonnegative functions σ1 (t) and σ2 (t) satisfy the following equality:

σ1 (t) + σ2 (t) = 1, t ∈
[
0, t f

]
, (3.8)

then two results can be obtained as follows:
(1) For any t ∈

[
0, t f

]
, the function P (σ (t)) is nonnegative;

(2) For any t ∈
[
0, t f

]
, P (σ (t)) = 0 if and only if σi (t) = 1 for one i ∈ {1, 2} and σi (t) = 0 for the

other i ∈ {1, 2}.
Proof. (1) By using the equality (3.8) and the Cauchy-Schwarz inequality, we have

2∑
i=1

iσi (t) =

2∑
i=1

(
i
√
σi (t)

) √
σi (t) 6

√√
2∑

i=1

(
i2σi (t)

)√√ 2∑
i=1

σi (t) =

√√
2∑

i=1

(
i2σi (t)

)
, (3.9)

Note that the functions σ1 (t) and σ2 (t) are nonnegative. Then, squaring both sides of the inequality
(3.9) yields

2∑
i=1

(
i2σi (t)

)
>

 2∑
i=1

iσi (t)

2

,

which implies that for any t ∈
[
0, t f

]
, the function P (σ (t)) is nonnegative.

(2) The correctness of the second part for Theorem 1 only need to prove the following result: for
any t ∈

[
0, t f

]
, P (σ (t)) = 0 has solutions σi∗ (t) = 1 for one i∗ ∈ {1, 2} and σi (t) = 0 for the other

i ∈ {1, 2} and i , i∗.
Define

v1 (t) =
[ √

σ1 (t), 2
√
σ2 (t)

]
, v2 (t) =

[ √
σ1 (t),

√
σ2 (t)

]
.

Then, the inequality (3.9) can be equivalently transformed into as follows:

v1 (t) · v2 (t) 6 ‖v1 (t)‖ ‖v2 (t)‖ , (3.10)

where · and ‖·‖ present the vector dot product and the Euclidean norm, respectively. Note that the
equality

v1 (t) · v2 (t) = ‖v1 (t)‖ ‖v2 (t)‖ (3.11)
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holds if and only if there exists a constant β ∈ R such that

v1 (t) = βv2 (t) . (3.12)

By using the equality (3.8), one obtain v1 (t) , 0 and v2 (t) , 0, where 0 presents the zero vector. Then,
β is a nonzero constant and the equality (3.12) implies

(1 − β)
√
σ1 (t) = 0, (3.13)

(2 − β)
√
σ2 (t) = 0. (3.14)

Furthermore, the constant β can be set equal to one integer i∗ ∈ {1, 2}, and for the other integer i ∈ {1, 2},
one have

σi (t) = 0, i∗ , i, (3.15)

From the two equalities (3.8) and (3.15), we obtain σi∗ (t) = 1. This completes the proof of Theorem 1.
Now, Problem 3 can be rewritten as a relaxation problem as follows:

Problem 4. Choose (α1, α2, ϑ, σ (t)) ∈ Rr1 × Rr2 × Rr3 × R2 to minimize the objective function

Jrelax (α1, α2, ϑ, σ (t)) = φ
(
x
(
t f

))
, (3.16)

subject to the nonlinear dynamical system

dx (t)
dt

= (2 − ȳ (t)) ȳ (t) f1 (x (t) , t) + (ȳ (t) − 1) f̄2 (x (t) , ϑ, t) , t ∈
[
0, t f

]
, (3.17)

the two equality constraints

(2 − ȳ (t)) ȳ (t) g1 (x (t) , α1, t) + (ȳ (t) − 1) g2 (x (t) , α2, t) = 0, t ∈
[
0, t f

]
, (3.18)

P (σ (t)) = 0, t ∈
[
0, t f

]
, (3.19)

the bound constraint
0 6 σi (t) 6 1, i = 1, 2, t ∈

[
0, t f

]
, (3.20)

the equality constraint (3.8), and the three bound constraints (2.1), (2.2), and (2.7), where

ȳ (t) = 1 × σ1 (t) + 2 × σ2 (t) . (3.21)

By using Theorem 1, one can derive that Problems 3 and 4 are equivalent.

3.3. A nonlinear parameter optimization problem

Note that the bound constraint (3.20) is essentially some continuous-time inequality constraints.
Thus, the solution of Problem 4 can not also be obtained by directly using the existing standard
algorithms. In order to obtain the solution of Problem 4, this subsection will introduce a nonlinear
parameter optimization problem, which has some continuous-time equality constraints and several
bound constraints.

Suppose that τi presents the ith switching time. Then, one have

0 = τ0 6 τ1 6 τ2 6 · · · τM−1 6 τM = t f , (3.22)

AIMS Mathematics Volume 7, Issue 5, 9206–9231.



