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Abstract: Lassa fever is a fatal zoonotic hemorrhagic disease caused by Lassa virus carried by
multimammate rats, which are widely spread in West Africa. In this work, a fractional-order model
for Lassa fever transmission dynamics is developed and analysed. The model involves transmissions
from rodents-to-human, person-to-person, as well as from Lassa virus infested environment/surfaces.
The basic properties of the model such as positivity of solutions, and local stability of the disease-
free equilibrium are determined. The reproduction number, R0, of the model is determined using the
next generation method and it is used to determine the suitable conditions for disease progression
as well as its containment. In addition, we performed sensitivity analysis of the model parameters
using the Latin Hypercube Sampling (LHS) scheme to determine the most influential processes on the
disease threshold, and determined the key processes to be focused on if the infection is to be curtailed.
Moreover, fixed point theory was used to prove the existence and uniqueness of non-trivial solutions of
the model. We used the Adams-Bashforth Moulton method to solve the model system numerically
for different orders of the fractional derivative. Our results show that using various interventions
and control measures such as controlling environmental contamination, reducing rodents-to-humans
transmission and interpersonal contact, can significantly help in curbing new infections. Morestill, we
observe that an increase in the memory effect, i.e. dependence on future values of the model on the
previous states predicts lower peak values of infection cases in the short term, but higher equilibrium
values in the long term.
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1. Introduction

Lassa fever is a zoonotic, severe viral haemorrhage illness caused by Lassa virus, which is a member
of the arenavirus family of viruses. The first cases of Lassa fever were reported in 1969 in Nigeria
following the dealth of two missionary nurses. This illness is named after Lassa town in Borno State,
Nigeria, where the illnesses occurred [1]. The disease is now endemic in several parts of West Africa,
including Nigeria, Benin, Ghana, Mali and the Mano River region comprising of Sierra Leone, Liberia
and Guinea. There is also evidence of endemicity in neighboring countries of the West African region,
as the animal vector for the Lassa virus, the “multimammate rats” (Mastomys natalensis) species is
distributed throughout the region. In some areas of Sierra Leone and Liberia, between 10% and 16%
of people admitted to hospitals each year are known to have Lassa fever, indicating the serious impact
of the disease in the region [2]. According to the Centers for Disease Control and Prevention (CDC),
the estimated number of Lassa fever cases per year in West Africa is between 100,000 and 300,000,
with about 5,000 fatalities [2, 3]. There have been some cases of Lassa fever imported into other parts
of the world by travelers [4–6]. The actual incidence rate in Nigeria is unknown, but the case fatality
rate ranges between 3% and 42%, (and has remained between 20% and 25% for the past two years) [1].
The disease is highly prevelent during the dry season (November to April). However, in recent years
there have been outbreaks during the rainy season [1]. Various clinical conditions (such as fever,
malaise, and haemorrhagic fever) accompany the disease, with people of all ages being susceptible.
The onset of symptomatic disease is usually gradual, beginning with fever, general weakness, and
malaise. Subsequently, headache, general weakness, malaise, sore throat, muscle pain, chest pain,
nausea, vomiting, diarrhea, cough, and abdominal pain may appear. Around 80% percent of people
who are infected with the Lassa virus show no symptoms. However, one-fifth of infections can cause
severe illness, and the virus affects several organs including the liver, spleen, and kidneys [3]. Lassa
virus infection has an overall fatality rate of 1%, but the mortality rate in hospitalized patients has been
reported to be as high as 15% [3].

The animal reservoir/host for Lassa virus is a rodent of the genus Mastomys, commonly known as
the “multimammate rat”, which was first discovered to be infected with the virus in Nigeria and Sierra
Leon in 1972, and in Guinea in 2006. Mastomys rats carry the Lassa virus but do not get sick from it.
However, they can excrete the virus in urine and feces for an extended time period, maybe for the rest of
their life. There is a large number of Mastomys rats living on the savannas and forests of West, Central,
and Eastern Africa, and they breed frequently. Additionally, Mastomys can easily colonize human
homes and food storage areas. All of these factors combined lead to a relatively efficient transmission
of Lassa virus from infected Mastomys rats to humans. Humans are most commonly infected with the
Lassa virus by coming into contact with the urine or faeces excreated by infected Mastomys rats. Lassa
fever may also be transmitted from person to person through direct contact with blood, urine, faeces, or
other bodily secretions from an infected person. Person to person transmission occurs in communities
and healthcare settings, where the virus can be spread through contaminated medical equipment (such
as reusable needles), eating contaminated food, and sexual transmission has been reported [3]. People
living in rural areas especially in communities with poor sanitation or overcrowding are more at risk
of contracting the diseases. Medical workers caring for Lassa fever patients without proper personal
protective equipment, are also at risk. In the early course of the disease, the antiviral drug ribavirin may
be an effective treatment. However, ribavirin lacks the evidence to support its use as a post-exposure
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prophylaxis of Lassa fever [7]. There is no known vaccine that protects against Lassa fever [3].
Mathematical models have been used to analyse physical, biological, and many other complex

system dynamics. Differential equation models (of discrete and continuous type) have been
predominantly used in various disciplines of science to describe the dynamic features of systems. To
study Lassa fever transmission dynamics, several mathematical models have been developed. Most of
the models that focus on the theoretical analysis of the disease mainly consider transmission within
human and Mastomys rats populations (as a reservoir). For example, in [8], the authors developed a
mathematical model to explore the transmission dynamics of Lassa fever in a rodent population and
the impact in human cases, while quantifying the main seasonal factors driving the infection. The
authors showed that seasonal migration of rodent populations plays an important role in the seasonal
transmission of the disease. Using dynamical system modelling, Ifeanyi et. al. [9] developed a multiple
patch model to study the effect of socioeconomic class on Lassa fever transmission dynamics. In [9],
the authors recommend that human socioeconomic classes need to be seriously considered if Lassa
fever is to be completely eradicated from communities where it is endemic. A mathematical model
that experiments with various control strategies in rural upper Guinea to determine the length of
time and how frequently the control should be performed to eliminate Lassa fever in rural areas is
presented in [10]. According to their field data analysis, it is unlikely that a yearly control strategy will
reduce Lassa virus spillover to humans due to the rapid recovery of the rodent population following
rodenticides application. To describe the Lassa fever risk maps in West Africa, Fichet-Calvet and
Rogers [11], conducted a spatial analysis of Lassa fever data from human cases and infected rodents
from 1965 to 2007. From the results of the study, it was observed that rainfall has a strong influence on
defining high-risk areas, while temperature has little effect on defining high-risk areas. According to the
results in the study on Lassa fever infection with control in two different but complementary hosts [12],
the best way to control secondary transmission dynamics from human-to-human is to establish more
Lassa fever diagnostic centers and use precautionary burial practices. In addition, the study by Ojo et.
al [13], indicates that any control strategies and methods that reduce rodent populations and the risk of
transmission from rodents to humans would aid in the control the disease.

