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1. Introduction

The problems arising in science and engineering have been successfully modeled through the
mathematical models tools [1–5]. Besides this, the application of mathematical models to the social
sciences and other financial areas are getting attention these days from researchers around the world.
In the country’s economic growth, the role of the banks is considered to be a backbone. Strong banking
policy and its benefits to the citizens play an important role in the overall development of the country,
the bank’s related terms and explanations can be found in [6]. The banking sector may be Islamic or
conventional or maybe both of these. The banks that follow the rule of syriah law or conventionally
are defined as per the rule Act No. 10 of 1998. The activities of rural and commercial banks in
Indonesia are observed and documented that commercial banks have more business activates than the
former [7,8]. Further, in Indonesia, it is reported that commercial banks are more than the rural, but the
products of both the banks are consider to be the same [9]. Although, the commercial banks are greater
but the rural are still improving their business activities to attract customers. Due to the improvements
in their business products, the rural banks may have competition with commercial banks.

If the rural banks continue their efforts to improve their products, then definitely there may have
close competition in Indonesia. This competition can be effectively studied through evolutionary
differential equations known as the Lotka Volterra system [10]. The researchers utilized the Lotka
Volterra equations in order to study the competition in many real-word problems, see [11–18]. For an
instant, one of the applications of the Korean mobile company data through the competition system
is explored in [11]. The competition system as a technological substitution, see [12], modeling the
policy and their implications to the Korean stock market [13], dynamics estimations of the market
exhibition, see [14], competition dynamics in the operating system market, see [15], and the analysis
of the banking dynamics system, see [16]. Moreover, some recent works regarding this, can be seen
in [17–20].

In the above-mentioned studies, it is worthy to mention that the Lotka Volterra system was used
to obtain the dynamics of different problems with the integer-order study, except [17–20]. From the
last years, it is observed that fractional calculus plays a vital role in the dynamic modeling of such
practical problems. One of the reasons is considered to be the memory and the heredity properties.
The model of real-life problems is often nonlinear and the crossover behavior makes it difficult to
solve it exactly. The model formulated in fractional derivatives has many advantages, such as the
data fitting, the memory index, the heredity properties, and the cross-over behavior. The dynamics
of the model with fractional order derivatives and its applications to the real-life problems can be
seen in [21, 22, 26–31]. For example, the competition among rural and commercial banks through
fractional derivatives is discussed in [21]. The dynamics of TB using the fractional-order derivative
are explored in [22]. An introduction to fractional derivative, fractional differential equations, and
its numerical solution is discussed in [26]. A fractional lotka Volterra mathematical model and its
analysis are studied in [27]. The Hepatitis E model in fractional Caputo Fabrizio derivative is explored
in [28]. A fractional-order TB model with relapse is considered in [29]. The authors in [30] considered
the HIV infection model using two-sex populations. The RLC circuit model using the fractional
derivative and its numerical investigations is considered in [31]. The authors used the concept of
fractional derivatives to study different problems, see for example, the training model for football
movement trajectory [32], the educational reforms through fractional differential equations [33], a
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fractional model for the sugar [34], a fractional model for the impact of financial repression [35], and
the university education model using fractional differential equations and its numerical solution [36].
Some more mathematical model formulated in fractional derivatives and their applications to COVID-
19 infection is explored in [37,38,40], where the authors studied a mathematical model for COVID-19
with isolation class [37], COVID-19 with stochastic perturbation [38], COVID-19 model with control
in fractional environment [39] and the COVID-19 model with crowding effect in [40]. Application of
fractional derivative to Hepatitis B [41, 42], and COVID-19 [43]. The fractional-order model to study
the leakage delay [44], the fractional-order with neural networks using multi-delays [45], bifurcation
analysis in a fractional-order [46], a delayed BAM fractional-order system [47], fractional-order model
with control [48], and fractional-order neural networks with mixed delays [49]. It is important that real-
life problems with realistic data, give more accurate information about that particular phenomena than
the assumed data, such useful results can be seen in [19–22], where a particular focus is given to show
the data fitting to the system of equations. The works mentioned above, have been solved numerically
by using the novel numerical technique.