9213

where M > 1 presents a given fixed integer. It is important to note that the switching times are not
independent optimization variables, whose values can be obtained indirectly by using the state
trajectory of the switched dynamical system (2.5). Then, Problem 4 can be transformed into an
equivalent optimization problem as follows:
Problem 5. Choose (α1, α2, ϑ, ξ) ∈ Rr1 × Rr2 × Rr3 × R2M to minimize the objective function

J̄relax (α1, α2, ϑ, ξ) = φ
(
x
(
t f

))
, (3.23)

subject to the nonlinear dynamical system

dx (t)
dt

=

M∑
i=1

((
2 −

(
ξ1

i + 2ξ2
i

)) (
ξ1

i + 2ξ2
i

)
f1 (x (t) , t) +

((
ξ1

i + 2ξ2
i

)
− 1

)
f̄2 (x (t) , ϑ, t)

)
χ[τi−1,τi) (t),

t ∈
[
0, t f

]
, (3.24)

the equality constraints

M∑
i=1

((
2 −

(
ξ1

i + 2ξ2
i

)) (
ξ1

i + 2ξ2
i

)
g1 (x (t) , α1, t) +

((
ξ1

i + 2ξ2
i

)
− 1

)
g2 (x (t) , α2, t)

)
χ[τi−1,τi) (t) = 0,

t ∈
[
0, t f

]
, (3.25)

P̄ (ξ, t) = 0, t ∈
[
0, t f

]
, (3.26)

ξ1
i + ξ2

i = 1, i = 1, · · · ,M, (3.27)

the bound constraint
0 6 ξ j

i 6 1, j = 1, 2, i = 1, · · · ,M, (3.28)

and the three bound constraints (2.1), (2.2), and (2.7), where ξi
1 and ξi

2 present, respectively, the values

of σ1 (t) and σ2 (t) on the ith subinterval [τi−1, τi), i = 1, · · · ,M; ξ =

[(
ξ1

)T
,
(
ξ2

)T
]T

, ξ1 =
[
ξ1

1, · · · , ξ
1
M

]T
,

ξ2 =
[
ξ2

1, · · · , ξ
2
M

]T
; P̄ (ξ, t) =

M∑
i=1

 2∑
j=1

j2ξ
j
i −

(
2∑

j=1
jξ j

i

)2χ[τi−1,τi) (t); and χI (t) is given by

χI (t) =

{
1, i f t ∈ I,
0, otherwise,

(3.29)

which is a function defined on the subinterval I ⊂
[
0, t f

]
.

Due to the switching times being unknown, it is very challenging to acquire the gradient of the
objective function (3.23). In order to overcome this challenge, the following time-scaling
transformation is developed to transform variable switching times into fixed times:

Suppose that the function t (s) : [0,M] → R is continuously differentiable and is governed by the
following equation:

dt (s)
ds

=

M∑
i=1

θiχ[i−1,i) (s), (3.30)
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with the boundary condition
t (0) = 0, (3.31)

where θi is the subsystem dwell time on the ith subinterval [i − 1, i) ⊂
[
0, t f

]
. In general, the

transformation (3.30)–(3.31) is referred to as a time-scaling transformation.
Define θ = [θ1, · · · , θM]T, where

0 ≤ θi ≤ t f , i = 1, · · · ,M. (3.32)

Then, by using the time-scaling transform (3.30) and (3.31), we can rewrite Problem 5 as the following
equivalent nonlinear parameter optimization problem, which has fixed switching times .
Problem 6. Choose (α1, α2, ϑ, ξ, θ) ∈ Rr1 × Rr2 × Rr3 × R2M × RM to minimize the objective function

Ĵrelax (α1, α2, ϑ, ξ, θ) = φ (x̂ (M)) , (3.33)

subject to the nonlinear dynamical system

dx̂ (s)
ds

=

M∑
i=1

θi

((
2−

(
ξ1

i + 2ξ2
i

)) (
ξ1

i +2ξ2
i

)
f1 (x̂ (s) , s)+

((
ξ1

i + 2ξ2
i

)
− 1

)
f̄2 (x̂ (s) , ϑ, s)

)
χ[i−1,i) (s),

s ∈ [0,M] , (3.34)

the continuous-time equality constraints

M∑
i=1

θi

((
2−

(
ξ1

i +2ξ2
i

)) (
ξ1

i +2ξ2
i

)
g1 (x̂ (s) , α1, s)+

((
ξ1

i +2ξ2
i

)
− 1

)
g2 (x̂ (s) , α2, s)

)
χ[i−1,i) (s) = 0,

s ∈ [0,M] , (3.35)

P̂ (ξ, s) = 0, s ∈ [0,M] , (3.36)

the linear equality constraint (3.27), the three bound constraints (2.1), (2.2), (2.7), (3.28), and (3.32),

where x̂ (s) = x (t (s)) and P̂ (ξ, s) =
M∑

i=1
θi

 2∑
j=1

j2ξ
j
i −

(
2∑

j=1
jξ j

i

)2χ[i−1,i) (s).