In the aforementioned articles, no study considered the contribution of environmental contamination
to the dynamics of the Lassa virus. In addition, the mathematical models considered do not sufficiently
account for the memory as well as nonlocal properties that may be exhibited by the epidemic system
under consideration owing to the evolutionary trends and dependence of future numbers of cases on
previous states. Employing fractional calculus in the Lassa fever model considered in this paper
provides an appropriate tool to account for the nonlocal behavior and memory of the proposed epidemic
system. As indicated in [14], reducing the order of the fractional derivative from 1 toward 0 accounts
for the increase in memory effect in the dynamical system considered. Therefore, owing to the
evolutionary trends associated with resistance to virulence, the nonlocal assumption, and the memory
effect with respect to time, it is justified to use fractional-order derivatives to study the trends of Lassa
fever in a human population.

The theory of Fractional calculus has been employed in studying the dynamics of real-world
problems in various areas which include but not limited to physics, fluid mechanics, finance, and
mathematical biology, see [15–21]. Recently, several approaches have been used for the generalization
of fractional order differentiation [22–27], the Riemann-Liouville [23, 27, 28], Liouville–Caputo-
fractional derivative [22,23,29], Caputo-Fabrizio fractional derivative [23,30], and Atangana-Baleanu
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function approaches [23, 31], among others. Since the Caputo derivative has flexibility with handling
initial value problems [22, 23], we use the Caputo-Fabrizio (CF) fractional derivative to model the
dynamics of Lassa fever. The CF fractional derivative has also been used recently to study several
epidemic models including hepatitis B virus [32], malaria transmission dynamics [33], modeling
chickenpox disease, pine wilt disease, smoking dynamics, metapopulation cholera transmission
dynamics, tumor-immune system [16, 34, 35], and Covid-19 transmission dynamics [36–42] among
others.

The rest of the manuscript is organized as follows: The model formulation, analysis of the basic
properties including the region of biological significance, reproduction number, stability, and the
existence and uniqueness of solutions using the fixed point theory are presented in Section 2. In Section
3, numerical simulations and results are presented. The conclusion of the manuscript and future work
are presented in Section 4.

2. Mathematical model formulation and analysis

In this section, we give a description of a mathematical model for Lassa fever that considers
the human population, mastomys rats population together with contaminated surfaces or objects in
the environment. We assume that the populations have homogeneous spatial distribution as well as
mixing within subpopulations. The human population is divided into susceptible (S ), exposed (E),
asymptomatic infected (A), symptomatic infected (I), hospitalized (H), and recovered (R) categories,
so that the total human population N(t) at any time t is given by

N(t) = S (t) + E(t) + A(t) + I(t) + H(t) + R(t).

The mastomys rats population is divided into susceptible mastomys rats (S r) and infected mastomys
rats (Ir) categories. We note that infected mastomys rates carry the Lassa fever causing pathogen but
are not affected by the pathogen. Thus, the total mastomys rats population, Nr(t) is given by

Nr(t) = S r(t) + Ir(t).

In this model, the contribution of the environment to the spread of Lassa virus is included in such a way
that V represents the Lassa virus pathogens concentration contaminating the surfaces or objects in the
environment due to shedding of the virus from infected individuals or mastomys rats. The formulation
of the model is based on the following cosiderations:

• Mastomys rats shed the virus through urine or faeces and direct contact with virus infested
materials, through touching of soiled household objects, eating contaminated food, or exposure
to open wounds or sores, can lead to infection [1–3].
• Contact with the virus may also occur when a person inhales tiny particles in the air contaminated

with infected mastomys rats excrements. Usually, this aerosol or airborne transmission may occur
during cleaning activities, such as floor sweeping [2].
• Mastomys rats are sometimes consumed as a source of food in some communities and infection

may occur during rodents capture and grooming [2].
• In addion, person-to-person transmission may occur particularly in healthcare settings, in the

absence of proper personal protective equipment (PPE), or when PPEs are not used [1–3].
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• Infected mastomys rats can excrete the virus in urine for an extended period, and possibly for the
rest of their lives [2].

Combining the above considerations, the force infection (λ) for the human population, is given by

λ = β1

( I + η1A + η2H
N

)
+ β2

(
Ir

Nr

)
+ β3

( V
κ + V

)
,

where β1 and β2 are the human-to-human contact rate and mastomys rat-to-human contact rate,
respectively. In addition, the human exposure rate β3 to free viruses in contaminated environments
is assumed to follow a logistic-dose response curve or Hill function V

κ+V , where κ is the concentration
of the Lassa virus in the environment which increases the chance of triggering the disease transmission
by 50%. The parameters η1, and η2 are transmissibility multiple that measure the transmission rates
due to contact with asymptomatic infected individuals (A), and hospitalized individuals (H) relative to
the transmission rate due to symptomatically infected individuals, respectively. The force of infection
of mastomys rats (λr) is given by

λr = β4

(
Ir

Nr

)
+ β5

( V
κ + V

)
,

where β4 is mastomys rat-to-mastomys rat contact rate, and β5 is the mastomys rats exposure rate to
free viruses in the environment. Figure 1 shows a schematic representation of the mathematical model
for Lassa fever transmission. Tables 1 and 2 show a detailed descriptions of the state variables and the
model parameters, respectively.

Figure 1. Schematic diagram of Lassa fever transmission dynamics describing the
interaction between human and the mastomys rats population, as well as a virus infested
environment.
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Table 1. Description of the model state variables.

Variable Description
S Susceptible individuals
E Exposed individuals
A Asymptomatic infected individuals
I Symptomatic infected individuals
H Hospitalized individuals
R Recovered individuals
V Contaminated surfaces or objects in the environment.
S r Susceptible mastomys rats
Ir Infected mastomys rats

Table 2. Description of the model variables.

