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1. Introduction

Leptospirosis is a disease caused by infection with leptospira bacteria. These bacteria can be found
worldwide in soil and water. There are many strains of leptospira bacteria that can cause disease.
Leptospirosis is a zoonotic disease, which means it can be spread from animals to people. Infection in
people can cause flu-like symptoms and can cause liver or kidney disease. In the United States, most
cases of human leptospirosis result from recreational activities involving water. Infection resulting
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from contact with an infected pet is much less common, but it is possible. Leptospirosis is more
common in areas with warm climates and high annual rainfall but it can occur anywhere [1].

Signs of leptospirosis may include fever, shivering, muscle tenderness, reluctance to move,
increased thirst, changes in the frequency or amount of urination, dehydration, vomiting, diarrhea, loss
of appetite, lethargy, jaundice (yellowing of the skin and mucous membranes), or painful inflammation
within the eyes. The disease can cause kidney failure with or without liver failure [2]. Leptospirosis is
generally treated with antibiotics and supportive care. When treated early and aggressively, the chances
for recovery are good but there is still a risk of permanent residual kidney or liver damage [3, 4].

There are so many models proposed for the dynamics of humans [5-11] as well as vector
populations [12, 13]. To analyze the nature of leptospirosis, Pongsumpon [14] develop a mathematical
model where they show the rate of change of both humans and rat populations. The population of
humans is further split into two major groups: The juveniles and the adults. A dynamical model for
leptospirosis transmission was considered by Triampo et al. [15]. In their work, they considered a
number of leptospiroses infections in Thailand and worked on their numerical simulations. In [16],
Zaman took the real data and studied the behavior of the theory optimal control.

The generalisation of the classical calculus is called fractional calculus. Mathematical models for
the epidemic disease with integer order derivative was recently studies by the researchers [17-20].
But mathematical modelings with variable order derivatives give an advance knowledge of a system.
Fractional order models are very capable to simulate the memory effects and crossover natures and
gives a big degree of performance. Fractional mathematical modelings provides more insights about a
epidemic under given circumstances [21-24]. Various non-classical type operators with non-singular
and singular type kernels have been exemplified in the literature [25,26]. The successful applications of
such non-classical operators can be seen in early literature and papers therein [27,28]. Early, only some
leptospirosis models defined by variable order operators are given. The researchers in [29] proposed
a mathematical structure for cancer and hepatitis co-dynamics in non-classical derivative and studied
its outcomes.

Nowadays, the mathematical models involving fractional order derivative were given
noticeable importance because they are more accurate and realistic as compared to the classical
order models [30-35]. “Motivated by the advancement of fractional calculus, many researchers have
focused to investigate the solutions of nonlinear differential equations with the fractional operator by
developing quite a few analytical or numerical techniques to find approximate solutions [36—40]. These
differential equations involves several fractional differential operators like Riemann-Liouville, Caputo,
Hilfer etc.” [41-43].

However, “these operators possess a power law kernel and have limitations in modeling physical
problems. To overcome this difficulty, recently an alternate fractional differential operator having a
kernel with exponential decay has been introduced by Caputo and Fabrizio [44]. This novel approach of
fractional derivative is known as the Caputo-Fabrizio (C-F) operator which has attracted many research
scholars due to the fact that it has a non-singular kernel. Also the C-F operator is most appropriate for
modeling some class of real-world problem which follows the exponential decay law” [44]. With the
passage of time, developing a mathematical model using the C-F fractional order derivative became a
remarkable field of research. In recent times, several mathematicians were busy in development and
simulation of CFFDE.

We develop a vector-host epidemic model in which the total population of the host (human) at
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time () is divided by susceptible S, infected I, and recovered R;, humans. The population of vectors
at time (¢) is classified by susceptible S, and infected /, classes. The total amount of host is exemplified
by N, and the total amount of vectors are denoted by N,. Here, N, = S, + I, + R, and N, = S, + I,.
The mathematical representation of the model is given by

das ,(t
;t( ) = by — Sy = B1Suly — BaSul, + LRy,
AL (f)
c;t = BoSuly + B1S uly — pndy — 6pdy, — yuly,
dR;(t
£)=nh—m&—bm, (1.1)
das (1)
=b,— .S, —BS.1,
7 2= B3S 1
dIl,(1)
= SVI - vIv_évIv-
ar Py

Here, b, is the rate of recruitment in humans size, susceptible humans can get infection by two roots,
one is direct transmission or via infectious individuals where 8, and (3, are the mediate transmission
rates, u, is the natural mortality rate for hosts where vy, is the rate of recovery of humans from the
infection, ¢, disease death rate of infected humans due to disease, A, is the constant rate of humans
immune, b, recruitment rate for human density, ¢, is the mortality rate of vectors due to disease,
B3 represent disease carrying due to susceptible vectors per host per unit time and vy, is the natural
mortality rate of vector.