4. An improved gradient-based numerical optimization algorithm

In this section, an improved gradient-based numerical optimization algorithm will be proposed for
obtaining the solution of Problem 1.

4.1. A penalty problem

In order to handle the continuous-time equality constraints (3.35) and (3.36), by adopting the idea
of l1 penalty function [55], Problem 6 will be written as a nonlinear parameter optimization problem
with a linear equality constraint and several simple bounded constraints in this subsection.
Problem 7. Choose (α1, α2, ϑ, ξ, θ) ∈ Rr1 × Rr2 × Rr3 × R2M × RM to minimize the objective function

Jγ (α1, α2, ϑ, ξ, θ) = φ (x̂ (M)) + γ

∫ M

0
L (x̂ (s) , α1, α2, ϑ, ξ, θ, s) ds, (4.1)
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subject to the nonlinear dynamical system (3.34), the linear equality constraint (3.27), the three bound
constraints (2.1), (2.2), (2.7), (3.28) and (3.32), where

L (x̂ (s) , α1, α2, ϑ, ξ, θ, s)

= P̂ (ξ, s)+
M∑

i=1

θi

((
2 −

(
ξ1

i + 2ξ2
i

)) (
ξ1

i + 2ξ2
i

)
g1 (x̂ (s) , α1, s) +

((
ξ1

i + 2ξ2
i

)
− 1

)
g2 (x̂ (s) , α2, s)

)
χ[i−1,i) (s),

where γ > 0 presents the penalty parameter.
The idea of l1 penalty function [47] indicates that any solution of Problem 7 is also a solution of

Problem 6. In additions, it is straightforward to acquire the gradient of the linear function in the equality
constraint (3.27), and the gradient of the objective function (4.1) will be presented in Section 4.2. Thus,
the solution of Problem 7 can be achieved by applying any gradient-based numerical computation
method.

4.2. Gradient formulae

In order to acquire the solution of Problem 7, the gradient formulae of this objective function (4.1)
will be presented by the following theorem in this subsection.
Theorem 2. For any s ∈ [0,M], the gradient formulae of the objective function (4.1) with respect to
the decision variables α1, α2, ϑ, ξ, and θ are given by

∂Jγ (α1, α2, ϑ, ξ, θ)
∂α1

=

∫ M

0

∂H (x̂ (s) , α1, α2, ϑ, ξ, θ, λ (s))
∂α1

ds, (4.2)

∂Jγ (α1, α2, ϑ, ξ, θ)
∂α2

=

∫ M

0

∂H (x̂ (s) , α1, α2, ϑ, ξ, θ, λ (s))
∂α2

ds, (4.3)

∂Jγ (α1, α2, ϑ, ξ, θ)
∂ϑ

=

∫ M

0

∂H (x̂ (s) , α1, α2, ϑ, ξ, θ, λ (s))
∂ϑ

ds, (4.4)

∂Jγ (α1, α2, ϑ, ξ, θ)
∂ξ

=

∫ M

0

∂H (x̂ (s) , α1, α2, ϑ, ξ, θ, λ (s))
∂ξ

ds, (4.5)

∂Jγ (α1, α2, ϑ, ξ, θ)
∂θ

=

∫ M

0

∂H (x̂ (s) , α1, α2, ϑ, ξ, θ, λ (s))
∂θ

ds, (4.6)

where H (x̂ (s) , α1, α2, ϑ, ξ, θ, λ (s)) denotes the Hamiltonian function defined by

H (x̂ (s) , α1, α2, ϑ, ξ, θ, λ (s)) = L (x̂ (s) , α1, α2, ϑ, ξ, θ, s) + (λ (s))T f̄ (x̂ (s) , α1, α2, ϑ, ξ, θ, s) , (4.7)

f̄ (x̂ (s) , α1, α2, ϑ, ξ, θ, s)

=

M∑
i=1

θi

((
2 −

(
ξ1

i + 2ξ2
i

)) (
ξ1

i + 2ξ2
i

)
f1 (x̂ (s) , s) +

((
ξ1

i + 2ξ2
i

)
− 1

)
f̄2 (x̂ (s) , ϑ, s)

)
χ[i−1,i) (s), (4.8)

and the function λ (s) presents the costate satisfying the following system:(
dλ (s)

ds

)T

= −
∂H (x̂ (s) , α1, α2, ϑ, ξ, θ, λ (s))

∂x̂ (s)
(4.9)
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with the terminal condition

(λ (M))T =
∂φ (x̂ (M))
∂x̂ (M)

. (4.10)

Proof. Similarly to the discussion of Theorem 5.2.1 described in [56], the gradient formulae (4.2)–(4.6)
can be obtained. This completes the proof of Theorem 2.

