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1. Introduction

The qualitative actions of fractional evolution differential and difference equations, which is
clearly time-dependent can be defined via non-autonomous dynamics. In past era, the concept of such
structures has formulated into an extremely functioning field associated towards, still recognizably
discrete from that of traditional autonomous dynamic frameworks. This development was driven by
issues of applied math, in the existence sciences where straightforwardly non-autonomous structures
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feature. On another side, solution’s existence of the fractional differential equations (FDE) via
nonlocal conditions has been concentrated ordinarily by numerous writers in this way, nonlocal
conditions are further practical than the classical initial conditions for example, in managing
numerous physical issues [2, 19, 32, 33].

Fractional calculus (FC) is a simplification of calculus ordinary integer. In past years, impulsive
differential equations have becoming functioning in research field because of incontestable
submissions in extensive fields of engineering and science such as bio, chemistry, physics, economy,
population dynamics, control theory, chemical technology, medical science and many more [3,22,40].
Various natural structures that are categorized by the incidence of sudden modification in the
condition of the framework can be characterized by impulsive differential equations. The above
mentioned variations happen at definite time moments for a time of minimal interval. Impulsive
differential equations are too suitable form to genetic development for which a delay row originates in
carving equations. Such equations depict the evolution procedures that are reliant on sudden
variations and discontinuous hurdles in their circumstances. Many physical structures as the function
of pendulum clock, the effect of mechanical systems, protection of species with the use of repeated
stocking or collecting etc. naturally involve the impulsive marvels. Also, in several further states, the
evolution procedures have impulsive actions. Such as, the disruptions in cellular nervous networks,
electromechanical systems depending on easing oscillations, dynamical systems having automatic
procedures etc., have the impulsive marvels. The uniqueness, existence and stability of mild solutions
to functional differential equations with impulsive conditions have been concentrated by numerous
authors in writing (refer [20, 27, 28, 41]).

Fractional calculus’s benefit concluded that integer-order calculus offers an extraordinary
agreement for the sort of hereditary and conviction properties of extended techniques and materials.
Since previous twenty years, Fractional Calculus (FC) has pulled in investigation consideration by
itself because of its significance in a few pieces of science technology, similar to Fluid Mechanics
(FM), Physics, conduction of heat [14, 21, 31]. We can relate to the monographs [8] for the basics and
to reference [5] for the recent progresses in fractional calculus field. In reference [25], existence and
controllability of nonlocal mixed VolterraFredholm type fractional delay integrodifferential equations
of order 1 < r < 2. Nowadays non-autonomous differential equations with integer order have been
deliberated by numerous scientists. Reference [35] discussed a new method for fractional differential
evolution equations by approximating the there controllability having order 1 < r < 2 in Hilbert
spaces. Reference [36] investigated a novel way to estimate controllability of fractional evolution
inclusions having order 1 < r < 2with indefinite delay.

To determine the controllability of a nonautonomous nonlinear differential system involving
non-instant impulses in the space Rn, Malik et al. [28] used the Rothe’s fixed point theorem.
Kucche [12] studied the uniqueness and existence of mild solutions for impulsive delay
integro-differential equations with integral impulses in Banach spaces by using
Krasnoselskii-Schaefer fixed point theorem. Let δ be a bounded and convex set in O, and O be a real
Banach space with norm ‖.‖. Operator N : δ −→ δ is entirely continuous in Schauder’s fixed point
theorem, then N has fixed-point in δ in any case. It is widely identified as Schauders fixed point
theorem. That is very well-known and essential fixed-point theorem, and this is highly extensive
application. However, Schauder’s fixed point theorem requires that the operator be totally continuous,
which imposes very strong conditional constraints. Hence, the fixed point theorem of Sadovskii has
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been proven to be correct. In 1981, Lakshmikantham and Leela [26] designed the next mentioned IVP
of ODE in the Banach space O. {

u′(s) = f (s, u(s)), s ∈ [0, b]
u(0) = u0,

(1.1)

here b > 0 is constant. The writers showed that, f is said to be uniformly continuous on [0,b]×YE if for
somewhat constant E > 0 then satisfies the MNC condition.

τ( f (s, ν)) ≤ jτ(ν),∀s ∈ [0, b], ν ⊂ YE, (1.2)

where YE = {u ∈ O: ‖u‖ ≤ E}, τ(.) demonstrate Kuratowski MNC, j is a +ve constant, then initial value
problem Eq (1.1) has a global solution if j mollifies the following condition

b j < 1. (1.3)

Guo [16] explored the global solutions of the initial value problem (IVP) in the Banach space O for
nonlinear integro-differential equations of first-order mixed type in 1989.{

u′(s) = f (s, u(s), (S u)(s), (Tu)(s)), s ∈ [0, b]
u(0) = u0,

(1.4)

where
(S u)(s) =

∫ s

0
H(s, t)u(t)dt, (1.5)

is a Volterra integral operator with H ∈ C (∆ kernel, R),∆=(s,t) — 0 ≤ t ≤ s ≤ b and

(Tu)(s) =

∫ b

0
K(s, t)u(t)dt, (1.6)

is a Fredholm integral operator with K ∈ C (∆0,E) kernel , ∆0={(s,t) — 0 ≤ s ≤ t ≤ b}. Represent
H0=max

(s,t)∈∆
|H(s, t)| and K0= max

(s,t)∈∆0
|K(s, t)| then Guo proved that initial value problem (1.4) if for E > 0

then there will exist a minimum one global solution, f is said to be uniformly continuous on
[0,b]×YE×YE×YE then there exist positive constants ji in such a way (i = 0, 1, 2, 3).

τ( f (t,U1,U2,U3)) ≤ j1τ(U1) + j2τ(U2) + j3τ(U3), (1.7)

for ∀ s ∈ [0, b] and bounded sets U1,U2,U3 ⊂ O and

2b( j1 + bKo j2 + bH0 j3) < 1. (1.8)

In 2017, Guo [15] discovered that the impulsive semi-linear fractional integro-differential equation
using noncompact semigroup has a local as well as global mild solution. Afterward, there are a lot of
writers investigated ordinary differential equations (ODE) by the use of Sadovskiis fixed point theorem
in real Banach spaces just like Eq (1.4) in the postulation just like Eq (1.7), constants fulfill strong
inequality analogous to Eq (1.8). For further information on these realities, please perceive [29] and
their references. Inequality Eqs (1.3) and (1.8) are very strong prohibitive circumstances. Anyone can
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well notice to find out, in applications they are challenging contented. Thus to dispose of the solid
limitations on constants in MNC condition as Eq (1.7) or (1.2). As postulation, writers studied the
existence of global mild solutions for IVP of evolution equations in the real Banach space O.{

u′(s) + Au(s) = f (s, u(s)), s ∈ [0, b]
u(0) = u0.

(1.9)

The non-linear function f is uniformly continuous on [0,b]×YE the writers suppose this and fulfill an
appropriate condition of MNC just like Eq (1.2). We should notice that limitation condition analogous
to Eq (1.3) have been deleted by writers in reference [38].

During the previous twenty years, fractional order semi linear evolution equations have been end up
being significant instruments in the examination of numerous marvels in Chemistry, Economy, Physics,
Engineering, Electrodynamics and Aerodynamics of complex channel. Fractional evolution equations
has charm in growing thought lately and it has framed into a critical piece of FC and FDE. A monotone
iterative strategy was presented in reference [4] for a class of semilinear evolution equations with
nonlocal conditions. In reference [5], there is further information regarding approximation techniques
for fractional evolution equations with nonlocal integral conditions. For further information about
fractional calculus we refer [1, 13] and the references therein.