Motivated by the above discussion, we modify the above model (1.1) by using Caputo-Fabrizio
fractional operator, and the modified model is given as follow:

6 DS (1) = by — S — BiSuly — oSl + 4Ry,

6" DY) = BaS il + BiS il — pnd = Snln — Yily,

§" DRy = Yuly — Ry — AR, (1.2)
6 DS (1) = b2 =S, = B3S vIn,

§ DI = BsS Iy = o, = 8,1,

To exemplify the existence and uniqueness of equilibrium solutions of the given system, the number of
novel results are utilized with the help of Sumudu transform. By equilibrium solutions existence, we
are concluding the well-posedness of the given system.

Section 2 is devoted to some basic definitions regarding fractional operators. In section 3, the
uniqueness of the solution is derived. Stability analysis of the given algorithm by the application of
fixed point theorem is carried out in Section 4. Section 5 deals with the derivation of special solutions
and numerical results for the model. The sensitivity of different parameters corresponding to basic
reproduction is discussed in Section 6. Section 7 deals with the conclusion and future work.

2. Preliminaries

Here we recall some definitions alongwith Caputo-Fabrizio operator of non-classical order which is
defined with exponentially decay type kernel [44,45].
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Definition 2.1. Assume ¢ € G'(a,b), b > a, a € (0, 1), then the definition of Caputo-Fabrizio derivative
of variable order is given by

N ! -
D} (¢(1) = % f ¢'(X)6Xp[—alt_—);]dx,

where N(a) is the normalization function with N(0) = N(1) = 1. Also, when the function does not exist
in G'(a, b), then the given operator can be defined by

N ! -
DI@(r) = %%) f (6 - $() expl-ar—1dx

Remark 2.1. Ifwe fix € = 177" € [0,00), @ = ﬁ € [0, 1], then the definition of given Caputo-Fabrizio
variable order derivative is redefined by

N ! -
“DJ(¢(r) = gf ¢'(x) eXP[—th]dx, N(0) = N(e0) = L.

In addition,

1 t—
lim — exp[— —2] = B(x — 1).
e—0 € €

The related fractional Caputo-Fabrizio integral of the given derivative is simulated by Nieto and
Losada [46] which is as follow:

Definition 2.2. For a € (0, 1), the integral of fractional order « of the function f is expressed by

CFa 2 -a) 2a ff
@0 = 5N BmaNg ), $9ds 120 2.1)

Remark 2.2. It is to be noted that, according to the above definition, the function of order 0 < r < 1,
which is fractional integral of Caputo type is just average among mapping ¥ and the integral of it of
order 1. Therefore, that can be written as

2(1 — 2
d-o . ¢ 2.2)
2-ao)N@) @-a)N0@)
The above expression will assumes the form as
N(a) = 0<ae<l. (2.3)

2-a)

Nieto and Losada [46] rewrote that this Caputo-Fabrizio derivative of order 0 < a < 1 can be
reformulated as

G -
D) = f o () expl-art— . 2.4)
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Definition 2.3. The Sumudu transform of a mapping ¢(t) defined on a set specified by

B = {¢(¢) : there exist A, wy, wy > 0, |p()] < Aexp (l)i') , ift € (=1) X [0, 00)}, (2.5
is given by
H(u) = S[¢(n)] = f exp(—N¢(ut)dt, u € (—71,72). (2.6)
0
Definition 2.4. For the Caputo-type fractional operator of any function ¢(t), the Sumudu transform is
defined by
S[ED¢(1)] = u_"[H(u) - Z U DA )imo|, n— 1 < @ < n. (2.7)
i=0

Similarly, the Sumudu transform for any function ¢(¢) in the sense of Caputo-Fabrizio operator is
given as follow:

Definition 2.5. For any function ¢(t) where the C-F derivative is defined, the Sumudu transform in a
sense of C-F is expressed by

S — (0
ST DN (B(0)) = N(a)—(l"’(’)) 20 (2.8)
-+ au

3. Special solution derivation

In this section, we apply Sumudu transform to both sides of the model (1.2) using Picard’s iterative
mathod [22]:

S(S () = 54(0)

N(@) == = Slby = Sy, = iSul = B2S ks + LRy
N(a)‘% = S[BoS uly + B1iS uly — pndy = Sl — yalnl,