4.3. Algorithm

For simplicity of notation, let g (η) = ∇J̃γ (η) presents the gradient of the objective function Jγ
described by (4.1) at η, where η =

[
(α1)T , (α2)T , ϑT, ξT, θT

]T
. In additions, let ‖·‖ and ‖·‖∞ present,

respectively, the Euclidean norm and the infinity norm, and suppose that the subscript k presents the
function value at the point ηk or in the kth iteration, for instance, gk and

(
Jγ

)
k
. Then, based on the above

discussion, an improved gradient-based numerical optimization algorithm will be provided to acquire
the solution of Problem 1 in this subsection.

Algorithm 1. An improved gradient-based numerical optimization algorithm for solving Problem 1.

01. Initial: η0 ∈ Rr1+r2+r3+3M, 0 < µ < 1, 0 < $ < 1, ρmax > ρmin > 0, 0 < Nmin 6 N0 6 Nmax, ε > 0;
02. begin
03. calculate the objective function

(
Jγ

)
0

and the gradient g0 at the point η0;

04.
(
Ĵγ

)
p(0)

:= Jγ (η0), ρ0 := 1, k := 0;
05. while ‖gk‖ > ε do
06. dk := −ρkgk, ωk := 1, η̂k := ηk + ωkdk;
07. while Jγ (η̂k) >

(
Ĵγ

)
p(k)

+ µωk (gk)T dk do
08. ωk := $ωk, η̂k := ηk + ωkdk;
09. end
10. ηk+1 := η̂k,

(
Jγ

)
k+1

:= Jγ (η̂k);
11. calculate δk by using the following equality:

δk =
(zk−1)T ek−1

(ek−1)T ek−1
, (4.11)

where zk−1 = ηk − ηk−1, ek−1 = gk − gk−1;
12. if δk < 0 then
13. ρk := 1

ρmax
;

14. otherwise
15. ρk+1 := min

{
ρmax,max

{
ρmin,

1
ρk

}}
;

16. end
17. calculate gk+1;
18. calculate Nk by using the following equality:

Nk =


Nk−1 + 1, i f ‖gk‖∞ > 0.1,
Nk−1, i f 0.001 6 ‖gk‖∞ 6 0.1,
Nk−1 − 1, otherwise,

(4.12)
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in [Nmin,Nmax];
19. update

(
Ĵγ

)
p(k)

by using the following equality:(
Ĵγ

)
p(k)

= max
06i6min(k,Nk)

{(
Jγ

)
k−i

}
, k = 0, 1, 2, · · · , (4.13)

which satisfying the following inequality:

Jγ (ηk + ωkdk) 6
(
Ĵγ

)
p(k)

+ µωk (gk)T dk; (4.14)

20. k := k +1;
21. end
22. η∗ := ηk, J∗γ := Jγ (ηk);
23. end
24. Output: η∗, J∗γ.
25. construct the optimal solution and optimal value of Problem 1 by using η∗ and J∗γ.

Remark 4. During the past decades, many iterative approaches have been proposed for solving the
nonlinear parameter optimization problem by using the information of the objective function [57].
The idea of these iterative approaches is usually that a iterative sequence is generated such that the
corresponding objective function value sequence is monotonically decreasing. However, the existing
algorithms have the following disadvantage: if an iteration is trapped to a curved narrow valley bottom
of the objective function, then the iterative methods will lose their efficiency due to the target with
objective function value monotonically decreasing may leading to very short iterative steps. Then,
in order to overcome this challenge, an improved gradient-based algorithm is developed based on
a novel search approach in Algorithm 1. In this novel search approach, it is not required that the
objective function value sequence is always monotonically decreasing. In additions, an improved
adaptive strategy for the memory element Nk described by (4.12), which is used in (4.13), is proposed
in iterative processes in Algorithm 1. The corresponding explanation on the equality (4.12) is as
follows. If the 1st condition described by (4.12) holds, then it implies that the iteration is trapped to
a curved narrow valley bottom of the objective function. Thus, in order to avoid creeping along the
bottom of this narrow curved valley, the value of the memory element Nk should be increased. If the
2nd condition described by (4.12) holds, then the value of the memory element Nk is better to remain
unchanged. If the 3rd condition described by (4.12) holds, then it implies that the iteration is in a flat
region. Thus, in order to decrease the objective function value, the value of the memory element Nk

will be decreased. Above discussions imply that the novel search approach described in Algorithm 1
is also an adaptive method.
Remark 5. The sufficient descent condition is extremely important for the convergence of any gradient-
based numerical optimization algorithm. Thus, the goal of lines 12–16 described in Algorithm 1 is
avoiding uphill directions and keeping {ρk} uniformly bounded. As a matter of fact, for any k, ρmin 6
ρk 6 ρmax and dk = −ρkgk ensure that there are two constants l1 > 0 and l2 > 0 such that dk satisfies the
following two conditions:

(gk)T dk 6 −l1 ‖gk‖
2 , (4.15)

‖dk‖ 6 l2 ‖gk‖ . (4.16)

AIMS Mathematics Volume 7, Issue 5, 9206–9231.