The goal of this work is to study the competition of the banking data between two banks in Indonesia
with real statistical data through a fractional model. The fractional derivative considered in this work
is the Caputo derivative. For the numerical solution of the fractional model, we use the recently
developed new numerical method using the approach of Newton polynomial. This novel technique
was introduced recently in literature to get the numerical solution of fractional ordinary differential
equations, that has been used for many scientific problems, see [23–25]. For example, the authors
introduced this technique for the solution of the COVID-19 model in fractional derivative in Atangana-
Baleanu derivative [23]. The HIV dynamics and its mathematical analysis through a fractional model
with real cases using this new approach is considered by the authors in [24]. The application of this
new method to groundwater flow is considered by the authors in [25]. This novel technique is more
accurate and reasonable than the other technique available in the literature for the factional models. The
proposed technique will show how the data fits well with the consideration of the specific fractional
orders. The rest of the results in this paper are as follows: The model and their descriptions are shown
in Section 2. The related definition and the integral are shown in Section 3. The solution of the
model numerically by giving the algorithm is shown in Section 4. Section 5 explain the numerical
investigations of the model while Sections 6 and 7 respectively show the formulation of the stochastic
problem and the summary of the results.

2. Concepts related to fractional operator

We provide here the related concepts for Caputo derivative [59].

Definition 1. [59] Suppose g : R+ → R and ρ ∈ (m− 1,m), j ∈ K. Then, the representation of Caputo
derivative with order ρ for a function g can be defined by the way below,

C
0 Dρ

t g(t) =
1

Γ(m − ρ)

∫ t

0
(t − ψ)m−ρ−1g(m)(ψ)dψ. (2.1)

Definition 2. [59] The integral for the above is given by the following,

C
0 Iρt (g(t)) =

1
Γ(ρ)

∫ t

0
g(ψ)(t − ψ)ρ−1dψ. (2.2)
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3. Mathematical model

The competition among the commercial and rural banks can be described here through the useful
mathematical model called the Lotka-Volterra system. The Lotka-Volterra system has two equations,
which were designed to have competition among two species for food etc. This competition model has
been used effectively in many studies by the authors for real statistical data and found it interesting.
So, on the basis of the competition model, it aims to describe the two equations by commercial and
rural banks dynamics. At any time t, the dynamics of commercial banks is shown by x(t) while the
rural banks dynamics is given by y(t), with the assumptions of maximum profit having both the banks.
Further, the banking limited funds behave logistically their growths. So, with this hypothesis, the
dynamical analysis of the competition model among the two banks system is shown by,

dx
dt

= α1x
(
1 −

x
K1

)
− ψ1xy,

dy
dt

= α2y
(
1 −

y
K2

)
− ψ2xy, (3.1)

the initial conditions to the (3.1) are x(0) = x0 ≥ 0, and y(0) = y0 ≥ 0. The parameters αi for i = 1, 2
describe the growth factor respectively for commercial and rural banks and so is positive. The others
parameters Ki for i = 1, 2 that define the maximum profit gained respectively, by the commercial and
the rural banks. The coefficients ψi for i = 1, 2 are used as a competition parameter respectively for
commercial and rural banks. So, it is obvious from this discussion that these parameters are positive.

3.1. A fractional Caputo model

We use the model presented above (3.2) and apply the Caputo derivative to generalize it. With this
generalization, the model (3.2) takes the following fractional form below:

C
0 Dρ

0

(
x(t)

)
= α1x

(
1 −

x
K1

)
− ψ1xy,

C
0 Dρ

0

(
y(t)

)
= α2y

(
1 −

y
K2

)
− ψ2xy, (3.2)

where ρ ∈ (0, 1) that defines the fractional order is considered in Caputo sense.

3.2. Equilibria and their stability

The equilibrium points for the considered model (3.2) can be obtained by the following way,

C
0 Dρ

0

(
x(t)

)
= 0, C

0 Dρ
0

(
y(t)

)
= 0. (3.3)

The condition (3.3), gives the following:

α1x
(
1 −

x
K1

)
− ψ1xy = 0,

α2y
(
1 −

y
K2

)
− ψ2xy = 0. (3.4)
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Solving the equations in (3.4), we have:

E0 = (0, 0), E1 = (0,K2), E2 = (K1, 0),

E3 =
( α2K1 (K2ψ1 − α1)
K1K2ψ1ψ2 − α1α2

,
α1K2 (K1ψ2 − α2)
K1K2ψ1ψ2 − α1α2

)
.