Parameters Description
Λ Rate of recruitment into the susceptible population
µ Natural mortality rate of the human population
ρ Proportion of new exposed individual that become symptomatically

infected
ε Rate at which an exposed individual becomes infectious
γ Rate at which symptomatic individual require hospitalization
φ1, φ3, φ2 Recovery rate for the asymptomatic, symptomatic and hospitalized

individuals
δ Disease-induced death rate
ω Rate at which immunity wanes after recovery
σ1 Rate at which the asymptomatic infected shed the virus into the

environment
σ2 Rate at which hospitalized patients shed the virus into the environment
σ3 Rate at which symptomatic patients shed the virus into the environment
ξ Rate at which infected mastomys rat shed virus into the environment
ν Virus decay rate from the environment (Surfaces)
Π Recruitment (birth) rate into mastomys rats population
ϕ Natural mortality rate of mastomys rats
β1 Human-to-human contact rate
β2 Mastomys rats-to-human contact rate
β3 Rate of human contact with infected surfaces/environment
β4 Mastomys rat-to-mastomys rat contact rate
β5 Rate of Mastomys rat contact with infected surfaces in the environment
κ Concentration of Lassa virus in the environment
η1 Transmission rate of infective individuals in A relative to those in I
η2 Transmission rate of infective individuals in H relative to those in I
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Following the discussion above, we formulate the system of fractional order differential equations
for Lassa fever dynamics as 

CDαS = Λ − λS + ωR − µS
CDαE = λS − Q1E
CDαA = ε(1 − ρ)E − Q2A
CDαI = ερE − Q3I
CDαH = γI − Q4H
CDαR = φ1A + φ2H + φ3I − Q5R
CDαV = σ1A + σ2H + σ3I + ξIr − νV
CDαS r = Π − λrS r − ϕS r,
CDαIr = λrS r − ϕIr,

(2.1)

where CDα represents the Caputo-Fabrizio fractional derivative of order 0 < α ≤ 1, withQ1 = ε + µ, Q2 = φ1 + µ, Q3 = φ3 + γ + δ + µ,

Q4 = φ2 + δ + µ, Q5 = ω + µ,

and the corresponding nonnegative initial conditions are such thatS (0) > 0, E(0) > 0, A(0) > 0,H(0) > 0, I(0) > 0,R(0) > 0,
V(0) > 0, S r(0) > 0, and Ir(0) > 0.

(2.2)

2.1. Boundedness and positivity

In this section, we prove the positivity and boundedness of the solutions to ensure that the system
of equations (2.1), is mathematically well defined and biologically meaningful.

Theorem 1. Given the positive initial conditions (2.2), the solutions of the model system (2.1) are all
non-negative for t > 0.

Proof. To prove the non-negativity of the solutions of the fractional-order system (2.1), we consider
the resulting equtions for each of the state variables such that

CDαS |S =0 = Λ + ωR ≥ 0,
CDαE|E=0 = λS ≥ 0,
CDαA|A=0 = ε(1 − ρ)E ≥ 0,
CDαI|I=0 = ερE ≥ 0,
CDαH|H=0 = γI ≥ 0, (2.3)
CDαR|R=0 = φ1A + φ2H + φ3I ≥ 0,
CDαV |V=0 = σ1A + σ2H + σ3I + ξIr ≥ 0,
C
0 DαIv|Iv=0 = λrS r ≥ 0.

Following the approach detailed in Lemma 1 and Remark 1 in [16], as well as the reduced system (2.3),
one can deduce that the solutions of the fractional-order system (2.1) are non-negative for all t ≥ 0. �

AIMS Mathematics Volume 7, Issue 5, 8975–9002.



8982

Theorem 2. The invariant region Ω for the model (2.1) with initial conditions (2.2) defined by

Ω = Ωp ×Ωv ×Ωr,

where

Ωp =
{
(S , E, A, I,H,R) ∈ R6

+

}
, Ωv =

{
(V) ∈ R1

+

}
, Ωr =

{
(S r, Ir) ∈ R2

+

}
,

such that {
0 ≤ N(t) ≤

Λ

µ
, 0 ≤ V(t) ≤

(
(σ1 + σ2 + σ3)

(
Λ

µ

)
+ ξ

(
Π

ϕ

))
1
ν
, 0 ≤ Nr(t) ≤

Π

ϕ

}
,

is positively invariant for all t ≥ 0.

Proof. By considering the system of equations (2.1), the change in the total human population at any
given time is given by

C
0 DαN = Λ − µN − δI − δH,
C
0 DαN ≤ Λ − µN. (2.4)

Then, the inequality (2.4) can be written as a Cauchy problem such that

C
0 DαN ≤ Λ − µN, N(0) = N0 ∈ R,

whose solution is given in terms of a Mittag-Leffler function [23] as

N(t) ≤ N0Eα[−µtα] + Λ

∫ t

0
(t − s)α−1Eα,α[−µ(t − s)α]ds. (2.5)

Since from [43], ∫ t

0
(t − s)α−1Eα,α[−µ(t − s)α]ds = tαEα,α+1[−µtα],

then, the solution (2.5) can be written as

N(t) ≤ N0Eα[−µtα] + ΛtαEα,α+1[−µtα].

We observe that as t −→ ∞, then Eα[−µtα] −→ 0, and Eα,α+1[−µtα] −→ 1
µ

[44], which results in

N(t) ≤
Λ

µ
. (2.6)

Similarly, for the total mastomys rats population, we have a Cauchy problem given by

C
0 DαNr = Π − ϕNr, Nr(0) = Nr0 ∈ R,

whose solution is given by

Nr(t) ≤ Nr0 Eα[−ϕtα] + Π

∫ t

0
(t − s)α−1Eα,α[−ϕ(t − s)α]ds,
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such that
Nr(t) =

Π

ϕ
. (2.7)

For the concentration of virus in the environment, we have

C
0 DαV = σ1A + σ2H + σ3I + ξIr − νV,

which can be written as a Cauchy problem

C
0 DαV ≤ (σ1 + σ2 + σ3)

(
Λ

µ

)
+ ξ

(
Π

ϕ

)
− νV, V(0) = V0 ∈ R, (2.8)

since 0 < (A + H + I) ≤ Λ
µ

and 0 < Ir ≤
Π
ϕ

for all t ≤ 0.
The solution of the Cauchy problem (2.8) is given in terms of a Mittag-Leffler function as

V(t) ≤ V0Eα[−νtα] +

(
(σ1 + σ2 + σ3)

(
Λ

µ

)
+ ξ

(
Π

ϕ

)) ∫ t

0
(t − s)α−1Eα,α[−ν(t − s)α]ds.

We note that as t −→ ∞, the solution simplifies to

V(t) ≤
(
(σ1 + σ2 + σ3)

(
Λ

µ

)
+ ξ

(
Π

ϕ

))
1
ν
. (2.9)

This indicates that none of the state variables grows without bound. �

Owing to the results of positivity and boundeness of solutions, the model system (2.1) is well posed
and positively invariant in the domain Ω. Therefore, it is feasible to analyse the dynamics of the system
(2.1) in domain Ω.