9218

5. Convergence analysis

This section will establish the convergence results of Algorithm 1 developed by Section 4. In order
to establish the convergence results of this algorithm, we suppose that the following two conditions
hold:
Assumption 1. Jγ is a continuous differentiable function and bounded below on Rr1 ×Rr2 ×Rr3 ×R2M ×

RM.
Assumption 2. For any η1 ∈ Ω and η2 ∈ Ω, there is a constant l3 such that

‖g (ρ1) − g (ρ2)‖ 6 l3 ‖ρ1 − ρ2‖ , (5.1)

where Ω presents a open set and g (η) presents the gradient of Jγ (η).
Theorem 3. Suppose that Assumptions 1 and 2 hold. Let {ηk} be a sequence obtained by using
Algorithm 1. Then, there is a constant ς > 0 such that the following inequality holds:(

Jγ
)

k+1
6

(
Ĵγ

)
p(k)
− ς ‖gk‖

2 . (5.2)

Proof. Let ς0 be defined by ς0 = inf
∀k
{ωk} ≥ 0.

If ς0 > 0, then by using the inequalities (4.14) and (4.15), one can obtain(
Jγ

)
k + 1
6

(
Ĵγ

)
p(k)
− l1ς0 ‖gk‖

2 . (5.3)

Let ς be defined by ς = l1ς0. Then, the proof of Theorem 1 is complete for ς0 > 0.
If ς0 = 0, then there is a subset Λ ⊆ {0, 1, 2, · · ·} such that the following equality holds:

lim
k∈Λ, k→∞

ωk = 0, (5.4)

which indicates that there exists a k̂ such that the following inequality holds:

ωk

$
6 1, (5.5)

for any k > k̂ and k ∈ Λ. Let ω = ωk$. Then, the inequality (4.14) does not hold. That is, one can
obtain

Jγ (ηk + ωdk) 6
(
Ĵγ

)
p(k)

+ µω (gk)T dk, (5.6)

which implies (
Jγ

)
k
− Jγ (ηk + ωdk) < −µω (gk)T dk. (5.7)

Applying the mean value theorem to the left-hand side of the inequality (5.7) yields

− ω (g (ηk + ζkωdk))T dk < −µω (gk)T dk, (5.8)

where 0 6 ζk 6 1. From the inequality (5.8), one obtain

(g (ηk + ζkωdk))T dk > µ (gk)T dk. (5.9)
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By using Assumption 2 and Cauchy-Schwartz inequality, from (4.15) and (5.9), we have

l3ω ‖dk‖
2 > ‖g (ηk + ωζkdk) − gk‖ ‖dk‖ > (g (ηk + ωζkdk) − gk)T dk

> − (1 − µ) (gk)T dk > l1 (1 − µ) ‖gk‖
2 . (5.10)

Furthermore, applying ω = ωk$ and the inequality (4.16) to the inequality (5.10), one obtain

ωk >
l1 (1 − µ) ‖gk‖

2

$l3 ‖dk‖
2 >

l1 (1 − µ)
(l2)2 $l3

> 0, (5.11)

for any k > k̂ and k ∈ Λ. Clearly, the inequalities (5.4) and (5.11) are contradictory. Thus, ς0 > 0. This
completes the proof of Theorem 3.
Lemma 1. Suppose that Assumptions 1 and 2 hold. Let {ηk} be a sequence obtained by using
Algorithm 1. Then, the following inequalities

max
16 j6A

Jγ
(
ηAp+ j

)
6 max

16 j6A
Jγ

(
ηA(p−1)+ j

)
− ς min

16 j6A

∥∥∥gAp+ j−1

∥∥∥2
, (5.12)

∞∑
p=1

min
16 j6A

∥∥∥gAp+ j−1

∥∥∥2
< +∞, (5.13)

are true, where A = Nmax.
Proof. Note that if the following inequality

Jγ
(
ηAp+ j

)
6 max

16 j6A
Jγ

(
ηA(p−1)+ j

)
− ς

∥∥∥gAp+ j−1

∥∥∥2
, j = 1, 2, · · · , A, (5.14)

is true, then the inequality (5.12) also holds. Here, the inequality (5.14) will be proved by using
mathematical induction.