Consider the aforementioned equilibrium points, we discuss its stability results for the system (3.2)
below: Initially, we find the Jacobian matrix of the system (3.2) given by the following:

J =


(
1 − 2x∗

K1

)
α1 − ψ1y∗ −ψ1x∗

−ψ2y∗
(
1 − 2y∗

K2

)
α2 − ψ2x∗

 .
We consider now the stability at the above fixed points. First, we consider E0 = (0, 0). At this
equilibrium point, we get the eigenvalues α1, α2 which are positive, and so at this point the system
is not stable. At E1, we have the eigenvalues, −α2, α1 − K2ψ1, where the second one can be negative
if α1 < K2ψ1, and the equilibrium point of the system will be stable. The equilibrium point E2 gives
the eigenvalues, −α1, α2 − K1ψ2. If the second one becomes negative, then the proposed model will
be locally asymptotically stable. For the last equilibrium point, which is feasible, and their stability is
shown below by having the characteristics polynomial:

λ2 +$1λ +$2 = 0,

where

$1 =
α1α2 (α1 − K2ψ1 + α2 − K1ψ2)

α1α2 − K1K2ψ1ψ2
,

$2 =
α1α2 (α1 − K2ψ1) (α2 − K1ψ2)

α1α2 − K1K2ψ1ψ2
.

The coefficients$1 and$2 can be positive if (α1 − K2ψ1) > 0, (α2 − K1ψ2) > 0 and α1α2−K1K2ψ1ψ2 >

0. If these conditions hold then the system will be locally asymptotically stable.

3.3. Existence and uniqueness

Consider the system (3.2), we write for simplicity the model (3.2),

C
0 Dρ

t x(t) = f1(x, y, t),

C
0 Dρ

t y(t) = f2(x, y, t).

We define the following norm,

||x||∞ = sup
t∈D
|x(t)|,
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where D = [0,T ]. We assume to show that x(t) and y(t) are bounded in [0,T ], therefore, ∀t ∈ [0,T ]
there exists λ1 and λ2 such that ||x||∞ < λ1 and ||y||∞ < λ2. We first show that f1 and f2 are bounded

| f1(x, y, t)| = |α1x(1 −
x

K1
) − ψ1xy|,

≤ α1|x
(
1 −

x
K1

)
| + |ψxy|,

≤ α1|x||
(
1 −

x
K1

)
| + |ψ1xy|,

≤ α1 sup
t∈[0,T ]

|x(t)|| sup
t∈[0,T ]

(
1 −

x(t)
K1

)
| + ψ1 sup

t∈[0,T ]
|x(t)| sup

t∈[0,T ]
|y(t)|,

≤ α1||x||∞
(
1 +
||x||∞
K1

)
+ ψ1||x||∞||y||∞,

< α1λ1

(
1 +

λ1

K1

)
+ ψ1λ1λ2,

< ∞.

Similarly, we can show

| f2(x, y, t)| < α1λ2

(
1 +

λ2

K2

)
+ ψ2xy < ∞.

Therefore, if x and y are bounded then there exists M1 and M2 such that

sup
t∈[0,T ]

| f1(x, y, t)| < M1, sup
t∈[0,T ]

| f2(x, y, t)| < M2.

On the other hand if ∀t ∈ [0,T ], | f1(x, y, t)| < M1 and | f2(x, y, t)| < M2, then ||x||∞ < ∞ and ||y||∞ < ∞.

Proof. Assuming that f1 and f2 are bounded, then

x(t) = x(0) +
1

Γ(ρ)

∫ t

0
f1(x, y, τ)(t − τ)ρ−1dτ,

y(t) = y(0) +
1

Γ(ρ)

∫ t

0
f2(x, y, τ)(t − τ)ρ−1dτ.

|x(t)| ≤ |x(0)| +
1

Γ(ρ)
|

∫ t

0
f1(x, y, τ)(t − τ)ρ−1dτ|,

|y(t)| ≤ |y(0)| +
1

Γ(ρ)
|

∫ t

0
f2(x, y, τ)(t − τ)ρ−1dτ|.

Then without loss of generality, we present for x(t)

|x(t)| ≤ |x(0)| +
1

Γ(ρ)

∫ t

0
| f1(x, y, τ)|(t − τ)ρ−1dτ,

AIMS Mathematics Volume 7, Issue 5, 8933–8952.



8939

< |x(0)| +
1

Γ(ρ)

∫ t

0
sup

t∈[0,T ]
| f1(x, y, τ)|(t − τ)ρ−1dτ,

< |x(0)| +
M1tρ

Γ(ρ + 1)
< |x(0)| +

M1tρ

Γ(ρ + 1)
.

Therefore,

|x(t)| < ||x||∞ < |x(0)| +
M1T ρ

Γ(ρ + 1)
.