In any case, among the past investigates, a large portion of analysts center around the model that in
autonomous considerations the differential operators independent of times. In reference [6], the
fractional non-autonomous evolution equation with nonlocal circumstances was studied. A note on
approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay
was discussed in reference [23]. We find that when we use some parabolic evolution equations, partial
differential operators that are dependent on time s are frequently seen in examples, according to
popular belief. In reference [24] results on approximate controllability of Sobolev-type fractional
neutral differential inclusions of Clarke subdifferential type. For a blowup alternative result for
fractional non-autonomous evolution equation of Volterra type we refer [7]. As a consequence,
locating the differential operators (D.O.) in significant areas of reasoned problems is critical and
fascinating. Indeed, reference [10] check out continuous dependence and existence of basic solutions
for a form of linear non-autonomous fractional evolution equations in the year 2004. Reference [11]
provided a set of conditions to guarantee the presence of a resolvent operator for a group of fractional
non-autonomous evolution equations with a conventional Cauchy initial condition in 2010.

The existence of mild solutions for the approaching Cauchy problems to nonlinear non-autonomous
mixed type integro-differential fractional evolution equation is investigated in this work via MNC with
nonlocal condition in Banach space O, motivated by the previously described characteristic.{

CDγ
su(s) = A(s)u(s) + f (s, u(s), (S u)(s), (Tu)(s)), s ∈ Z

u(0) = u0 + g(u), u′(0) = u1,
(1.10)

where CDγ
s is Caputo’s fractional time derivative of order 1 < γ ≤ 2 Z= [0, b] where b > 0 is a

constant. Writers verified that, f is said to be uniformly continuous on [0,b]× YE,if for any constant
E > 0 and fulfills the condition of MNC family of closed linear operators defined on a dense domain
δ(A) is A(s) in Banach space O into O such that δ(A) is independent of s, f : Z ×O×O×O−→ O is a
Carathodory type function, u0 ∈ O, Volterra integral operator is S defined by Eq (1.5) and Fredholm
integral operator is T defined by Eq (1.6). The need and particular in this paper are as given below:
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a. We offer three operators φ(s, %̄),ψ(s, t), and U(s)to give the suitable formulation of mild solution
for the Cauchy problem to the mixed type non-linear time-fractional non-autonomous
integro-differential evolution Eq (1.10).

b. We discovered that the nonlinear component f was supposed to be uniformly continuous by all
authors in [30, 37], which is a really credible assumption. Indeed, if f (s, u) is Lipschitz continuous on
Z×YE w.r.t. u, then the requirement (1.2) is satisfied, although f may not require uniformly continuous
on Z×YE,a new approximation method of MNC (check Lemma 2.6) introduced by reference [4].

c. As we identify earlier, a very solid prohibitive circumstance is the inequality Eq (1.8). In the
MNC conditions, instructions to disregard the limit on the constants are a substantial challenge. In
this article, we firmly utilized new sort of fixed point theorem w.r.t. K-set-contractive operator (check
Definition 2.5) and the strong limitations on the constants are fully formatted in conditions of MNC.

We have managed this article as following: Some common hypotheses on the linear operator-A(s),
main proofs and their assumption will be provided in the follow-up of section 1. We give few
notations, definitions and essential Basics on Kuratowski MNC, fixed point theorem w.r.t.
K-set-contractive operator and fractional derivatives in section 2. Specifically, using integral
impulsive Eq (1.10), the characteristics for the operators φ(s, %̄), ψ(s, t), and U(s) were included in the
specification of a moderate solution for the Cauchy problem to fractional non-autonomous mixed type
integro-differential evolution equation. In section 3 the evidences of the primary Theorem 3.1 are
provided. We give an example of question where the proofs of the earlier sections will be applied and
Theorem 3.2 in the last section 4. Consider L(O) be the Banach space where the operator norm
describes the topology of all bounded and linear operators in O. We assume that the A(s) linear
operator meets the following requirements throughout this essay:

(B1) For some µ with Reµ ≥ 0, the operator [µId + A(s)] existing a bounded inverse
operator

[
µId + A(s)

]−1 here C is a +ve constant independent of both s and µ;

‖[µ Id + A(s)]−1‖ ≤
C

|µ| + I
,

(B2) For some s, t, τ ∈ Z, there must exist a constant α ∈ (1,2] such that

‖[A(s) − A(τ)]A−1(t)‖ ≤ C|s − τ|α,

in which α > 0 and C are independent of t, s and τ.

Remark 1.1. By the virtue of [18, 34, 39], we can easily understand that the hypotheses (B1) shows
that for every t ∈ Z, the operator A(t) produce an analytic semi-group e−sA(t) (s > 0), and then exists
C> 0 independent of both s and t such a way that

‖Am(t)e−sA(t)‖ ≤
C
sm ,

where m = 1, 2, s > 0, t ∈ Z.

Remark 1.2. In hypotheses (B1), if we select µ= 0, s = 0, then there must exist a C> 0 independent of
both s and µ given that

‖A−1(0)‖ ≤ C.

AIMS Mathematics Volume 7, Issue 5, 8891–8913.



8896

Definition 1.1. A function η : [0, b] ×O −→O is called Carathodory continuous if following postulates
are satisfied:

(a) For all u ∈ O, η(, u) is strongly measurable;
(b) For a.e. s ∈ [0, b], η(s, ) is continuous.
It is sufficient to impose MNC and some natural growth requirements on f, which is a nonlinear

function, to illustrate the occurrence of mild solutions to the IVP for nonlinear fractional
non-autonomous mixed type integro-differential evolution equation with integral impulse condition
Eq (1.10).

(G1) There must exist constants 0 ≤ ξ < min{ γ , α},%̄1 > 0, For any r > 0 and functions ψr ∈ L
1
ξ (Z,O+)

such a way that for a.e. s ∈ Z and satisfying that ‖u‖ ≤ r, u ∈ O

ψr(s) ≥ ‖ f (s, u, S u,Tu)‖,

and

lim inf
r−→+∞

‖ψr‖L
1
ξ [0, b]
r

= %̄ < +∞.

(G2) There must exist +ve constants 0 ≤ ξ < min{γ, α}, %̄1 > 0 L1, L2 and L3 so much that for any
countable and bounded sets D2,D3,D1 ⊂ O and a.e. s in Z,

τ( f (s,D1,D2,D3)) ≤ L1τ(D1) + L2τ(D2) + L3τ(D3).

For the sake of clarity, we signify

a1 =

(
1 − ξ
γ − ξ

)1−ξ

+ CB (γ, α) bα
(

1 − ξ
γ + α − ξ

)1−ξ

,

and

a2 = 1 + A(0)C2bγ
(
1
γ

+ bαB (γ, α + 1)
)
,

a3 =
1
γ

+
2CB (γ, α) bα

γ + α
,

where

B (γ, α) =

∫ 2

1
(1 − s)α−1 sγ−1ds,

is the Beta function.

(G3) There is a nondecreasing continuous function Φ : E+ −→ E+ and a constant %̄g > 0 such that for
some r > 0 and all u ∈ Gr =u ∈ C(Z,O) : ‖u(s) ≤ r,∀s ∈ Z,

‖g(u)‖ ≤ Φ(r)and lim inf
r−→+∞

Φ(r)
r

= %̄g < +∞.