Firstly, Theorem 3 indicates

Jγ
(
ηAp+1

)
6 max

16 j6q(Ap)
Jγ

(
ηAp+ j

)
− ς

∥∥∥gAp

∥∥∥2
, (5.15)

where q (Ap) = min
{
Ap,NAp

}
. By using 0 6 q (Ap) 6 A and the inequality (5.15), one can derive that

the inequality (5.14) is true for j = 1.
Suppose that the inequality (5.14) is true for 1 6 j 6 A − 1. Note that ς > 0 and the term

∥∥∥gAp+ j−1

∥∥∥2

described in (5.14) is nonnegative. Then, one can obtain

max
16i6 j

Jγ
(
ηAp+i

)
6 max

16i6A
Jγ

(
ηA(p−1)+i

)
, (5.16)

for 1 6 j 6 A − 1.
Next, by using 0 6 q (Ap) 6 A, the inequality (5.2), and the inequality (5.16), one can derive

Jγ
(
ηAp+ j+1

)
6 max

16i6q(Ap+ j)
Jγ

(
ηA(p−1)+ j+1

)
− ς

∥∥∥gAp+ j

∥∥∥2

6 max
{

max
16i6A

Jγ
(
ηA(p−1)+i

)
,max

16i6 j
Jγ

(
ηAp+i

)}
− ς

∥∥∥gAp+ j

∥∥∥2
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6 max
16i6A

Jγ
(
ηA(p−1)+i

)
− ς

∥∥∥gAp+ j

∥∥∥2
, (5.17)

which implies that the inequality (5.14) is also true for j + 1. Then, the inequality (5.14) is true for
1 6 j 6 A by using mathematical induction. Thus, the inequality (5.12) holds.

In additions, Assumption 1 shows Jγ being a continuous differentiable function and bounded below
on Rr1 × Rr2 × Rr3 × R2M × RM, which indicates that

max
16i6A

Jγ
(
ηAp+i

)
> −∞. (5.18)

Then, summing the inequality (5.12) over p yields

∞∑
p=1

min
16 j6A

∥∥∥gAp+ j−1

∥∥∥2
< +∞.

Thus, the inequality (5.13) holds. This completes the proof of Lemma 1.
Theorem 4. Suppose that these conditions of Theorem 3 are true. Then, the following equality holds:

lim
k→∞
‖g (ηk)‖ = 0, (5.19)

where g (ηk) presents the gradient of the objective function Jγ described by (4.1) at the point ηk.
Proof. Firstly, the following result will be proved: there is a constant l4 such that

‖g (ηk+1)‖ 6 l4 ‖g (ηk)‖ . (5.20)

By using Assumptions 1 and 2, one can obtain

‖g (ηk+1)‖ 6 ‖g (ηk+1) − g (ηk) + g (ηk)‖

6 ‖g (ηk+1) − g (ηk)‖ + ‖g (ηk)‖

6 l3ωk ‖dk‖ + ‖g (ηk)‖

6 (1 + l2l3ωk) ‖g (ηk)‖ . (5.21)

Let the constant l4 be defined by l4 = 1 + l2l3ωk. Then, the inequality (5.21) implies that the inequality
(5.20) is true.

Define the function ψ (p) by
ψ (p) = arg min

06 j6A−1

∥∥∥∥g
(
ηAp+ j

)∥∥∥∥ . (5.22)

Then, Lemma 1 indicates that the following equality holds:

lim
p→∞

∥∥∥∥g
(
ηAp+ψ(p)

)∥∥∥∥ = 0. (5.23)

By using the inequality (5.20), one can obain∥∥∥∥g
(
ηA(p+1)+ j

)∥∥∥∥ 6 l2A
4

∥∥∥∥g
(
ηAp+ψ(p)

)∥∥∥∥ , j = 0, 1, · · · , A − 1. (5.24)

Thus, from (5.23) and (5.24), one can deduce that the equality (5.19) is true. This completes the proof
of Theorem 4.
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6. Numerical results

In this section, an optimal feedback control problem of 1, 3-propanediol fermentation processes is
provided to illustrate the effectiveness of the approach developed by Sections 2–5, and the numerical
simulations are all implemented on a personal computer with Intel Pentium Skylake dual core processor
i5-6200U CPU(2.3GHz).

The 1, 3-propanediol fermentation process can be described by switching between two subsystem:
batch subsystem and feeding subsystem. There exists no input feed during the batch subsystem, while
alkali and glycerol will be added to the fermentor during the feeding subsystem. In generally, the
subsystem switching will happen, if the glycerol concentration reaches the given upper and lower
thresholds. By using the result of the work [58], the 1, 3-propanediol fermentation process can be
modeled as the following switched dynamical system under state-dependent switching:{

S ubsystem 1 : dx(t)
dt = f1 (x (t) , t) , i f x3 (t) − α1 = 0,

S ubsystem 2 : dx(t)
dt = f1 (x (t) , t) + f2 (x (t) , u (t) , t) , i f x3 (t) − α2 = 0,

t ∈
[
0, t f

]
, (6.1)

where t f denotes the given terminal time; the system states x1 (t), x2 (t), x3 (t), x4 (t) denote the volume
of fluid (L), the concentration of biomass (gL−1), the concentration of glycerol (mmolL−1), the
concentration of 1,3-propanediol (mmolL−1), respectively; the control input u (t) denotes the feeding
rate (Lh−1); x (t) = [x1 (t) , x2 (t) , x3 (t) , x4 (t)]T denotes the system state vector; Subsystem 1 and
Subsystem 2 denote the batch subsystem and the feeding subsystem, respectively; α1 and α2 (two
parameters that need to be optimized) denote the upper and lower of the glycerol concentration,
respectively; and the functions f1 (x (t) , t), f2 (x (t) , u (t) , t) are given by

f1 (x (t) , t) =


0
ϕ (x3 (t) , x4 (t)) x2 (t)
−∆1 (x3 (t) , x4 (t)) x2 (t)
∆2 (x3 (t) , x4 (t)) x2 (t)