Similarly, we can show

|y(t)| < ||y||∞ < |y(0)| +
M2tρ

Γ(ρ + 1)
.

�

To prove that our system admits a unique solution, we need to show that

• ∀t ∈ [0,T ], f1 and f2 satisfy the following condition, | f1(x, y, t)|2 < β1(1 + |x|2), | f2(x, y, t)|2 <

β2(1 + |y|2),
• ∀t ∈ [0,T ], f1 and f2 satisfy the Lipschitz condition | f1(x1, y, t) − f1(x2, y, t)|2 < β1|x1 − x2|

2,
| f2(x, y1, t) − f2(x, y2, t)|2 < β2|y1 − y2|

2.

Without loss of generality, we show he proof for f1,

| f1(x1, y, t) − f1(x2, y, t)|2 = |α1x1

(
1 −

x1

K1

)
− ψ1x1y − α2x2

(
1 −

x2

K1

)
+ ψ1x2y|2,

= |α1(x1 − x2) − α1

( x2
1

K1
−

x2
2

K1

)
− ψ1(x1 − x2)y|

< 3α2
1|x1 − x2|

2 + 3α2
1|

x2
1

K1
−

x2
2

K1
|2 + 3ψ2

1|x1 − x2|
2|y|

< 3{α2
1 + 2α2

1

(
|
x1

K1
|2 + |

x2

K1
|2
)

+ ψ2
1|y|

2}|x1 − x2|
2,

< 3{α2
1 + 2α2

1

(
sup

t∈[0,T ]
|
x1

K1
|2 + sup

t∈[0,T ]
|
x2

K1
|2
)

+ ψ2
1 sup

t∈[0,T ]
|y|2}|x1 − x2|

2,

< 3
(
α2

1 + 2α2
1

(2λ2
1

K2
1

)
+ ψ2

1λ
2
2

)
|x1 − x2|

2,

< β1|x1 − x2|
2

where β1 =
(
α2

1 + 2α2
1

(2λ2
1

K2
1

)
+ ψ2

1λ
2
2

)
. On the other hand

| f1(x, y, t)|2 = |α1x
(
1 −

x
K1

)
− ψ1xy|2,

≤ 3α2
1|x|

2 + 3α2
1|

x
K1
|2 + 3ψ2

1|x|
2|y|2,
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≤
(
3α2

1 + 3
α2

1

K2
1

|x|2 + 3ψ2
1|y|

2
)
|x|2,

≤
(
3α2

1 + 3
α2

1

K2
1

sup
t∈[0,T ]

|x(t)2| + 3ψ2
1 sup

t∈[0,T ]
|y(t)2|

)
|x|2,

<
(
3α2

1 +
3α2

1

K2
1

λ2
1 + 3ψ2

1λ
2
2

)
|x|2,

< β1

(
1 + |x|2

)
,

where β1 =
(
3α2

1 +
3α2

1
K2

1
λ2

1 + 3ψ2
1λ

2
2

)
. Therefore, the system (3.2) has a unique system of solution.

4. Solution procedure with Caputo fractional derivative

This section presents a new discretization for the Caputo derivative through Newton polynomial,
which was established recently in [60]. We explain below briefly the procedure by considering a
general fractional differential equation in the form given by:

C
0 Dρ

t z(t) = f (t, z(t)), (4.1)

where Dρ
t shows the Caputo derivative and the f is the nonlinear function. To present a numerical

solution procedure to get the solution of fractional differential equation using Newton descritization,
we have to rewrite the problems is as follows:

z(t) − z(0) =
1

Γ(ρ)

∫ t

0
f (τ, z(τ))(t − τ)ρ−1dτ. (4.2)

At tn+1 = (n + 1)∆t, the following can be written,

z(tn+1) − z(0) =
1

Γ(ρ)

∫ tn+1

0
f (τ, z(τ))(tn+1 − τ)ρ−1dτ. (4.3)

Also, we can write

z(tn+1) = z(0) +
1

Γ(ρ)

n∑
j=2

∫ t j+1

t j

f (τ, z(τ))(tn+1 − τ)ρ−1dτ. (4.4)

We now using the Newton approach to approximate the f (τ, z(τ)) which is inside the integral, and has
the following

Pn(τ) = f (tn−2, z(tn−2)) +
f (tn−1, z(tn−1)) − f (tn−2, z(tn−2))

∆t
(τ − tn−2)

+
f (tn, z(tn)) − 2 f (tn−1, z(tn−1)) + f (tn−2, z(tn−2))