(G4) There exist +ve constant Lg such that for some countable and bounded sets δ ⊂ C(Z, O),

τ(g(δ)) ≤ Lgτc(δ).
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2. Preliminaries

In this part we present a few documentations, definitions, and essential idea including fractional
derivatives and integrals, fixed point theorem as for K-set-contractive operator, Kuratowski MNC and
the operators φ(s,%̄), ψ(s,t) and U(s), which are used end-to-end in this article. End-to-end in this
article, we adjust Z = [0, b] indicate a compact interval in O, where b > 0 is a constant. Let Banach
space O with norm ‖.‖We designate it by C(Z, O) the Banach space of all continuous functions from
interval Z into O provided with the supremum norm

sup{‖u‖, s ∈ Z},∀ u ∈ C( Z, O) = ‖u‖c,

and by L(O) the Banach space of all linear and bounded operators in O equipped with the topology
defined by the operator norm. Let L1(Z,O) be the Banach space of all O value Bochner integrable
functions defined on Z with the norm. ∫ b

0
‖u‖ds = ‖u‖1.

Denote Gr = {u ∈ C( Z, O): r ≥ ‖u(s)‖, s ∈ Z} for any 0 < r, then in C( Z, O), Gr is closed ball with
radius r and center ϑ . As a matter of first importance, we review the meaning of the RiemannLiouville
Integral and Caputo Derivative of Fractional Order.

Definition 2.1. [8] The fractional integral having order γ > 0 having zero lower limit for a function
f ∈ L1([0,+∞), E) is defined below

Iγ0 f (s) =
1

Γ(γ)

∫ s

0
f (t)(s − t)γ−1dt.

Here and elsewhere

Γ(γ) =

∫ ∞

0
(s)γ−1(e)−sds,

indicates the Gamma function.

Definition 2.2. [8] The Caputo fractional derivative having order γ having the lower limit 0 for a
function f : [0,+∞) −→ E, which is at least m-times differentiable is defined as Lemma 2.8

CDγ
s f (s) =

1
Γ(m − γ)

∫ s

0
(s − t)m−γ−1 f (m)(t)dt = Im−γ

s f (m)(s),

where m > γ > m − 1, m ∈ N.

Definition 2.3. If a function u ∈ C( Z, O) meets the following conditions, it is considered a mild
solution of Eq (1.10):

u(s) = u0 + g(u) + u1s +

∫ s

0
ψ(s − %̄, %̄)U(%̄)u0d%̄ +

∫ s

0
ψ(s − %̄, %̄)U(%̄)u1d%̄

+

∫ s

0
ψ(s − %̄, %̄) f (%̄, u(%̄), (S u)(%̄), (Tu)(%̄))d%̄
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+

∫ s

0

∫ %̄

0
ψ(t − %̄, %̄)φ(%̄, s) f (s, u(t), (S u)(t), (Tu)(t)) dt d%̄

+
∑

0<si<s

ψ(si − %̄, %̄)Ii

( ∫ si−ϑi

si−τi

N(t, u(t))
)
,

where the operators φ(s, %̄), ψ(s, t) and U(s) are defined by

α

∫ ∞

0
ϑsγ−1ζγ(ϑ)e−sγϑA(t)dϑ = ψ(s, t),

∞∑
k=1

φk(s, %̄) = φ(s, %̄),

−A(s)A−1(0) −
∫ s

0
φ(s, t)A(t)A−1(0)dt = U(s),

probability density function ζγ is defined on [0,∞] and Laplace transform of probability density
function ζγ is given below∫ ∞

0
eϑxζγ(ϑ)dϑ =

∞∑
i=1

(−x) i

Γ(1 + γ i)
, 1 < γ ≤ 2, x > 0

φ1(s, %̄) = [A(s) − A(%̄)]ψ(s − %̄, %̄)

φi+1(s, %̄) =

∫ s

0
φi(s, t)φ1(t, %̄)d%̄, i = 1, 2, ...

Lemma 2.1. [10] In uniform topology the operator ψ(s − %̄, %̄) and A(s)ψ(s − %̄, %̄) are continuous
about the variables s and %̄ , where s ∈ Z, 0 ≤ %̄ ≤ s-ε for any ε > 0, and

‖ψ(s − %̄, %̄)‖ ≤ C(s − %̄)γ−1,

where +ve constant C is independent from both %̄ and s. Moreover

C(s − %̄)α−1 ≥ ‖φ(s, %̄)‖,

and
C(1 + sα) ≥ ‖U(s)‖.

Using Lemma 2.1 and suitable computation, we have obtained the coming solution.

Lemma 2.2. In the operator norm L(O) the integral
∫ s

0
ψ(s − %̄, %̄)U(%̄)d%̄ is uniformly continuous for

some s ∈ Z, and

‖

∫ s

0
ψ(s − %̄, %̄)U(%̄)d%̄‖ ≤ C2sγ

(
1
γ

+ tαB(γ, α + 1)
)
,∀s ∈ Z.

Using proper integral transformation and RiemannLiouville integral’s properties having fractional
order , we have obtained the coming result.

AIMS Mathematics Volume 7, Issue 5, 8891–8913.



8899

Lemma 2.3. For some g ∈ L1[0, b] and s ∈ Z , we have∫ s

0

∫ %̄

0
(s − %̄)γ−1(%̄ − t)α−1g(t) dt d%̄ = B(γ, α)

∫ s

0
(s − %̄)γ+α−1g(%̄)d(%̄).

Next, we present the definition of Kuratowski MNC , we use it in our proof.

Definition 2.4. [9] The Kuratowski MNC τ() defined on a bounded set G in Banach space O

τ(G) := in f {0 < a : G = ∪m
i=1Gi and diam(Gi) ≤ a f or i = 1, 2, 3, ...m}.

Well known properties about the Kuratowski MNC are as follows.

Lemma 2.4. [9] Let ν, U are subset of O are bounded and O be a Banach space. The coming
attributions are satisfied:

(a) τ(ν) ≤ τ(U) if ν ⊂ U.
(b) τ(ν̄) = τ(ν) = τ(conv ν), where convex hull of ν is conv ν.
(c) τ(ν) = 0 iff ν is compact, where closure hull of ν is ν̄.
(d) τ( µ ν) = — µ —τ(ν), where µ ∈ R.
(e) τ(ν ∪ U) = max {τ(ν), τ(U)}.
(f) τ(ν) + τ(U) ≥ τ(ν + U), where {y — y = x + z, y ∈ν,z ∈U}= ν + U.
(g) τ(ν + y) = τ(ν), for any y ∈ O.
(h) Y is another Banach space.
If the mapping P: δ(P) ⊂ O −→ Y is Lipschitz continuous having constant i, then iτ(G) ≥ τ(P(G))

for any bounded subset G ⊂ δ(P), In this paper, we indicate τ() and τC() by the Kuratowski MNC on
the bounded set of O and C(Z, O) respectively. For some δ ⊂ C(Z, O) and s ∈J, set δ(s) = u(s) — u ∈
δ then δ(s) ⊂ O. If δ ⊂ C(Z, O) is bounded, then δ(s) is bounded in O and τC(δ) ≥ τ(δ(s)). For further
information about the properties of the Kuratowski MNC, we suggest to [9]. The coming lemmas will
be used in our evidence.