 , (6.2)

f2 (x (t) , u (t) , t) =
u (t)
x1 (t)


x1 (t)
−x2 (t)
l5l6 − x3 (t)
−x4 (t)

 . (6.3)

Subsystem 1 is essentially a natural fermentation process due to no input feed. The functions ϕ, ∆1,
and ∆2 are defined by

ϕ (x3 (t) , x4 (t)) =
h1x3 (t)

x3 (t) + Y1

(
1 −

x3 (t)
x∗3

) (
1 −

x4 (t)
x∗4

)
, (6.4)

∆1 (x3 (t) , x4 (t)) = l7 + Z1ϕ (x3 (t) , x4 (t)) +
h2x3 (t)

x3 (t) + Y2
, (6.5)

∆2 (x3 (t) , x4 (t)) = −l8 + Z2ϕ (x3 (t) , x4 (t)) +
h3x3 (t)

x3 (t) + Y3
, (6.6)

which denote the growth rate of cell, the consumption rate of substrate, and the formation rate of
1,3-propanediol, respectively. In the equality (6.4), the parameters x∗3 and x∗4 denote the critical
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concentrations of glycerol and 1,3-propanediol, respectively; h1, h2, h3, Y1, Y2, Y3, Z1, Z2, l7, and l8 are
given parameters.

Note that the feeding subsystem doesn’t only consist of the natural fermentation process. Thus,
the function f2 (x (t) , u (t) , t) is provided to describe the process dynamics because of the control input
feed in Subsystem 2. In the equality (6.3), the given parameters l5 and l6 denote the proportion and
concentration of glycerol in the control input feed, respectively.

In generally, as the increase of the biomass, the consumption of glycerol also increases. Then,
during Subsystem 1 (batch subsystem), the concentration of glycerol will eventually become too low
due to no new glycerol being added. Thus, Subsystem 1 will switch to Subsystem 2 (feeding
subsystem), when the equality x3 (t) − α2 = 0 (the active condition of Subsystem 2) satisfies. On the
other hand, during Subsystem 2 (feeding subsystem), the concentration of glycerol will eventually
become too high due to new glycerol being added. This will inhibit the growth of cell. Thus,
Subsystem 2 will switch to Subsystem 1 (batch subsystem), when the equality x3 (t) − α1 = 0 (the
active condition of Subsystem 1) satisfies.

Suppose that the feeding rate u (t), the upper of the glycerol concentration α1, and the lower of the
glycerol concentration α2 satisfy the following bound constraints:

1.0022 6 u (t) 6 1.9390, (6.7)

295 6 α1 6 605, (6.8)

45 6 α2 6 265, (6.9)

respectively.
The model parameters of the dynamic optimization problem for the 1, 3-propanediol fermentation

process are presented by

h1 = 0.8041, h2 = 7.8296, h3 = 20.2518, Y1 = 0.4901, Y2 = 9.4628, Y3 = 38.6596,

Z1 = 144.9216, Z2 = 80.8538, l5 = 0.5698, l6 = 10759.0000 mmolL−1, l7 = 0.2981, l8 = 12.2603,

x∗3 = 2040.0000 mmolL−1, x∗4 = 1035.0000 mmolL−1, t f = 25.0000 hours, M = 9,

x0 = [5.0000, 0.1113, 496.0000, 0.0000]T .

Suppose that the control input u (t) takes the piecewise state-feedback controller

u (t) =
M∑

i=1
kix (t) χ[τi−1,τi) (t). Our main objective is to maximize the concentration of 1,3-propanediol at

the terminal time t f . Thus, the optimal feedback control problem of 1, 3-propanediol fermentation
processes can be presented as follows: choose a control input u (t) to minimize the objective function
J (u (t)) = −x4 (t) subject to the switched dynamical system described by (6.1) with with the initial
condition x (0) = x0 and the bound constraints (6.7–6.9). Then, the improved gradient-based
numerical optimization algorithm (Algorithm 1 described by Section 4.3) is adopted to solve the
optimal feedback control problem of 1, 3-propanediol fermentation processes by using Matlab 2010a.
The optimal objective function value is J∗ = −x4

(
t f

)
= −1265.5597 and the optimal values of the

parameters α1 and α2 are 584.3908 and 246.5423, respectively. The optimal feedback gain matrixes
K∗i , i = 1, · · · , 9 are presented by