2.2. Disease free equilibrium and basic reproduction number

To determine the disease-free equilibrium of model system (2.1), we assume there is no Lassa fever by
letting E = A = I = H = R = V = Ir = 0. Then, the system of equations (2.1) reduces toC

0 DαS = Λ − µS ,
C
0 DαS r = Π − ϕS r.

(2.10)

Therefore, solving the stationary points of the resulting system with (2.10), yields

E0 =

(
Λ

µ
, 0, 0, 0, 0, 0, 0,

Π

ϕ
, 0

)
,

which is the disease-free equilibrium. The basic reproduction number R0 is very important for the
qualitative analysis of the model, as it indicates the average number of new Lassa fever infections
that will be generated in a wholly susceptible human population when an infected individual or rat
is introduced. To obtain the basic reproduction number R0, we consider the case when α = 1, and
follow the next-generation method detailed in [45]. By considering the infected compartments X =

AIMS Mathematics Volume 7, Issue 5, 8975–9002.



8984

(E, A, I,H,V, Ir) the Jacobian matrices F for the new infection terms, and Ve for the remaining transfer
terms evaluated at the disease free equilibrium are respectively given by

F =



0 β1η1 β1 β1η2
β3Λ

κ1µ

β2Λϕ

µΠ

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 β5Π

κ2ϕ
β4


,

and

Ve =



Q1 0 0 0 0 0
−ε(1 − ρ) Q2 0 0 0 0
−ερ 0 Q3 0 0 0

0 0 −γ Q4 0 0
0 −σ1 −σ3 −σ2 ν −ξ

0 0 0 0 0 ϕ


.

Then the basic reproduction R0 of the model system (2.1) is the spectral radius of the next-generation
FVe

−1, such that

R0 =
Rhhv

0 + Rrrv
0 +

√(
Rhhv

0 − R
rrv
0

)2
+ 4Rhrv

0 R
rhv
0

2
,

where the term
Rhhv

0 = Rhh
0 + Rhv

0 ,

such that

Rhh
0 =

β1η1Q3Q4κ1νµε(1 − ρ) + β1η2Q2γκ1νµρε + β1ερκ1νµQ2Q4

Q1Q2Q3Q4κ1µν
,

Rhv
0 =

ΛQ2Q4β3ερσ3 + ΛQ2β3εγρσ2 + ΛQ3Q4β3εσ1(1 − ρ)
Q1Q2Q3Q4κ1µν

,

Rrrv
0 =

β4κ2νϕ + Πβ5ξ

κ2νϕ2 ,

Rhrv
0 =

Λβ2κ1νϕ + ΛΠβ3ξ

Πκ1µνϕ
,

Rrhv
0 =

ΠQ2β5εγσ2ρ + ΠQ2Q4β5ερσ3 + ΠQ3Q4β5σ1ε(1 − ρ)
Q1Q2Q3Q4κ2νϕ

.

The term Rhh
0 is the contribution of human-to-human contact, and Rhv

0 indicates the contribution of
human contact with the virus shed into the environment by infected humans. The term Rrrv

0 indicates
the number of new infected rats resulted from rat-to-rat contact, and rat contact with the virus shed
into the environment by infected rats. The term Rhrv

0 indicates the number of new infected humans
generated from direct contact with infected rat, and the virus shed into the environment by infected
rats. The term Rrhv

0 indicates the number of new infected rats generated from contact with the virus
shed by infected humans into the environment. A square root in the reproduction number in the view
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that the disease transmission takes two generations. According to [45], computation of R0 using the
next-generation method presumes locally stability of the disease free equilibrium. Therefore we have
the following Theorem.

Theorem 3. The disease-free equilibrium of model (2.1) is locally asymptotically stable whenever
R0 < 1 and unstable if R0 > 1.

The epidemiological implication of Theorem 3 is that the transmission of Lassa fever can be controlled
by enhancing or containing the processes that can result in reducing R0 to value below 1.

2.3. Existence and uniqueness of a system of solutions

Here, we examine the existence and uniquenence of the model system solution. The Fixed Point
Theory is applied to study the existence of the solutions of the model system (2.1). We use the
summarised procedure in [18] to rewrite model system (2.1) in the form

C
0 Dαy(t) = f (t, y(t)), y(0) = y0, (2.11)

where
y(t) = {S (t), E(t), A(t), I(t),H(t),R(t),V(t), S r(t), Ir(t)},

such that

f (t, y(t)) =



f 1(t, y1(t))
f 2(t, y2(t))
f 3(t, y3(t))
f 4(t, y4(t))
f 5(t, y5(t))
f 6(t, y6(t))
f 7(t, y7(t))
f 8(t, y8(t))
f 9(t, y9(t))


=



Λ + ωR(t) − λS (t) − µS (t)
λS (t) − Q1E(t)

ε(1 − ρ)E(t) − Q2A(t)
ερE(t) − Q3I(t)
γI(t) − Q4H(t)

φ1A(t) + φ2H(t) + φ3I(t) − Q5R(t)
σ1A(t) + σ2H(t) + σ3I(t) + ξIr(t) − νV(t)

Π − λrS r(t) − ϕS r(t)
λrS r(t) − ϕIr(t)


,

with
y(0) = {S (0), E(0), A(0), I(0),H(0),R(0),V(0), S r(0), Ir(0)}.

Using the fractional integral operator proposed by Losada and Nieto [46] on (2.11), we have

yi(t) − yi(0) =CF
0 Iαt f i(t, yi(t)), for i = 1, 2, . . . , 9. (2.12)

Following the notation used in [46], the equations in (2.12) yield

yi(t) − yi(0) =
2(1 − α)

(2 − α)M(α)
{ f i(t, yi(t))} +

2α
(2 − α)M(α)

∫ t

0

{
f i(x, yi(x))

}
dx. (2.13)

For simplicity, the system (2.13) can be written as

Ki(t, yi) = f i(t, yi(t)), for i = 1, 2, . . . , 9. (2.14)
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Theorem 4. The kernels Ki satisfy the Lipschitz conditions and contraction, if the inequalities

‖Ki(t, yi) − Ki(t, yi∗)‖ ≤ ψi‖yi(t) − yi∗‖ and 0 ≤ ψi < 1

hold for i = 1, 2, 3, . . . 9, where

ψ1 = (λ∗ + µ), ψ2 = Q1, ψ3 = Q2, ψ4 = Q3, ψ5 = Q4,

ψ6 = Q5, , ψ7 = ν, , ψ8 = (b + ϕ), and ψ9 = ϕ.

Proof. First, we start with kernel K1. Considering y1(t) = S (t) and y1∗(t) = S ∗(t) as two functions, we
have

||K1(t, y1) − K1(t, y1∗)|| = || − λ
(
y1(t) − y1∗(t)

)
− µ

(
y1(t) − y1∗(t)

)
||.