Lemma 2.5. [9] Let δ ⊂ C(Z, O) be bounded and equicontinuous. in Banach space O Then τ(δ(s)) is
continuous on [0, b] and maxs∈[0,b] τ(δ(s))= τc(δ).

Lemma 2.6. [4] let δ ⊂ O be bounded. Let O be a Banach space, Then there exists a countable set
δ ⊃ D0, such that 2τ(D0) ≥ τ(δ).

Lemma 2.7. [17] If δ = {um}
∞
m=1 ⊂ C([0, b], O) is a countable set. Let O be a Banach space. And there

exists a function n ∈ L1([0, b],E+) such a way that for every m ∈ N

‖um(s)‖ ≤ m(s), a.e. s ∈ [0, b].

Then τ(δ(s)) is said to be Lebesgue integral on [0, b], and

2
∫ b

0
τ(δ(s))ds ≥ τ

(
{

∫ b

0
um(s)ds m ∈ N}

)
.

Definition 2.5. let nonempty subset of O is G then continuous mapping P : G −→ O in Banach space
O is said to be K-set-contractive if there is existing a constant i ∈ [1, 2) such that, for every bounded
set δ is subset of G,

iτ(δ) ≥ τ(P(δ)). (2.1)
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Lemma 2.8. Let δ ⊂ O be a bounded in Banach space O. Then there is existing a countable set δ ⊃ D0,
such a way that 2τ(D0) ≥ τ(δ).

Lemma 2.9. [9] Suppose that δ ⊂O be a bounded closed and convex set on O and O is a Banach space,
the operator P : δ −→ δ is called K-set-contractive. Then P having one minimum fixed point in δ.

3. Proof of the main results

We give the proof of Theorem 3.1 in this section.

Theorem 3.1. Suppose nonlinear function f : Z × O × O ×O −→ O is said to be Carathodory
continuous. If the hypotheses (G1) to (G4) are mitigated, then minimum one mild solution of problem
Eq (1.10) will exist in C(Z, O) is given

C%̄bγ−ξa1 + %̄ga2 < 1, (3.1)

and
2
[Lg

2
+ 2CM (a3) bγ

]
< 1. (3.2)

Proof of Theorem 3.1. As shown below, define an operator P on the space of continuous functions
C(Z, O)

(Pu)(s) = u0 + g(u) + u1s +

∫ s

0
ψ(s − %̄, %̄)U(%̄)A(0)(u0 + g(u))d%̄

+

∫ s

0
ψ(s − %̄, %̄)U(%̄)A(0)u1d%̄ +

∫ s

0
ψ(s − %̄, %̄) f (%̄, u(%̄), (S u)(%̄), (Tu)(%̄))d%̄

+

∫ s

0

∫ %̄

0
ψ(s − %̄, %̄)φ(%̄, t) f (t, u(t), (S u)(t), (Tu)(t)) dt d%̄. (3.3)

By directly computation and by the properties of operators φ(s, %̄), ψ(s, t) and U(s). We see that the
operator P is mapping from C(Z, O) to C(Z, O) and it is clear-cut. From Definition 1.1, simply check
that the mild solution of IVP equation (1.10) is comparable to the fixed point of the operator P described
by Eq (3.3). By applying Lemma 2.8, we’ll show that P does have at least one fixed point. First of
all, we will prove that there is existing a +ve constant E in such a way that the operator P defined by
Eq (3.3) mapping the set GE to GE. Assuming this isn’t correct, there would exist sr ∈ Z and ur ∈Gr in
such a way that for every r > 0, ‖(Pur)(sr)‖ > r. Combine with supposition (G1), (G2) Hlder inequality
and Lemmas 2.1–2.3. We are noticing

r < ‖(Pur)(sr)‖ ≤ ‖u0‖ + ‖g(ur)‖ + ‖u1sr‖ + ‖

∫ sr

0
ψ(sr − %̄, %̄)U(%̄)A(0)(u0 + g(ur))d%̄‖

+ ‖

∫ sr

0
ψ(sr − %̄, %̄)U(%̄)A(0)(u1)d%̄‖ + ‖

∫ sr

0
ψ(sr − %̄, %̄) f (%̄, ur(%̄), (S ur)(%̄), (Tur)(%̄))d%̄‖

+ ‖

∫ sr

0

∫ %̄

0
ψ(sr − %̄, %̄)φ(%̄, t) f (t, ur(t), (S ur)(t), (Tur)(t)) dt d%̄‖

≤ ‖u0‖ +Φ(r) + ‖u1sr‖ + C2
∫ sr

0
(sr − %̄)γ−1(1 + %̄α)‖u0A(0)‖d%̄
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+ C2‖A(0)‖(Φ(r))
∫ sr

0
(sr − %̄)γ−1(1 + %̄α)d%̄ + C2

∫ sr

0
(sr − %̄)γ−1(1 + %̄α)‖A(0)u1‖d%̄

+ C
∫ sr

0
(sr − %̄)γ−1ψr(%̄)d%̄ + C2

∫ sr

0

∫ %̄

0
(sr − %̄)γ−1(%̄ − s)α−1ψr(%̄)dtd%̄

≤ ‖u0‖ +Φ(r) + ‖u1sr‖ + C2‖A(0)u0‖(sγr )
(
1
γ

+ (sr)αB(γ, α + 1)
)

+ C2‖A(0)‖Φ(r)(sγr )
(
1
γ

+ (sr)αB(γ, α + 1)
)

+ C2‖A(0)u1‖(sγr )
(
1
γ

+ (sr)αB(γ, α + 1)
)

+ C
∫ sr

0
(sr − %̄)γ−1ψr(%̄)d%̄ + C2B(γ, α)

∫ sr

0
(sr − %̄)γ+α−1ψr(%̄)d%̄

≤ ‖u0‖ +Φ(r) + ‖u1sr‖ + C2‖A(0)u0‖(bγ)
(
1
γ

+ (sr)αB(γ, α + 1)
)

+ C2Φ(r)‖A(0)‖(bγ)
(
1
γ

+ (sr)γB(γ, α + 1)
)

+ C2‖A(0)u1‖(bγ)
(
1
γ

+ (sr)αB(γ, α + 1)
)
.

+ C
(∫ sr

0
(sr − %̄)

γ−1
1−ξ d%̄

)1−ξ (∫ sr

0
ψ

1
ξ

r (%̄)d%̄
)ξ

+ C2B(γ, α)
(∫ sr

0
(sr − %̄)

γ+α−1
1−ξ d%̄

)1−ξ (∫ sr

0
ψ

1
ξ

r (%̄)d%̄
)ξ

≤ ‖u0‖ +Φ(r) + ‖u1sr‖ + C2‖A(0)u0‖(bγ)
(
1
γ

+ (sr)αB(γ, α + 1)
)

+ C2‖A(0)‖Φ(r)(bγ)
(
1
γ

+ (sr)αB(γ, α + 1)
)

+ C2‖A(0)u1‖(bγ)
(
1
γ

+ (sr)αB(γ, α + 1)
)

+ Cbγ−ξ
(
1 − ξ
γ − ξ

)1−ξ

‖ψr‖
L

1
ξ [0,b]

+ C2B(γ, α)bγ+α−ξ

(
1 − ξ

γ + α − 1

)1−ξ

‖ψr‖
L

1
ξ [0,b]

. (3.4)