N(a)S(If”YZ ; Z:(O) = Slyal — iRy — AuRi), 3.1)
N(e) S(f ftz n i;(o) = S[by = %S, = B3S 4],

N(d)% = SIB3S vln — voly — 6,1,].
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Rearranging, we get

1 _
S(S4(1) = §,(0) + (Aj”(—;"”)swl — 1S h = BiSuly = BaSuLy + LRy,
1 _
SU(1) = 1,(0) + %S[ﬁzshn + BiSuly — gy — Suly — valil,
1 _
S(Ry(1)) = R,(0) + (Asy—+au)8[7hlh — Ry — 4Ry ], (3.2)
(@)
S(S,(1) = $,(0) + (1‘;—“”‘)3[192 — 1,8, = B5S. I,
(@)
SU0) = 1) + L2 a6 1yl - 61
N(a)

By operating every side of Eq (3.2) by the inverse of Sumudu transform, we obtain
(I —a+au)
N(a)
(1 —a+au)
"————S[B2S Ly + BiS nIh — iy = Sulh — yaln],
N(a)
(I —a+au)
N(@)
A —a+au)
N(a)
(I —a+au)
N(a)
The recursive formula for given model can be exemplified by

Su(t) = Sy0)+ S~ Slb1 — S 5 = B1S Iy — BoS uly + AnRy),
L) = [,(0) + S~
Ri(1) = Ry(0) + S~ Slynly — pnRy — AuRy), (3.3)
§y() = 8,0 +S8" Slby = yvSy = B3S vlnl,

Iv(t) = IV(O) + S_ S[ﬁ3Sth - )’vlv - 6vlv]-

(I —a+au)
Shmsn(@) = Spw(0) + S lws[bl = 1S niny = B1S nyInny = B2S himy Loy + AnRnmy 1,
(I —a+au)
Inwsy(@) = Liy(0) + S 1(WS[B25 my Doy + B1S hyInny = Mudniny = Ondniny — Yidnn 15
(I —a+auw)
Riniy(t) = Ry (0) + S IWS [Yilhiny — MrRiy — ARy, (3.4)
(1 —a+aun)
Svn t :Svn 0 +S]—Sb - vSvn_ Svnlzn ,
(n+1)(8) m(0) N@) (D2 = vuSviy — B3S vy Inimy
(L —a+au

Iv(n+1)(t) = Iv(n)(O) + S_ S[ﬁ3S v(n)Ih(n) - 7v1v(n) - 6vlv(n)]-

N(a)

The solution of (3.4) is expressed as
Su(®) = ,}I_,Ig S iy (D),
(1) = 1im £,(2),
Ry(t) = gl_)n; Riyn)(2),
S,() = ,}I_{Iolo S himy (D),

Iv(l) = lim Ih(n)(t)‘
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For simulating the given model (3.4), we use following values S, = 1.2, [, = 2.8, R, = 1.3, S5, = 2.8,
I‘, = 115, b1 = 0121,,&;, = 00121,51 = 014, ﬁz = 002, ﬁ3 = 010, /lh = 1, 5}, = 08, Yh = 025,
b, =0.002, v, = 0.23, 6, = 0.001. Then

Syt =12~ m((1 _a)+ at),
Iy(f) =28 + %((1 _a)+at),
1.23
Ry(H)=13- W((l —a)+ CUI),
5.65
S.1(f) =28 — m((1 _a)+ m),
L) =1.15+ (])V(z )((1 ) +ozt).

3.04 304 18.64 225
S =12~ sl —a) = (1 - a)[N(a))2 N (R e U o
) [ 3040 18.64 ]tz

2N(@))?> N@)* 1’
5.65 597 683 7.5
latt) = 28+ S5 (1 -0 + (1 - )[N( S gm0+ - Za/)]t
507 683 2.125
“[2N(a>) B N(a))z(1 "Dt Ny TP “)]

12 123 1.82 0.5983
ha(f)—13—m((1—a)—( - )[W_W( s (1 -arl
_a[ 132 1412 08974 a)z]ﬂ (3-5)

N(a)) N(Ol)) N(@))? ’

5.6 565 1.2 0.5984

S, =28+ T(1 —a)+ (1 - )[N(a) - N(a))2(1 -a) - —N(a))z(l +a’ - 2a)2]t
[1.521a _LST 02992 ]IZ
Na@)  NaP Napl P

0.043 0.043  0.03763

lalt) = LIS + ool =) + (1 - [N(a)) Sl
0.0215 0.0372 0.00086 .
| Na@)  N@r P Ny )