By using the triangle inequality, we get

‖K1(t, y1) − K1(t, y1∗)‖ ≤ ‖λ
(
y1(t) − y1∗(t)

)
‖ + ‖µ

(
y1(t) − y1∗(t)

)
‖

‖K1(t, y1) − K1(t, y1∗)‖ ≤ (λ∗ + µ)‖y1(t) − y1∗(t)‖,

considering that
ψ1 = (λ∗ + µ),

where λ∗ = max
t≥0
‖λ(t)‖ is a bounded function, we have

‖K1(t, y1) − K1(t, y1∗)‖ ≤ ψ1‖y1(t) − y1∗(t)‖.

Hence, the kernel K1 satisfies the Lipschitz condition and the contraction when 0 ≤ ψ1 < 1. In a similar
way, the remaining kernels meet the criterior for Lipschitz condition, and can be expressed as follows:

‖Ki(t, yi) − Ki(t, yi∗)‖ ≤ ψi‖
(
yi(t) − yi∗(t)

)
‖, for i = 2, 3, . . . , 9.

Taking into account the kernels (2.14), the system of equations (2.13) becomes

yi(t) = yi(0) +
2(1 − α)

(2 − α)M(α)
Ki(t, yi) +

2α
(2 − α)M(α)

∫ t

0
Ki(x, yi)dx. (2.15)

Then, we define the following recursive formulas

yi
n(t) =

2(1 − α)
(2 − α)M(α)

Ki(t, yi
n−1) +

2α
(2 − α)M(α)

∫ t

0
Ki(x, yi

n−1)dx, (2.16)

with initial conditions

yi
0(t) = yi(0).

In these cases, we present the differences between the successive terms as:

Ψin = yi
n(t) − yi

n−1(t) =
2(1 − α)

(2 − α)M(α)

[
Ki(t, yi

n−1) − Ki(t, yi
n−2)

]
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+
2α

(2 − α)M(α)

∫ t

0
[Ki(x, yi

n−1) − Ki(x, yi
n−2)]dx. (2.17)

It is essential to note that

yi
n(t) =

n∑
j=0

Ψi j . (2.18)

By following a step by step approach, we get

‖Ψin‖ = ‖yi
n(t) − yi

n−1(t)‖

=

∥∥∥∥∥ 2(1 − α)
(2 − α)M(α)

[Ki(t, yi
n−1) − Ki(t, yi

n−2)]

+
2α

(2 − α)M(α)

∫ t

0
[Ki(x, yi

n−1) − Ki(x, yi
n−2)]dx

∥∥∥∥∥∥ .
(2.19)

Applying triangle inequality, equation (2.19) reduces to:

‖Ψin‖ ≤
2(1 − α)

(2 − α)M(α)

∥∥∥[Ki(t, yi
n−1) − Ki(t, yi

n−2)]
∥∥∥

+
2α

(2 − α)M(α)

∥∥∥∥∥∥
∫ t

0
[Ki(x, yi

n−1) − Ki(x, yi
n−2)]dx

∥∥∥∥∥∥ (2.20)

Considering the fact that the kernels satisfy the Lipschitz condition, we obtain:

‖Ψin‖ ≤
2(1 − α)

(2 − α)M(α)
ψi

∥∥∥yi
n−1 − yi

n−2

∥∥∥ +
2α

(2 − α)M(α)

∫ t

0
ψi

∥∥∥yi
n−1 − yi

n−2

∥∥∥ dx,

≤
2(1 − α)

(2 − α)M(α)
ψi

∥∥∥Ψ1n−1(t)
∥∥∥ +

2α
(2 − α)M(α)

∫ t

0
ψi

∥∥∥Ψin−1(t)
∥∥∥ dx, for i = 1, 2, 3, . . . , 9. (2.21)

�

Theorem 5. The fractional-order model (2.1), has a solution if there exists t0 such that [46]

2(1 − α)
(2 − α)M(α)

ψi +
2α

(2 − α)M(α)
ψit0 ≤ 1, i ∈ {1, 2, . . . , 9}.

Proof. We consider that the functions yi(t) are bounded, and kernel fulfills the Lipschitz condition.
From the results of Eq (2.21), we utilize a recursive techniques to obtain the relations

‖Ψin‖ ≤ ‖y
i(0)‖

[
2(1 − α)

(2 − α)M(α)
ψi +

2α
(2 − α)M(α)

ψit0

]n

. (2.22)

Now, we need to show that the functions in (2.22) are the system of solutions associated with the model
system (2.1). We suppose that

yi(t) − yi(0) = yi
n(t) − wi

n(t).
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Then

‖wi
n(t)‖ =

∥∥∥∥∥∥ 2(1 − α)
(2 − α)M(α)

[Ki(t, yi
n) − Ki(t, yi

n−1)] +
2α

(2 − α)M(α)

∫ t

0
[Ki(x, yi

n) − Ki(x, yi
n−1)]dx

∥∥∥∥∥∥ ,
≤

2(1 − α)
(2 − α)M(α)

∥∥∥[Ki(t, yi
n) − Ki(t, yi

n−1)]
∥∥∥ +

2α
(2 − α)M(α)

∫ t

0

∥∥∥[Ki(x, yi
n) − Ki(x, yi

n−1)]
∥∥∥ dx,

≤
2(1 − α)

(2 − α)M(α)
ψ1

∥∥∥yi
n − yi

n−1

∥∥∥ +
2α

(2 − α)M(α)
ψ1

∥∥∥yi
n − yi

n−1

∥∥∥ t.

By employing the recursive technique, we obtain

‖wi
n(t)‖ ≤

(
2(1 − α)

(2 − α)M(α)
+

2α
(2 − α)M(α)

t
)n−1

ψn−1
i ν. (2.23)

Taking the limit on the Eq (2.23) as n tends to infinity, yields

‖wi
n(t)‖ −→ 0.

Hence, existence of solutions is satisfied. �

Theorem 6. The system of Eq (2.1) has a unique solution if the condition [46](
1 −

2(1 − α)
(2 − α)M(α)

ψi −
2α

(2 − α)M(α)
ψit

)
≥ 0 (2.24)

is satisfied.