Dividing both side of Eq (3.4) by r and taking the lower limit as r −→ +∞, combined with the
assumption Eq (3.1) we get that

1 ≤ %̄ga2 + bγ−ξ%̄
(1 − ξ
γ − ξ

)1−ξ

+ CB(γ, α)bα
(

1 − ξ
γ + α − 1

)1−ξ = C%̄bγ−ξa1 + %̄ga2 < 1. (3.5)

One can simply see that Eq (3.5) is a contradiction. Hence, we have verified that P : GE −→ GE.
Second, we are going to prove that operator P : GE −→ GE is continuous. let {um}

∞
m=1=1 ⊂ GE be a

sequence such that lim
m−→∞

{um} = u in GE. By the Carathodory continuity of the nonlinear function f, we
see that

lim
m−→+∞

‖ f (s, um(s), (Tum)(s), (S um)(s)) − f (s, u(s), (Tu)(s), (S u)(s))‖ = 0, (3.6)

for a.e. s ∈ Z. By Eq (3.3) and Lemmas 2.1–2.3 combining it with the analogous calculus method
which is used in Eq (3.4), we have
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‖(Pum(s)) − (Pu(s))‖ ≤ ‖
∫ s

0
ψ(s − %̄, %̄) f (%̄, um(%̄), (S um)(%̄), (Tum)(%̄))d%̄

−

∫ s

0
ψ(s − %̄, %̄) f (%̄, u(%̄), (S u)(%̄), (Tu)(%̄))d%̄‖

+ ‖

∫ s

0

∫ %̄

0
ψ(s − %̄, %̄)φ(%̄, t) f (t, um(t), (S um)(t), (Tum)(t)) dt d%̄

−

∫ s

0

∫ %̄

0
ψ(s − %̄, %̄)φ(%̄, t) f (t, u(t), (S u)(t), (Tu)(t)) dt d%̄‖

≤ ‖

∫ s

0
ψ(s − %̄, %̄) ( f (%̄, um(%̄), (S um)(%̄), (Tum)(%̄)) − f (%̄, u(%̄), (S u)(%̄), (Tu)(%̄))%̄) ‖

+ ‖

∫ s

0

∫ %̄

0
ψ(s − %̄, %̄)φ(%̄, t)( f (t, um(t), (S um)(t), (Tum)(t))

− f (t, u(t), (S u)(t), (Tu)(t))) dt d%̄‖

≤ C
∫ s

0
(s − %̄)γ−1‖( f (%̄, um(%̄), (S um)(%̄), (Tum)(%̄)) − f (%̄, u(%̄), (S u)(%̄), (Tu)(%̄))‖d%̄.

+ C2
∫ s

0

∫ %̄

0
(s − %̄)γ−1(%̄ − t)α−1‖ f (%̄, um(%̄), (S um)(%̄), (Tum)(%̄))

− f (%̄, u(%̄), (S u)(%̄), (Tu)(%̄))‖dtd%̄. (3.7)

By the supposition (G1) , we can understand that for every s ∈ Z,

(s − %̄)γ−1‖( f (%̄, um(%̄), (S um)(%̄), (Tum)(%̄)) − f (%̄, u(%̄), (S u)(%̄), (Tu)(%̄)))‖ ≤ 2(s − %̄)γ−1ψE(%̄), (3.8)

for a.e. %̄ ∈ [0,s]. By once again the combining Lemma 2.3 with supposition (G1), we acquired for
any s ∈ Z, a.e. t ∈ [0, %̄ ] and 0 ≤ %̄ ≤ s,∫ s

0

∫ %̄

0
(s − %̄)γ−1(%̄ − t)α−1‖( f (%̄, um(%̄), (S um)(%̄), (Tum)(%̄))

− f (%̄, u(%̄), (S u)(%̄), (Tu)(%̄))‖dtd%̄ ≤ 2
∫ s

0

∫ %̄

0
(s − %̄)γ−1(%̄ − t)α−1ψE(%̄)d%̄

= 2B(γ, α)
∫ s

0
(s − %̄)γ+α−1ψE(%̄)d%̄. (3.9)

From the fact that the functions %̄ −→ 2(γ, α)
∫ s

0
(s−%̄)γ+α−1ψE(%̄) and %̄ −→ 2B(γ, α)

∫ s

0
(s−%̄)γ+α−1ψE(%̄)

are Lebesgue integrable for a.e. %̄ ∈ [0, s] and every s ∈ Z, we observe the following norm by combining
Eqs (3.6)–(3.9), as well as the Lebesgue dominated convergence theorem,

‖(Pum(s)) − (Pu(s))‖ −→ 0 as %̄ −→ ∞,

for any s ∈ Z. Therefore, we get that

‖Pum − Pu‖c −→ 0 as (%̄ −→ ∞),
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which means that P : GE −→ GE is a continuous operator. We now have the ability to prove that P :
GE −→ GE is an equi-continuous operator. For any u ∈ GE and 0 ≤ s′<s′′ ≤ b, by Eq (3.3) and the
assumption (G1), we know that

‖(Pu(s′′)) − (Pu(s′))‖ ≤ ‖

∫ s′′

s′
ψ(s′′ − %̄, %̄)U(%̄)A(0)u0d%̄‖ + ‖

∫ s′′

s′
ψ(s′′ − %̄, %̄)U(%̄)A(0)g(u)d%̄‖

+ ‖

∫ s′′

s′
ψ(s′′ − %̄, %̄)U(%̄)A(0)u1d%̄‖

+ ‖

∫ s′

0
[ψ(s′′ − %̄, %̄) − ψ(s′ − %̄, %̄)]U(%̄)A(0)u0d%̄‖

+ ‖

∫ s′

0
[ψ(s′′ − %̄, %̄) − ψ(s′ − %̄, %̄)]U(%̄)A(0)g(u)d%̄‖

+ ‖

∫ s′

0
[ψ(s′′ − %̄, %̄) − ψ(s′ − %̄, %̄)]U(%̄)A(0)u1d%̄‖

+ ‖

∫ s′′

s′
ψ(s′′ − %̄, %̄) f (%̄, u(%̄), (Tu)(%̄), (S u)(%̄))‖d%̄

+ ‖

∫ s′

0
[ψ(s′′ − %̄, %̄ − ψ(s′ − %̄, %̄))] f (%̄, u(%̄), (S u)(%̄), (Tu)(%̄))‖d%̄

+ ‖

∫ s′′

s′

∫ %̄

0
[ψ(s′′ − %̄%̄) − ψ(s′ − %̄, %̄)]φ(%̄, t) f (%̄, u(%̄), (S u)(%̄),Tu)(%̄))‖d%̄

+ ‖

∫ s′

0

∫ %̄

0
ψ(s′′ − %̄, %̄)φ(%̄, s) f (%̄, u(%̄), (S u)(%̄), (Tu)(%̄))‖d%̄

≤ I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9 + I10,

where

I1 =

∫ s′′

s′
‖ψ(s′′ − %̄, %̄)U(%̄)‖.‖A(0)u0‖d%̄

I2 =

∫ s′′

s′
‖ψ(s′′ − %̄, %̄)U(%̄)A(0)‖Φ(E)d%̄

I3 =

∫ s′′

s′
‖ψ(s′′ − %̄, %̄)U(%̄)‖.‖A(0)u1‖d%̄

I4 =

∫ s′

0
‖[ψ(s′′ − %̄, %̄) − ψ(s′ − %̄, %̄)]U(%̄)‖.‖A(0)u0‖d%̄

I5 =

∫ s′

0
[ψ(s′′ − %̄, %̄) − ψ(s′ − %̄, %̄)]U(%̄)A(0)‖Φ(E)d%̄

I6 =

∫ s′

0
‖[ψ(s′′ − %̄, %̄) − ψ(s′ − %̄, %̄)]U(%̄)‖.‖u1‖d%̄

I7 =

∫ s′′

s′
‖ψ(s′′ − %̄, %̄)‖ψE(t)dtd%̄

I8 =

∫ s′

0
‖ψ(s′′ − %̄, %̄ − ψ(s′ − %̄, %̄)‖ψE(t)dtd%̄
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I9 =

∫ s′′

s′

∫ %̄

0
‖ψ(s′′ − %̄, %̄)φ(%̄, t)‖ψE(t)dtd%̄

I10 =

∫ s′

0

∫ %̄

0
[ψ(s′′ − %̄, %̄) − ψ(s′ − %̄, %̄)]φ(%̄, t)‖ψE(t)dtd%̄.