2(∆t)2 (τ − tn−2)(τ − tn−1). (4.5)
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Substitution of the result (4.5) into (4.4), the following is obtained,

zn+1 = z0 +
1

Γ(ρ)

n∑
j=2

∫ t j+1

t j

[
f (t j−2, z j−2) +

f (t j−1, z j−1) − f (t j−2, z j−2)
∆t

(τ − t j−2)

+
f (t j, z j) − 2 f (t j−1, z j−1) + f (t j−2, z j−2)

2(∆t)2 (τ − t j−2)(τ − t j−1)
]

×(tn+1 − τ)ρ−1dτ. (4.6)

Re-arranging Eq (4.6), leads to the following,

zn+1 = z0 +
1

Γ(ρ)

n∑
j=2

[ ∫ t j+1

t j

f (t j−2, z j−2)(tn+1 − τ)ρ−1dτ

+

∫ t j+1

t j

f (t j−1, z j−1) − f (t j−2, z j−2)
∆t

(τ − t j−2)(tn+1 − τ)ρ−1dτ

+

∫ t j+1

t j

f (t j, z j) − 2 f (t j−1, z j−1) + f (t j−2, z j−2)
2(∆t)2 (τ − t j−2)(τ − t j−1)

×(tn+1 − τ)ρ−1dτ
]
. (4.7)

So, we have

zn+1 = z0 +
1

Γ(ρ)

n∑
j=2

f (t j−2, z j−2)
∫ t j+1

t j

(tn+1 − τ)ρ−1dτ

+
1

Γ(ρ)

n∑
j=2

f (t j−1, z j−1) − f (t j−2, z j−2)
∆t

∫ t j+1

t j

(τ − t j−2)(tn+1 − τ)ρ−1dτ

+
1

Γ(ρ)

n∑
j=2

f (t j, z j) − 2 f (t j−1, z j−1) + f (t j−2, z j−2)
2(∆t)2 ×∫ t j+1

t j

(τ − t j−2)(τ − t j−1)(tn+1 − τ)ρ−1dτ. (4.8)

We simplify the integrals in Eq (4.8) below,∫ t j+1

t j

(tn+1 − τ)ρ−1dτ =
hρ

ρ
[(n − j + 1)ρ − (n − j)ρ],∫ t j+1

t j

(τ − t j−2)(tn+1 − τ)ρ−1dτ =
hρ+1

ρ(ρ + 1)
[(n − j + 1)ρ(n − j + 3 + 2ρ)

−(n − j)ρ(n − j + 3 + 3ρ)],∫ t j+1

t j

(τ − t j−2)(τ − t j−1)(tn+1 − τ)ρ−1dτ =
hρ+2

ρ(ρ + 1)(ρ + 2)
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×


(n − j + 1)ρ

[
2(n − j)2 + (3ρ + 10)(n − j)

+2ρ2 + 9ρ + 12

]
−(n − j)ρ

[
2(n − j)2 + (5ρ + 10)(n − j)

+6ρ2 + 18ρ + 12

]
 , (4.9)

the following formula is obtained after inserting the above solution into Eq (4.9), the following is
presented,

zn+1 = z0 +
hρ

Γ(ρ + 1)

n∑
j=2

f (t j−2, z j−2)[(n − j + 1)ρ − (n − j)ρ]

+
hρ

Γ(ρ + 2)

n∑
j=2

[ f (t j−1, z j−1) − f (t j−2, z j−2)]

×[(n − j + 1)ρ(n − j + 3 + 2ρ) − (n − j)ρ(n − j + 3 + 3ρ)]

+
hρ

2Γ(ρ + 3)

n∑
j=2

[ f (t j, z j) − 2 f (t j−1, z j−1) + f (t j−2, z j−2)]

×


(n − j + 1)ρ

[
2(n − j)2 + (3ρ + 10)(n − j)

+2ρ2 + 9ρ + 12

]
−(n − j)ρ

[
2(n − j)2 + (5ρ + 10)(n − j)

+6ρ2 + 18ρ + 12

]
 . (4.10)

The procedure explained above to obtained the graphical results for the model of competition system
will be used in next section.