4. Stability analysis of given algorithm by the application of fixed-point theorem

Suppose a Banach space (X, ||-||) and a self-map K* of X. Now consider a random recursive algorithm
of the formate, x,,; = g(K*, x,,). Assume F(K™*) be the set of fixed-point of K* which is non-empty
and a point k* € F(K*) where x, converges. Adopt {y, €X} and derive e, = |[y,, — g(K*,y,)Il. The
numerical algorithm x,,; = g(K", x,) is called K*-stable if lim,_,., ¢" = O implies that lim,_,..y; = k*.
Analogously, we consider that the sequence {y;} exists an upper bound, else the sequence will be not
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convergent. If all such constraints are satisfied for x,,; = K*x,, which is known as Picard’s iteration as
given in [47], consequently the iteration will be K*-stable. We then state the following theorem.

Theorem 4.1. Consider a Banach space (X, ||-||) and self-map K* of X agreeing
IK; = K;lI< cllx = yll+Cllx = K3 I,

Vx,y € X, here, 0 < C,0 < ¢ < 1. Assume that K* is Picard K*-stable. Now consider the recursive
algorithm from (3.4) related to (1.2).

(I —a+au)

S namy(®) = Spm(0) + S~ SIb1 = 1S niny = B1S oy Inimy = B2S nimyLviny + ARyl

N(a)
(I —a+au)
Lienmy(®) = Igy(0) + S IWS[,BZS wy vy + B1S wyInny = Mndhiny = Onlniny = Y 1,
(I —a+au)
Ritamy(®) = Ry (0) + 8™ ———=Sy1Lun) — tisRisiny — ARy,
N(a)
(0 —a+au)
S vitem@® = Som(0) + ST T———=8[br — VS v — B35S vimInim s
(a+m(®) (0) N@ [D2 = VoS vy = B3S vy Inim ]
(I —a+aun)
L) = vnO+Sl—S Sy Inmy = Yolvny — vy
(1+m(#) = L) (0) N@ [B3S v Inny = Vvl ]
where =2 s the non-classical Lagrange multiplier.

N(a)
Theorem 4.2. Consider the self-map H given by

1 —
HS o) = Sh1m(®) = Si(0) + S #

1%3[@&5" - @0, nQ.],
(I —a+ au)
N(a)

(1 —a+au)

N(a)
(I —a+au)
N(a)

S[A _ﬂIPnSn _IUPn],
H(I(1) = Iniam(t) = Lny(0) + S

H(Ry)(1) = Rp14n)(t) = Ryiy(0) + S~ Sla;1 0, + 2SR, — (U +7y)S ],

H(Sv(n)(t)) = Sv(l+n)(t) = Sv(n)(o) +S8 S[_Q’QSan - IURn + 7(1 - (5)5,1],

H(Iv(n)(t)) = Iv(1+n)(t) = Ih(n)(o) + S_ 8[57511 _IUUn]’

is H-stable in L'(a, b) if

{1 =P+ Nf(y)—B(J1 + DNAG) — (i + A)gY)} < 1,

{1 = (un+6n+yg1(y) = Bi(P + Na(y) = B(J1 + N < 1,

{1 =(n—pn— g} < 1, 4.1)
{1 =78i(y) —B3(Q+ P)fs(y)} < 1,

{1=B3(Q + P)fs(y) — (yy + 6)gs(M} < 1.
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Proof. Initially we start to proving that H exists a fixed-point. For this achievement, we simulate the
given below terms for all (m,n) € M x M.

H(S ny (1)) = H(S 1omy (D) =S 5y () = S omy(2)

L[ —a+ au)

+8 _—N(a)

ol [((1 — a+ au)
S | N(o)

H( Iy (1)) = H (L)) =Inin) (1) — Ly (1)

L[ —a+ au)

+8 ,—N(a/)

el [(1 — a + au)
S L N(o)
H(Rpn) (1)) = H(Rpmy(1)) =Ry (1) — Ry ()

L[ —a+ au)

+8 ,—N(a)

el [(1 — a + au)
S ] N(a)
H(S v(n)(t)) - H(S v(m)(t)) =S v(n)(t) - Sv(m)(t)

4[d —a + au)

+S8 ,—N(a)

el [(1 — a + au)
S | N(o)

H(Iv(n)(t)) - H(Iv(m)(l)) :Iv(n)(t) - Iv(m)(t)

4] —a+ auw)

+8 _—N(a)

_g|dzatan

S | N(o)

S[bl - /'thhn _ﬁlshnlhn _EZShnIvn + /lthn]]