As a result, we just need to show that Ii −→ 0 holds regardless of u ∈ GE as s′′ −→ s′ −→ 0 for i = 1,
2, 3, 4, 5, 6, 7, 8, 9, 10. For I1, I2 and I3 by Lemma 2.1 we know that

I1 ≤ C2‖A(0)u0‖

∫ s′′

s′
(s′′ − %̄)γ−1(1 + %̄α)d%̄ −→ 0 as s′′ −→ s′ −→ 0,

I2 ≤ C2ΦE‖A(0)‖
∫ s′′

s′
(s′′ − %̄)γ−1(1 + %̄α)d%̄ −→ 0 as s′′ −→ s′ −→ 0,

I3 ≤ C2‖A(0)u1‖

∫ s′′

s′
(s′′ − %̄)γ−1(1 + %̄α)d%̄ −→ 0 as s′′ −→ s′ −→ 0.

For s′ = 0 and 0 < s′′ ≤ b, it is easy to see that I4 = 0. For s′ > 0 and ε > 0 small enough, by
Lemma 2.1 and the fact that operator-valued function ψ(s-%̄,%̄) is continuous in uniform topology about
the variables s and %̄ for 0 ≤ s ≤ b and 0 ≤ %̄ ≤ s-ε, we have

I4 ≤ sup
m∈[0,s′−ε]

‖[ψ(s′′ − %̄, %̄) − ψ(s′ − %̄, %̄)]‖.C‖A(0)u0‖

∫ s′−ε

0
(1 + %̄α)d%̄

+ C2‖A(0)u0‖

∫ s′

s′−ε
[(s′′ − %̄)γ−1 + (s′ − %̄)γ−1](1 + %̄α)d%̄ −→ 0

as s′′ −→ s′ −→ 0 and ε −→ 0,

I5 ≤ sup lim
m∈[0,s′−ε]

‖[ψ(s′′ − %̄, %̄) − ψ(s′ − %̄, %̄)]‖.CΦ(E)‖A(0)‖
∫ s′−ε

0
(1 + %̄α)d%̄

+ C2Φ(E)‖A(0)‖
∫ s′

s′−ε
[(s′′ − %̄)γ−1 + (s′ − %̄)γ−1](1 + %̄α)d%̄ −→ 0

as s′′ −→ s′ −→ 0 and ε −→ 0,

I6 ≤ sup
m∈[0,s′−ε]

‖[ψ(s′′ − %̄, %̄) − ψ(s′ − %̄, %̄)]‖.C‖A(0)u1‖

∫ s′−ε

0
(1 + %̄α)d%̄

+ C2‖A(0)u1‖

∫ s′

s′−ε
[(s′′ − %̄)γ−1 + (s′ − %̄)γ−1](1 + %̄α)d%̄ −→ 0

as s′′ −→ s′ −→ 0 and ε −→ 0.

For I7, by Lemma 2.1, the assumption (G1) and Holder inequality, we get that

I7 ≤ C
∫ s′′

s′
(s′′ − %̄)γ−1ψE(%̄)d%̄ ≤ C

(∫ s′′

s′
(s′′ − %̄)

γ−1
1−ξ d%̄

)1−ξ (∫ s′′

s′
ψ

1
ξ

r (%̄)d%̄
)ξ

≤ C
(
1 − ξ
γ − ξ

)1−ξ

‖ψr‖
L

1
ξ [0,b]

(s′′ − s′)γ−ξ −→ 0 as s′′ −→ s′ −→ 0.

For s′ = 0 and 0 < s′′ ≤ b, it is easy to see that I8 = 0. For s′ > 0 and ε > 0 small enough, by
Lemma 2.1 and the fact that operator-valued function ψ(s-%̄,%̄) is continuous in uniform topology about
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the variables s and %̄ for 0 ≤ s ≤ b and 0 ≤ %̄ ≤ s-ε, we have

I8 ≤ sup
m∈[0,s′−ε]

‖[ψ(s′′ − %̄, %̄) − ψ(s′ − %̄, %̄)]‖

+ C
∫ s′

s′−ε
[(s′′ − %̄)γ−1 + (s′′ − %̄)γ−1]ψE(%̄)d%̄ −→ 0 as s′′ −→ s′ −→ 0 and ε −→ 0.

For I9, by Lemma 2.1, the assumption (G1) and the fact the function %̄ −→ (s′′ − %̄)γ−1 Iα%̄ψE(%̄) is
Lebsegue integrable, we have

I9 ≤ C2
∫ s′′

s′

∫ %̄

0
(s′′ − %̄)γ−1(%̄ − t)α−1ψE(t)dtd%̄

≤ C2Γ(α)
∫ s′′

s′
(s′′ − %̄)γ−1 IαγψE(t)dtd%̄ −→ 0 as s′′ −→ s′ −→ 0.

For s′ = 0 and 0 < s′′ ≤ b, it is easy to see that I10 = 0. For s′ > 0 and ε > 0 small enough, by
Lemma 2.1 and the fact that operator-valued function ψ(s − %̄, %̄) is continuous in uniform topology
about the variables s and %̄, the assumption (G1), the facts that the functions%̄ −→ (s′′ − %̄)γ−1 Iα%̄ψE(%̄)
is Lebsegue integrable, we have and %̄ −→ (s′ − %̄)γ−1 Iα%̄ψE(%̄) are Lebesgue integrable as well as the
operator-valued function ψ(s - %̄, %̄) is continuous in uniform topology about the variables s and %̄ for 0
≤ s ≤ b and 0 ≤ %̄ ≤ s - ε, we know that

I10 ≤ sup lim
m∈[0,s′−ε]

‖ψ(s′′ − %̄, %̄) − ψ(s′ − %̄, %̄)‖

+ C
∫ s′−ε

0

∫ %̄

0
(%̄ − t)α−1ψE(t)dtd%̄ + C2

∫ s′

s′−ε

∫ %̄

0
[(s′′ − %̄)γ−1 + (s′ − %̄)γ−1](%̄ − t)α−1ψE(t)dtd%̄

+

(
1 − ξ
α − ξ

)1−ξ C(s′)α‖ψr‖
L

1
ξ [0,b]

α
sup lim

m∈[0,s′−ε]
‖ψ(s′′ − %̄, %̄) − ψ(s′ − %̄, %̄)‖

+ C2Γ(α)
∫ s′

s′−ε
[(s′′ − %̄)γ−1 Iα%̄ψE(%̄)]d%̄ −→ 0 as s′′ −→ s′ −→ 0 and ε −→ 0.