Proof. We assume that there exists another system of solutions of the model (2.1), such as yi
1. Then,

yi(t) − yi
1(t) =

2(1 − α)
(2 − α)M(α)

[Ki(t, yi) − Ki(t, yi
1)]

+
2α

(2 − α)M(α)

∫ t

0
[Ki(x, yi) − Ki(x, yi

1)]dx. (2.25)

Applying the norm on both sides of Eq (2.25) yields

‖yi(t) − yi
1(t)‖ ≤

2(1 − α)
(2 − α)M(α)

‖[Ki(t, yi) − Ki(t, yi
1)]‖

+
2α

(2 − α)M(α)

∫ t

0
‖[Ki(x, yi) − Ki(x, yi

1)]‖dx. (2.26)

By using the Lipschitz condition of the kernels, we have

‖yi(t) − yi
1(t)‖ ≤

2(1 − α)
(2 − α)M(α)

ψi‖yi(t) − yi
1(t)‖ +

2α
(2 − α)M(α)

‖yi(t) − yi
1(t)‖ψit (2.27)

Thus, it becomes

‖yi(t) − yi
1(t)‖

(
1 −

2(1 − α)
(2 − α)M(α)

ψ1 −
2α

(2 − α)M(α)
ψ1t

)
≤ 0 (2.28)

If the condition (2.24) exists, then Eq (2.28) satisfies the equality and thus

‖yi(t) − yi
1(t)‖ = 0,

which implies that
yi(t) = yi

1(t).

This proves the uniqueness of the solutions of the model system (2.1). �
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3. Numerical simulations

Several numerical techniques have been proposed to solve fractional-order differential equations,
such as the Adomian Decomposition Method, the Homotopy Decomposition Method, the Adams-
Bashforth-Moulton Method among others. Here, we use the Adams-Bashforth-Moulton method to
provide an approximate solution for the dynamic model based on the Predator-Corrector algorithm.
We set h = T

N , tn = nh and n = 0, 1, 2, . . .N ∈ Z+ [47, 48]. Then model system (2.1) can be
discretized following the approach in [18, 19].

The corrector values

S n+1 = S 0 +
hα

Γ(α + 2)

[
Λ −

(
β1

I p
n+1 + η1Ap

n+1 + η2Hp
n+1

N p
n+1

+ β2
Ir

p
n+1

Nr
p
n+1

+ β3
V p

n+1

κ + V p
n+1

− µ

)
S p

n+1 + ωRp
n+1

]
+

hα

Γ(α + 2)

n∑
i=0

xi,n+1

[
Λ

(
β1

Ii + η1Ai + η2Hi

Ni
+ β2

Iri

Nri
+ β3

Vi

κ + Vi
− µ

)
S i + ωRi

]
,

En+1 = E0 +
hα

Γ(α + 2)

[(
β1

I p
n+1 + η1Ap

n+1 + η2Hp
n+1

N p
n+1

+ β2
Ir

p
n+1

Nr
p
n+1

+ β3
V p

n+1

κ + V p
n+1

)
S p

n+1 − (ε + µ)Ep
n+1

]
+

hα

Γ(α + 2)

n∑
i=0

xi,n+1

[(
β1

Ii + η1Ai + η2Hi

Ni
+ β2

Iri

Nri
+ β3

Vi

κ + Vi

)
S i − (µ + ε)Ei

]
,

An+1 = A0 +
hα

Γ(α + 2)

(
ε(1 − ρ)Ep

n+1 − φ1Ap
n+1 − µAp

n+1

)
+

hα

Γ(α + 2)

n∑
i=0

xi,n+1 (ε(1 − ρ)Ei − φ1Ai − µAi) ,

In+1 = I0 +
hα

Γ(α + 2)

(
ερEp

n+1 − φ3I p
n+1 − γI p

n+1 − δI p
n+1 − µI p

n+1

)
+

hα

Γ(α + 2)

n∑
i=0

xi,n+1 (ερEi − φ3Ii − γIi − δIi − µIi) ,

Hn+1 = H0 +
hα

Γ(α + 2)

(
γI p

n+1 − φ2Hp
n+1 − δHp

n+1 − µHp
n+1

)
+

hα

Γ(α + 2)

n∑
i=0

xi,n+1 (γIi − φ2Hi − δHi − µHi) ,

Rn+1 = R0 +
hα

Γ(α + 2)

(
φ1Ap

n+1 + φ2Hp
n+1 + φ3I p

n+1 − ωRp
n+1 − µRp

n+1

)
+

hα

Γ(α + 2)

n∑
i=0

xi,n+1 (φ1Ai + φ2Hi + φ3Ii − ωRi − µRi) ,

Vn+1 = V0 +
hα

Γ(α + 2)

(
σ1Ap

n+1 + σ2Hp
n+1 + σ3I p

n+1 + ξI p
vn+1
− νV p

n+1

)
+

hα

Γ(α + 2)

n∑
i=0

xi,n+1
(
σ1Ai + σ2Hi + σ3Ii + ξIvi − νVi

)
,
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S rn+1 = S r0 +
hα

Γ(α + 2)

[
Π −

(
β4

Ir
p
n+1

N p
rn+1

+ β5
V p

n+1

κ + V p
n+1

)
S p

vn+1
− ϕS p

vn+1

]
+

hα

Γ(α + 2)

n∑
i=0

xi,n+1

[
Π −

(
β4

Iri

Nri
+ β5

Vi

κ + Vi

)
S ri − ϕS ri

]
,

Irn+1 = Ir0 +
hα

Γ(α + 2)

[(
β4

Ir
p
n+1

N p
rn+1

+ β5
V p

n+1

κ + V p
n+1

)
S p

vn+1
− ϕI p

rn+1

]
+

hα

Γ(α + 2)

n∑
i=0

xi,n+1

[(
β4

Iri

Nri
+ β5

Vi

κ + Vi

)
S ri − ϕIri

]
.

where

S p
n+1 = S 0 +

1
Γ(α)

n∑
i=0

yi,n+1

[
Λ −

(
β1

Ii + η1Ai + η2Hi

Ni
+ β2

Iri

Nri

+ β3
Vi

κ + Vi

)
S i − µS i + ωRi

]
,

Ep
n+1 = E0 +

1
Γ(α)

n∑
i=0

yi,n+1

[(
β1

Ii + η1Ai + η2Hi

Ni
+ β2

Iri

Nri
+ β3

Vi

κ + Vi

)
S i − (µ + ε)Ei

]
,

Ap
n+1 = A0 +

1
Γ(α)

n∑
i=0

yi,n+1 (ε(1 − ρ)Ei − φ1Ai − µAi) ,

I p
n+1 = I0 +

1
Γ(α)

n∑
i=0

yi,n+1 (ερEi − φ3Ii − γIi − δIi − µIi) ,

Hp
n+1 = H0 +

1
Γ(α)

n∑
i=0

yi,n+1 (γIi − φ2Hi − δHi − µHi) ,

Rp
n+1 = R0 +

1
Γ(α)

n∑
i=0

yi,n+1 (φ1Ai + φ2Hi + φ3Ii − ωRi − µRi) ,

V p
n+1 = V0 +

1
Γ(α)

n∑
i=0

yi,n+1
(
σ1Ai + σ2Hi + σ3Ii + ξIvi − νVi

)
,

S p
rn+1

= S r0 +
1

Γ(α)

n∑
i=0

yi,n+1

[
Π −

(
β4

Iri

Nri

+ β5
Vi

κ + Vi

)
S ri − ϕS ri

]
I p
rn+1

= Ir0 +
1

Γ(α)

n∑
i=0

yi,n+1

[(
β4

Iri

Nri

+ β5
Vi

κ + Vi

)
S ri − ϕIri

]
.