K∗1 = [0, 0, 0, 0] , K∗2 = [0.0140, 0.0039, 1.1300, 0.4786] , K∗3 = [0, 0, 0, 0] ,
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K∗4 = [0.0095, 0.0058, 0.7149, 0.6392] , K∗5 = [0, 0, 0, 0] , K∗6 = [0.0082, 0.0069, 0.6080, 0.8297] ,

K∗7 = [0, 0, 0, 0] , K∗8 = [0.0084, 0.0073, 0.5711, 1.0615] , K∗9 = [0, 0, 0, 0] ,

and the corresponding numerical simulation results are presented by Figures 1–4.
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Figure 1. The optimal volume (L) of fluid: x1(t).

t (hours)

0 5 10 15 20 25

x
2
(t

)

-1

0

1

2

3

4

5

6

7

Figure 2. The optimal concentration (gL−1) of biomass: x2(t).
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Figure 3. The optimal concentration (mmolL−1) of glycerol: x3(t).
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Figure 4. The optimal concentration (mmolL−1) of 1,3-propanediol: x4(t).

Note that Problem 6 is an optimal control problem of nonlinear dynamical systems with state
constraints. Thus, the finite difference approximation approach developed by Nikoobin and
Moradi [59] can also be applied for solving this dynamic optimization problem of 1, 3-propanediol
fermentation processes. In order to compare with the improved gradient-based numerical optimization
algorithm (Algorithm 1 described by Section 4.3), the finite difference approximation approach
developed by Nikoobin and Moradi [59] is also adopted for solving this dynamic optimization
problem of 1, 3-propanediol fermentation process with the same model parameters under the same
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condition, and the numerical comparison results are presented by Figure 5 and Table 1.
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The improved gradient-based numerical optimization algorithm

(Algorithm 1 described by Section 4.3)

The finite difference approximation approach

developed by Nikoobin and Moradi [59]

Figure 5. Convergence rates for the finite difference approximation approach developed
by Nikoobin and Moradi [59] and the improved gradient-based numerical optimization
algorithm (Algorithm 1 described by Section 4.3).

Table 1. The comparison results between the finite difference approximation approach
developed by Nikoobin and Moradi [59] and the improved gradient-based numerical
optimization algorithm (Algorithm 1 described by Section 4.3).

Algorithm Computation time (second) x4(t f )

The finite difference approximation approach

developed by Nikoobin and Moradi [59] 1165.3872 1052.9140

The improved gradient-based numerical optimization algorithm

(Algorithm 1 described by Section 4.3) 439.1513 1265.5597

Figure 5 shows that the improved gradient-based numerical optimization algorithm (Algorithm 1
described by Section 4.3) takes only 67 iterations to obtain the satisfactory result x4(t f ) = 1265.5597,
while the finite difference approximation approach developed by Nikoobin and Moradi [59] takes 139
iterations to achieve the satisfactory result x4(t f ) = 1052.9140 . That is, the iterations of the improved
gradient-based numerical optimization algorithm (Algorithm 1 described by Section 4.3) is reduced by
51.7986%. In additions, Table 1 also shows that the result x4(t f ) = 1052.9140 obtained by using the
finite difference approximation approach developed by Nikoobin and Moradi [59] is not superior to
the result (x4(t f ) = 1265.5597) obtained by using the improved gradient-based numerical optimization
algorithm (Algorithm 1 described by Section 4.3) with saving 60.4695% computation time.
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In conclusion, the above numerical simulation results show that the improved gradient-based
numerical optimization algorithm (Algorithm 1 described by Section 4.3) is low time-consuming, has
faster convergence speed, and can obtain a better numerical optimization than the finite difference
approximation approach developed by Nikoobin and Moradi [59]. That is, an effective numerical
optimization algorithm is presented for solving the dynamic optimization problem of 1, 3-propanediol
fermentation process.

7. Conclusions

In this paper, the dynamic optimization problem for a class of fed-batch fermentation processes is
modeled as an optimal control problem of switched dynamical systems under state-dependent
switching, and a general state-feedback controller is designed for this dynamic optimization problem.
Then, by introducing a discrete-valued function and using a relaxation technique, this problem is
transformed into a nonlinear parameter optimization problem. Next, an improved gradient-based
algorithm is developed based on a novel search approach, and a large number of numerical
experiments show that this novel search approach can effectively improve the convergence speed of
this algorithm, when an iteration is trapped to a curved narrow valley bottom of the objective function.
Finally, an optimal feedback control problem of 1, 3-propanediol fermentation processes is provided
to illustrate the effectiveness of this method developed by this paper, and the numerical simulation
results show that this method developed by this paper is low time-consuming, has faster convergence
speed, and obtains a better result than the existing approaches. In the future, we will continue to study
the dynamic optimization problem for a class of fed-batch fermentation processes with uncertainty
constraints.
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