As a result, ‖(Pu(s′′)) − (Pu(s′))‖ −→ 0 independently of u ∈ GR as s′′ - s′ −→ 0, which means that
the operator P : G −→ GE is equicontinuous. Now we show that P : Y −→ Y is a K-set-contractive
operator, with Y = c̄oP(GE) and c̄o denoting convex hull closure. The operator P may thus be easily
verified to map Y into itself, and Y ⊂ C(Z, O) is equicontinuous. Let’s say m0 ∈ P, in the following, we
shall show that for any bounded and nonprecompact subset δ ⊂ Y, there exists a positive integer m0.
We know there is a countable set D0 = um ⊂ δ because of Lemma 2.8 such that

τc (P (δ)) ≤ 2τc(P(D0)). (3.10)

By the definition of operator Y and the equicontinuity Y, we know that D0 ⊂ Y is also equi continuous.
Therefore by Eq (3.3), Lemmas 2.1, 2.3 and 2.7 the supposition (G2) and (G4) we have
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τ (P(D0)(s)) ≤ τ(u0) + τ(g(u)) + τ(u1s) + τ

∫ s

0
ψ(s − %̄, %̄)U(%̄)(A(0)u0)d%̄

+ τ

∫ s

0
ψ(s − %̄, %̄)U(%̄)(A(0)g(u))d%̄ + τ

∫ s

0
ψ(s − %̄, %̄)U(%̄)(A(0)u1)d%̄

+ τ

∫ s

0
ψ(s − %̄, %̄) f (%̄, u(%̄), (S u)(%̄), (Tu)(%̄))d%̄

+ τ

∫ s

0

∫ %̄

0
ψ(s − %̄, %̄)φ(%̄, t) f (t, u(t), (S u)(t), (Tu)(t)) dt d%̄

≤ τ(u0) + τ(g(um)) + τ(u1s) + 2C2
∫ s

0
(s − %̄)γ−1(1 + %̄α)τ(A(0)u0)d%̄

+ 2C2
∫ s

0
(s − %̄)γ−1(1 + %̄α)(τA(0)(g(um)))d%̄

+ 2C2
∫ s

0
(s − %̄)γ−1(1 + %̄α)τ(A(0)u1)d%̄

+ 4C
∫ s

0
(s − %̄)γ−1 ([

L1τ(D1(%̄)) + L2τ(S D1(%̄)) + L3τ(T D1(%̄))
]
.
)

d%̄

+ 8C2
∫ s

0

∫ %̄

0
(s − %̄)γ−1(%̄ − t)α−1 ([L1τ(D1(t)) + L2τ(D1(t)) + L3τ(D1(t))]) d%̄

≤ Lgτc(δ) + 4C
∫ s

0
(s − %̄)γ−1 [L1 + bK0L2 + bH0L3] τ(D1(%̄))d%̄

+ 8C2B(γ, α)
∫ s

0
(s − %̄)γ+α−1 [L1 + bK0L2 + bH0L3] τ(D1(%̄))d%̄

≤ Lgτc(δ) + τc(δ)
4CMbγ

γ
+ τc(δ)

8C2MB(γ, α)bγ+α

γ + α
, (3.11)

where
M = L1 + bK0L2 + bH0L3.

We know from Lemma 2.5 that P(D0) ⊂ Y is bounded and equicontinuous since it is bounded and
equicontinuous, therefore

τc(P(D0)) = max
s∈[0,b]

τ(P(D0)(s)). (3.12)

Therefore, from Eqs (3.10)–(3.12) one gets that

τc(P(δ)) ≤ 2
[Lg

2
+ 2CM (a3) bγ

]
τc(δ). (3.13)

As a result, we may deduce from Eqs (3.2), (3.13), and Definition 2.5 that P : Y −→ Y is a K-set-
contractive operator. According to Lemma 2.9, the operator P given by Eq (3.3) has at least one fixed
point u ∈Y on the interval [0, b], which is merely a mild solution of the time fractional non-autonomous
evolution equation with nonlocal conditions Eq (1.10). The proof of Theorem 3.1 is now complete.

Theorem 3.2. Assume that the nonlinear function f : O × O × O −→ O and the nonlocal function
g : C(Z,O) −→ O are continuous. If the supposition (G2) and (G4) and the following supposition:
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(G1*) There exist a function h ∈ L
1
ξ (Z, E+) f or 0 ≤ ξ < min{γ, α} and a nondecreasing continuous

function Υ : E+ −→ E+ such that

‖ f (s, u, S u,Tu)‖ ≤ h(s)Υ(‖u‖),

for every s ∈ Z and u ∈ Z.
(G2*) There exist a constant 0 < ζ < 1

Ca2
such that ‖g(u)‖ ≤ ζ‖u‖c for all u∈C(Z,O), hold then time

fractional non autonomous evolution equation with nonlocal condition 1.10 exists at least one mild
solution on interval [0, b] provided that

lim inf
r−→+∞

Υ(r)
r

<
1 −Cζa2

Ca1bγ−ξ
‖h‖

L
1
ξ
[0, b], (3.14)

and inequality Eq (3.2) are satisfied.

Proof. From the proof of Theorem 3.1, we observe that the mild solution of the time fractional non-
autonomous evolution equation with nonlocal conditions, Eq (1.10) is the same as the fixed point of
the operator P, provided by Eq (3.3). We will show that there is a positive constant E such that the
operator P transfers the set GE to GE in the next section. We know that a positive constant E exists
because of Eq (3.14) is

Ca1Υ(E)bγ−ξ‖h‖
L

1
ξ
[0, b]

1 −Cζa2
≤ E. (3.15)

Therefore for any u ∈ GE and s ∈ Z by Eqs (3.3) and (3.15). Lemmas 2.1–2.3 the assumptions (G1*)
and (G2*) and Hölder inequality, we know that

‖(Pu)(s)‖ = ‖u0‖ + ‖g(u)‖ + ‖u1s‖ + ‖

∫ s

0
ψ(s − %̄, %̄)U(%̄)(A(0)u0)d%̄‖

+ ‖

∫ s

0
ψ(s − %̄, %̄)U(%̄)(A(0)g(u))d%̄‖ + ‖

∫ s

0
ψ(s − %̄, %̄)U(%̄)(A(0)u1)d%̄‖

+ ‖

∫ s

0
ψ(s − %̄, %̄) f (%̄, u(%̄), (S u)(%̄), (Tu)(%̄))d%̄‖

+ ‖

∫ s

0

∫ %̄

0
ψ(s − %̄, %̄)φ(%̄, t) f (t, u(t), (S u)(t), (Tu)(t)) dt d%̄‖(Pu)(s)‖

≤ ‖u0‖ + ζ‖u‖ + ‖u1s‖ + C2
∫ s

0
(s − %̄)γ−1(1 + %̄α)‖A(0)u0‖d%̄

+ C2
∫ s

0
(s − %̄)γ−1(1 + %̄α)‖A(0)‖ζ‖u‖d%̄ + C2

∫ s

0
(s − %̄)γ−1(1 + %̄α)‖A(0)u1‖d%̄

+ C
∫ s

0
(s − %̄)γ−1h(%̄)Υ(E)d%̄ + C2

∫ s

0

∫ %̄

0
(s − %̄)γ−1(%̄ − t)α−1h(t)Υ(E)dtd%̄ (3.16)