5. Numerical results

The efficient numerical algorithm described above is considered to obtain the numerical solution
of the fractional model in Caputo derivative. We used the real statistical data to investigate the model
parameters for the competition between the two banking systems in Indonesia for the given years
2004–2014. Using the statistical data and the parameters obtained that is considered are below: ψ1 =

2.90 × 10−10, ψ2 = 3.9 × 10−8, K1 = 669318.198, K2 = 17540.6219, α1 = 0.6, and α2 = 0.58.
These parameters are also the same estimations presented in the work published in [51]. Using these
parameters values, we presented the graphical results. The real data of commercial and rural banks in
cumulative form is shown in Figure 1. The comparison of real data with the model is shown in Figure 2
when ρ = 1. Figures 3 and 4 are plotted in order to show model fitting with real data for the arbitrary
order ρ = 0.9, 0.8, 0.7. It is observed from the results depicted in Figures 3 and 4, that decreasing the
fractional-order ρ, we see the good agreement of the data versus model fitting. The future predictions
of the real statistical data are depicted in Figure 5. It is observed a good fitting for a long time of
the model versus real data. Further, we provided by choosing many values of the arbitrary order and
show the results in Figure 6. We also utilized the approach of the FDE12 (predictor-corrector PECE
method for fractional differential equations) to solve the present model and compare the result with
the Newton polynomials method used in this work. We used the method given in [57, 58] to obtain
the graphical results for the fractional-order model 3.2 using the FDE12 and the Newton polynomial
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method with the same parameter and initial conditions, with the step size h = 0.01. The results are
shown in Figure 7. We show them in graphics legends, the Newton method by “present method” while
the PECE method is by FDE12. One can observe that both the methods give the same results for the
integer and fractional order value ρ = 0.96.
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Figure 1. The profit of commercial and rural banks, (a) commercial; (b) rural.
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Figure 2. Fitting of data versus model, ρ = 1. (a) commercial; (b) rural.
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Figure 3. Comparison of data versus model fitting considering different fractional order
values (a) and (c) commercial banks; (b) and (d) rural banks.
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Figure 4. Comparison of data versus model fitting when ρ = 0.7. (a) commercial banks; (b)
rural banks.
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Figure 5. Comparison of data versus model fitting for long term for different value of ρ.
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Figure 6. Dynamics of the model for different value of ρ.
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Figure 7. The comparison of the present method with FDE12. (a) Commercial data versus
model; (b) rural data versus model; (c) commercial data versus model for ρ = 0.96; (d) rural
data versus model for ρ = 0.96.

6. A stochastic competition model

This section studies the model in stochastic version. There are many stochastic models in literature
which study different physical problems, some are listed here [52–56]. The model (3.1) is extended to
the stochastic version given by

dx =
[
α1x

(
1 −

x
K1

)
− ψ1xy

]
dt + σ1xdW(t),

dy =
[
α2y

(
1 −

y
K2

)
− ψ2xy

]
dt + σ2ydW(t), (6.1)

where σ1 and σ2 are the real constants that represent the intensity of the stochastic differential
equations, where W(t) refereed to be the stochastic Brownian motion. Keeping in view the model (3.1),
we use it for simulation purposes and check whether the data fit well to the stochastic model. In
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this regard, we keep the same numerical values as we used for the fractional case model (3.2). The
simulation of the model (6.1) with data is given in Figure 8. We can see that the model (6.1) also
behaves well with the real data. Figure 9 shows the model behavior for a large time level.
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Figure 8. Simulation of the model (6.1), (a) fitting for commercial data, (b) fitting with rural
data.
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Figure 9. Prediction of the model (6.1). (a) Fitting for commercial data; (b) fitting with rural
data.

7. Conclusions

We obtained some new findings regarding the competition system for the real data of the two
banks in Indonesia through a fractional model with Caputo derivative through new numerical solution.
Initially, we presented the model in ordinary derivative and then applied the Caputo derivative to the
model for its generalization. The generalized model is then used to present a novel numerical procedure
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for their numerical solution. The real statistical data obtained from [50] for the year 2004–2014 are
utilized and obtained various graphical results. The realistic parameters are fitted for the model of
two different data sets which provide a reasonable fitting to the model. For comparison purposes,
we considered also the FDE12 method and presented the results. We found that both the methods
provide the same results and it can be used confidently for other physical or social problems. The
suggested graphical results were tested in order to find the best fractional-order values for which the
data provide good fitting is ρ = 0.7. While using the stochastic version of the model, we observed
that the data provide reasonable fitting to the model. The stochastic version for some different values
of the intensities parameters has been shown. It is obvious that the real data fitting provides useful
information for the phenomenon’s future prediction, where some policy and rule can be designed to
obtain the future goals. Thus, we hope that these new results for the competition model for the bank
data with the real statistical data will bring new information for the banking and finance sector.
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