are the predictor values, with

xi,n+1 =


nα+1 − (n − α)(n + 1), if i = 0,
(n − i + 2)α+1 + (n − i)α+1 − 2(n − i + 1)α+1 if 1 ≤ i ≤ n,

1 if i = n + 1,

and
yi,n+1 =

hα

α
((n − i + 1)α − (n − i)α) , 0 ≤ i ≤ n,

where p is the order of accuracy p = min(2, 1 + α) [48].
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3.1. Data fitting and parameter estimation

In this section, Nigerian Lassa fever weekly reported cumulative cases data (from January 03, 2021
to May 19, 2021) is used to fit the model to data and estimate some of the unknown parameters.
This improves the acceptance of the model for use in future predictions and to better understand the
disease dynamics. The least-squares fit method is used here given its efficiency and reliability. The
human natural death rate is estimated as µ = 1

(54.68×365) per day, where 54.68 years is the average life
expectancy in Nigeria, and the estimated total population of Nigeria was 201 million in 2019 [49].
All baseline parameter values obtained from the best fit of the model to cumulative cases data are
summarized in Table 3. For the estimated baseline parameter values given in Table 3, we obtained a
basic reproduction number, R0 ≈ 1.1299. Figure 2 shows the plot of the reported cumulative confirmed
cases data together with the model fit.

Table 3. Description of the model variables.

Parameters Range Value Unit Source
Λ − µ × N0 persons day−1 Estimated
Π − 10 mastomys rats day−1 Estimated
η1 (0.5 − 1.0) 0.8512 - Fitted
η1 (0.45 − 0.65) 0.5463 - Fitted
β1 (0.02 − 0.45) 0.0638 day−1 Fitted
β2 (0.02 − 0.45) 0.0384 day−1 Fitted
β3 (0.02 − 0.552) 0.0200 day−1 Fitted
β4 (0.02 − 0.552) 0.0913 day−1 Fitted
κ (1000 − 10000) 9787.3 virus Fitted
ω (0.003 − 0.005) 0.0034 day−1 Fitted
ε (0.2 − 0.5) 0.2011 day−1 Fitted
ρ (0.1 − 1.0) 0.2383 - Fitted
φ1 (0.045 − 0.09) 0.0494 day−1 Fitted
φ2 (0.045 − 0.09) 0.0715 day−1 Fitted
φ3 (0.045 − 0.09) 0.0510 day−1 Fitted
γ (0.05 − 0.9) 0.4832 day−1 Fitted
δ (0.15 − 0.35) 0.1662 day−1 Fitted
σ1 (0.25 − 0.35) 0.3004 day−1 Fitted
σ2 (0.2 − 0.3) 0.2331 day−1 Fitted
σ3 (0.3 − 0.45) 0.4379 day−1 Fitted
ξ (0.4 − 0.55) 0.4136 day−1 Fitted
ν (0.3 − 0.55) 0.4353 day−1 Fitted
β5 (0.02 − 0.552) 0.1212 day−1 Fitted
ψ − 0.0020 day−1 [50]
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Figure 2. Model fitting with confirmed cases in Nigeria.

3.2. Sensitivity analysis

To examine the effect of parameter changes on R0, we used Latin Hypercube Sampling (LHS)
[51–53] and computed the partial rank correlation coefficients (PRCCs) of the sampled input model
parameters with corresponding value of the basic reproduction number R0 as the output. To determine
which parameters are significant, p-values of corresponding PRCCs are calculated for the respective
parameters after Fisher transformation [51, 52]. The calculated PRCCs for the sampled input
parameters and their corresponding p-values are given in Table 4.

Table 4. Parameter PRCC Significance (Unadjusted p-values).

Parameter PRCC p-value Keep
η1 0.0268 4.004 × 10−1 False
η2 0.0190 5.511 × 10−1 False
β1 0.0426 1.812 × 10−1 False
β2 0.0820 9.937 × 10−3 True
β3 0.7775 0.000 True
ε -0.0194 5.428 × 10−1 False
ρ -0.5210 0.000 True
γ -0.0131 6.811 × 10−1 False
σ1 0.1105 5.006 × 10−4 True
σ2 0.0307 3.354 × 10−1 False
σ3 0.0001 9.975 × 10−1 False
ξ -0.0012 9.700 × 10−1 False
ν -0.2579 2.220 × 10−16 True
ϕ -0.0681 3.239 × 10−2 True
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Figure 3(a) gives the summary of calculated PRCCs in the tornado plot, and the basic reproduction
number values (R0) computed (minimum value, lower quartile, median, upper quartile, and maximum
value) are summarized in the boxplot, Figure 3(b). In Figure 3(b), it is clear that there are outliers.
The major interest in containing the disease is to find combinations of processes that can reduce the
value of R0 below 1. Despite the fact that the median value for R0 is close to 1, there may be a
variety of combinations of processes that can worsen the epidemic. We note that the process described
by the parameter β3 with the highest positive PRCCs has the highest potential of worsening disease
when it increases. We note that improving hygiene, reduces the pontential of contracting the virus
from potentially infected surfaces. Therefore, it is recommended that improving hygiene practices
is essential in overcoming the disease burden. On the other hand, the parameters (ν and ρ) with the
highest negative PRCCs have the greatest potential to contain the infection when maximized. In this
respect, we further note that increasing the pathogen decay rate by disinfecting surfaces, practicing
good hygiene, reducing the shedding of the virus into the environment, and earlier diagnostics to
identify people with asymptomatic infections are key in effectively curtailing the infection.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

1

2

1

2

3

1

2

3

(a)

1

0.5

1

1.5

2

2.5

3

3.5

(b)

Figure 3. Partial rank correlation coefficients (PRCCs) of sampled parameter values. (a)
shows a tornado plot summarising the PRCCs from sampled parameters, where positive
PRCCs indicate a process that can worsen the epidemic if the epidemic progresses, and those
with negative PRCCs can help control the disease, (b) The box plot displays the R0 values
calculated from the sampling procedure (that is, minimum, lower quartile, median, upper
quartile, and maximum values).

The values of input parameters with significant PRCCs (p-values less than 0.05) are compared
pairwise to determine if the processes described by these parameters are significantly different. The
null hypothesis, H0, is that there are significant differences between the compared parameters [52]. To
minimise the likelihood of making a Type I statistical error, False discovery rate (FDR) adjusment is
performed during the comparison. The summary of p-values from the comparisons is given in Table
5. The results in Table 5 are summarized in Table 6, where “True” indicates significant differences
between the compared parameters, while “False” indicates otherwise.
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Table 5. Pairwise PRCC Comparisons (FDR Adjusted p-values).