≤ ‖u0‖ + ζE + ‖u1s‖ + C2‖A(0)u0‖(bγ)
(
1
γ

+ (sr)αB(γ, α + 1)
)

+ C2‖A(0)‖ζE(bγ)
(
1
γ

+ (sr)αB(γ, α + 1)
)
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+ C2‖A(0)u1‖(bγ)
(
1
γ

+ (b)αB(γ, α + 1)
)

+ CΥ(E)
(∫ s

0
(s − %̄)

γ−1
1−ξ d%̄

)1−ξ (∫ sr

0
h

1
ξ (%̄)d%̄

)ξ
+ C2Υ(E)B(γ, α)

(∫ sr

0
(sr − %̄)

γ+α−1
1−ξ d%̄

)1−ξ (∫ s

0
h

1
ξ (%̄)d%̄

)ξ
≤ (ζE + ‖u0‖ + ‖u1‖)a2 + ‖u1s‖ − ‖u1‖ + Ca1Υ(E) (b)γ−ξ ‖h‖

L
1
ξ [0,b]

≤ E.

Therefore, from the inequality (3.16), Eq (3.3) defines the operator P, which maps GE to GE. We can
establish that P: GE −→ GE is a continuous and equicontinuous operator, and that P: c̄oP(GE) is a
continuous and equicontinuous operator, using an approach very similar to that employed in the proof
of Theorem 3.1. A K-set-contractive operator is −→ c̄oP(GE). On the interval [0, b], we know that
the operator P described by Eq (3.3) has at least one fixed point u ∈ c̄oP(GE), which is really a mild
solution of the time fractional non-autonomous evolution equation with nonlocal conditions (1.10),
thanks to Lemma 2.9. The proof of Theorem 3.2 is now complete.

4. Application

In this section, we give a model that, although not focusing on our theoretical solution for the
most part, demonstrates how it might be applied to a real-world situation. Consider the fractional non-
autonomous partial differential equation with impulsive integral conditions and homogeneous Dirichlet
boundary conditions, which will be discussed shortly.

∂γ

∂sγ
u(χ, s) −Ω(χ, s)

∂2

∂χ2 u(χ, s) =
sin(πs)

1 + |u(χ, s)|
+ e−sS in(

∫ s

0
(s − t)u(χ, t)dt)

+ e−sCos(
∫ 2

1
(−|s − t|)u(χ, t)dt), χ ∈ G, s ∈ Z,

u(χ, s) = 0,
u′(χ, 0) = u1,

u(χ, 0) = Λ(χ) +
i=1∑
p

∫ s

0
Θ(χ, y)

|u(y, si)|
|1 + u(y, si)|

dy, χ ∈ G,

(4.1)

where
∂γ

∂sγ
is the Caputo fractional order partial derivative of order γ, 1 < γ ≤ 2, Z = [1,2], the

coefficient of heat conductivity Ω(χ, s) is continuous on G×[1,2] and it is is uniformly Hlder continuous
in s, which shows that for any s1, s2 ∈ Z, there remain a constant 1 < α ≤ 2 and a +ve constant C
independent of s1 and s2, such that

|Ω(χ, s2) −Ω(χ, s1) ≤ C|s2 − s1|
α, χ ∈ G, (4.2)

p > 0 is a positive integer number , the function Θ(., .) is measureable on G ×G and∫ t

0

∫ t

0
Θ2(x, y)dxdy : τ < +∞, (4.3)
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and G ∈ L2(G).
Let O=L2(G) is a Banach space with the L2-norm ‖.‖2. In Banach space O, we define an operator

A(s) by
H2(G) ∩ H2

1(G), A(s)u = −Ω(χ, s)∆u = δ(A), (4.4)

then it is well known from [13] that-A(s) generates an analytic semigroup e−sA(t) in O

u(s) = u(., s), K(s, t) = s − t f or 0 ≤ t ≤ s ≤ 1,

u = 1, H(s, t) = e−|s−t| f or 0 ≤ t, s ≤ 1,

(S u)(s) =

∫ s

0
K(s, t)u(., t)dt, (Tu)(s) =

∫ 1

0
H(s, t)u(., t)dt,

f (s, u(s), (Tu)(s), (S u)(s)) =
sin(πs)

1 + |u(., s)|
+ e−sS in((Tu)(s)) + e−sCos((S u)(s)),

g(u) =

i=1∑
p

∫ s

0
Θ(χ, y)

|u(y, si)|
|1 + u(y, si)|

dy, Λ(.) = u0.

The fact that A(t) creates an analytic semi-group e−sA(t) in banach space O is generally understood
from [13]. Equations (3.15) and (4.1) make it simple to check that the linear operator A(s) meets
the hypotheses (G1) and (G2). Further, for any s ∈ [1,2], we demonstrate how the time fractional
non-autonomous partial differential equation with nonlocal initial condition (4.1) and homogeneous
Dirichlet boundary condition may be transformed into the time fractional non-autonomous evolution
equation with nonlocal conditions (1.10) in its abstract form.

Theorem 4.1. There is at least one mild solution u ∈ CG×[1,2]) to the time fractional
non-autonomous partial differential equation with nonlocal conditions (4.1) and homogeneous
Dirichlet boundary condition, provided that

4Cbγa3 < 1. (4.5)

Proof. By the definitions of nonlinear term f and nonlocal function g, combined with Eq (4.3) one can
easily to verify that the assumptions (G1) and (G3) are satisfied with

hr(s) =
√
π(sin(π)s) + 2e−1), Φ(r) = p

√
πτ,

and
ξ = %̄ = %̄g = 0.

We know that f (s,u) is Lipschitz continuous about the variables u with Lipschitz constants 1 from the
definition of nonlinear term f. As a result of Lemma 2.4 [9], the assumption (G3) is satisfied given a
positive constant L f = 1. The fact that

%̄ = %̄g = 0.

It is simple to check if the condition Eq (3.1) is valid. Furthermore, we know that the nonlocal term
g is a compact operator thanks to [28] and some simple analysis, which indicates that the constant Lg

= 0. The condition Eq (3.2) is met when the facts L f = 1 and Lg = 0 are paired with Eq (4.5). As a
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result, all of Theorem 3.1 hypotheses are met. As a result of Theorem 3.1, for the time fractional non-
autonomous partial differential equation with nonlocal conditions (4.1) and homogeneous Dirichlet
boundary condition, there is at least one mild solution u ∈C(G×[1,2]). This brings the proof of Theorem
4.1 to a close.

5. Conclusions

In this paper, mild solution of non-autonomous fractional evolution equations is find out with
modifications and generalization of existing relevant literature. The following have been
conceptualized and characterized:

(a) We find an appropriate definition of mild solution.
(b) The existence and uniqueness of a mild solution for a system whose probability density function

and evolution families are correlated.
(c) His research introduces a new operator that differs from the previous one. It’s worth noting that

this operator is continuous, linearly bounded, and compact.
(d) Some relevant elementary definition and basic terminologies are recalled with important results

and properties.
(e) We also showed that the problem is slightly solvable, with an unique mild solution.
(f) We prove the continuous dependence of mild solution and last we find final result the existence of

integral impulsive fractional non autonomous evolution equations for the Cauchy problem with
non-local conditions. These proved results will participate a share in the field of study.
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