β2 β3 ρ σ1 ν ϕ

β2 0 0 0.5234 2.464 × 10−14 0.0009112
β3 0 0 0 0
ρ 0 4.587 × 10−12 0
σ1 0 8.158 × 10−5

ν 1.782 × 10−5

ϕ

Table 6. Parameters different after FDR adjustment?

β2 β3 ρ σ1 ν ϕ

β2 True True False True True
β3 True True True True
ρ True True True
σ1 True True
ν True
ϕ

3.3. Results and discussion

In this section, we present the numerical results of the model simulations obtained for different
scenarios. From Figure 4, the results show that the infected populations are characterized by an initial
rapid increase, reaching maximum values, and then a decline to a relative equilibrium. The initial rapid
increase is due to availability of a high number of susceptible individuals who can be infected and thus
is associated with high infection probability. The subsequent decline in the number of infections is due
to the disease’s self-limitation, which results from a decrease in contacts owing to a low number of
susceptible individuals. In addition, decreasing the number of susceptible or infected hosts or vectors
reduces the possibility of contact, thereby reducing the likelihood of new infections. For the fractional-
order considerations, when the order of the derivative (α) decreases, the epidemiological system is
characterized by an increase in the memory effect (high dependence of future on the previous states),
resulting in a slow growth but high long-term equilibrium numbers compared to the integer-order case.
Compared to the integer-order case, the results from the fractional-order model predict lower epidemic
peaks. However, the disease is predicted to remain highly prevalent in the population for a long period
of time.

To observe the effects of human-to-human transmission contact rate on the number of infections, we
simulate the model using different parameter values of β1, with the baseline value being the numerical
value obtained from the model fitting. The reduction in human-to-human transmission rate can lead
to a drop in the number of infected cases, as seen in Figure 5. For instance, decreasing β1 by 25%
and 50%, reduces the infection peak values from 33 to 31 and 29 respectively, leaving the disease
at its endemic state as shown in Figure 5(a). As a result, the disease burden can be kept at minimal
values by decreasing the rate of infection transfer from person to person. To minimize person-to-person
transmission, someone needs to take preventive precautions against contact with patients’ secretions,
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especially in a hospital setting. We note that wearing protective clothes such as masks, gloves,
protective gowns and goggles, using infection control methods such as full equipment sterilization,
and isolating sick patients from contact with potentially susceptible persons are all examples of
preventative measures. Capturing and grooming or using mastomy rats as a food source may lead
to an increase disease transmission. Minimizing the rat-to-human transmission rate, reduces the
number of infections as shown in Figure 6. Furthermore, one factor that aids in the transmission
of the disease is the environmental contamination with Lassa virus. Disinfecting the environment
and imposing strict sanitation measeures to reduce the effective contact rate of the population with
the contaminated environment may help curb new infections. Morestill, storage of food in mastomys
rat-proof containers, and keeping the homes clean, helps to discourage rodents from entering homes.
In addition, disposing off garbage far from the home can help sustain clean households. The effect
of decreasing environmental control mechanisms is simulated and the results are presented in Figure
7. In particular, Figure 7(a) shows that the value of the baseline parameter β3 = 0.0482, draws the
corresponding infection peak closer to 33. We note that, decreasing the value of β3 by 50% reduces the
human infection peak to 30. In cases where the affected population is in thousands, this change will
definitely be very significant and can overwhelm the healthcare system. The infection trend observed
with increased memory (when α =0.8), see Figure 7(b) is associated with higher longterm numbers of
infected individuals.
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Figure 4. Model simulation of the disease dynamics depicting weekly new cases when
α = 1, 0.9, 0.8.
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Figure 5. Impact of person-to-person contact probability, β1 on the number of new infections
when (a) α = 1.0, and (b) α = 0.8
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Figure 6. Impact of mastomy rat to human contact probability, β2 on the number of new
infections when (a) α = 1.0, and (b) α = 0.8.
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Figure 7. Impact of environmental contaminated transmission probability, β3 on the number
of new infections when (a) α = 1.0, and (b) α = 0.8.

4. Conclusions

In this work, a fractional-order model for Lassa fever transmission dynamics is presented.
The model incorporates person-to-person contacts, mastomys rat-to-human transmission as well as
transmission from a contaminated environment. To guarantee that the model is well-posed, basic
characteristics such as non-negativity of solutions given non-negative initial values, and boundedness
of solutions were proved. The disease-free equilibrium and its stability as well as the model basic
reproduction number were determined. To estimate the model parameter values, the model was
fitted to Nigeria’s Lassa fever weekly reported cumulative cases for the period January 03, 2021 to
May 19, 2021. For the estimated baseline parameter values from the data fit, we obtained a basic
reproduction number, R0 ≈ 1.1299. Sensitivity analysis using the LHS was carried to determine the
parameters which describe the processes that are more significant in reducing the reproduction number
and consequently curtailing the disease. From sensitivity analysis results, the rate of human contact
with contaminated surfaces, and the decay of the virus from the environment were observed to be
of significant influence. Consequently, the processes described by such parameters have the greatest
potential of curtailing Lassa fever. Our overall results recommend various interventions and control
measures which include; controlling environmental transmission, rodents-to-humans transmission, and
humans-to-humans transmission. These intervention measures have a great pontential for containing
Lassa fever in the community. In addition, environmental control and disinfecting surfaces are
associated with lower and delayed peaks of infections. It is also strongly recommended that all
suspected Lassa fever infections be diagnosed early to identify people with asymptomatic infections.
We noted that when dependence of future values on previous states increases (ie. as α reduces from
1 toward 0) the infection slows down and reaches a peak lower than that reached by a system with a
higher order of the fractional derivative. On the other hand, in long-term dynamics, equilibrium cases
are inversely proportional to the order of the fractional derivative of the system. That is, a slow rate
of infection growth in the system with lower orders of the fractional derivatives is characterized by
infected cases peaks occuring at a later time when compared to the system with a higher fractional
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order. Moreover, we observed that taking prescribed self-protection measures for large numbers of
people who have known similar infections in the past can slow down a potentially explosive outbreak.
Therefore, the study can be extended further to include the effect of disease awareness for a better
understanding of the disease and extensive implementation of control strategies. Additionally, this
work can be extended by using the stochastic forecasting approach detailed in [54]. Lastly, the results
of the study can provide guidance to local disease control programs when planning and designing
cost-effective strategies for eliminating the disease from Nigeria and West Africa as a whole.
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