S[bl - ,uhS hm — ,81 Shthm - BZS hmIvm + Althm]]a

S[ﬁ25hnlvn +ﬁlShnIhn - :uhlhn - é‘hlhn - yhlhn]]

S[ﬁZShmIvm +ﬁlshmlhm - ,uhlhm - 5hlhm - 7hlhm]],

Smw—mmf@mﬁ

Slynlpm — pnRum — ﬂ/thm]],

S[bl - 7vS vn _:83Svnlhn]]

S[bZ - va vm — ﬁ3S vmlhm]]’

S[B3S vnlhn - yvlvn - 5vlvn]]

S[ﬂ3S vahm - yvlvm - 5v1vm]]
4.2)

Analysing the initial equation of (4.2) and take norm on both-sides,

WH(S mn(1)) = H(S pan(O)N=IS 5 (®) = S pun(2)

1l—a+au
+ S_l[ﬁs[bl - :uhShn _ﬁlshnlhn _IBZShnIVH + /lth"]] (43)
l—-a+au
— S_II:%S[Z)I — ,UhShm —ﬁIShthm _ﬁzshmlvm + /lthm]]lL
(@)

Applying the triangular inequality, we receive

IH(S 1)) = H(S pin(OSIS 5n(2) = S (D]
L[ —a+ au)

S [ N(a)

el (1—-a+aun)
S [ N(a)

—+

S[b1 - /—thhn _ﬁlshnlhn _,BZShnIvn + /lthn:I (4'4)

S[bl - /'th hm — BlShthm - ﬁZS hmlvm + /lthm]
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By further simplification, (4.4) becomes as

LH (S iy (D) = H(S nimyONZIS niny (1) = S himy (D]

(1 —a+ au)
+ 8|S 1B TS i = SIS T — T
N(@) (4.5)
+ (”_ﬁZIvn(Shn - Shm)||+||_ﬁ25hm(lvn - Ivm)||+||_/~lh(Shn - Shm)”
+ 144(Rin = Runl] |
Since the same role is forming by both solutions, so we adopt in that case
1S 560y (®) = S iy = M pny (1) = Ly (@I,
1S 16y (®) = S nmyON1= 1Ry (1) = Riimy (DI,
”Sh(n)(t) - Sh(m)(l‘)”E ”Sv(n)(t) - Sv(m)(t)”,
1S 160y (®) = S nmy@ON= oy () = Ly (DI
By fixing it in Eq (4.5), we will get the following result:
WH (S 1y (D) = H(S nomy OIS 1y (8) = S hiomy (0
l-a+au
+84k5————3@¢mmwm—&wmwﬁﬁmwm—smm
N(@) (4.6)

+ (”_ﬁZIvn(Shn - Shm)||+||_,825hm(svn - Svm)”"'”_/lh(Shn - Shm)”
+ 14 = Sl

Since S s Svns Lims Inns I, are convergent sequence, so all are bounded, then, there exist five different
positive constants: J, Q, P; , P and J; for all # such that

IS wnll< S5 WS snll< Qs Wmll< Pry inll< Py NEnll< Ty, (m,n) € N XN, 4.7

Now by Eqgs (4.6) and (4.7), we get

H (S 5y (1)) = H(Sh(m>(f))llé[1 —Bi(P+ N f(y) = Bo(Ji + DY) = (i + A)g(y)

4.8)
”(Sh(n) - Sh(m))”a
where f and g are functions from S™! [8(% ]
Similarly, we receive
| H (Inn) (1)) — H Ly O{L = (i + 65 + yn)g1(y) = B1(P + ) fa(y) — Bo(J1 + D) f3(p)}
1(Znay (@) = Ty,
|H Ry () = H(Rpyomy OIS{T = (v = i — A3 IRy (D) — Ry, 4.9)

IH(S vy () = H(S yomyOIS{T = y084(y) = B3(Q + P1) fa())
CS v (D) = (S vom (DI,
WH (Lyny(1)) = H(Lyomy(O)II<AT = B3(Q + PO f5(¥) = (vy + 60)gs(WHI vy (D) = (L (D)
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where

{1 =8P+ Df) =By + DSi(y) — (wn + B)gN)} < 1,

{1 = (un+ 6n+y)g1(y) = B1(P + N fa(y) = Bo(J1 + NN} < 1,
{1 == — WG} < 1,

{1 =7,84(y) = B3(Q + P fa(y)} < 1,

{1 =B3(Q+ P)fs(y) — (yy +6)gs(M} < 1,

which gives that the non-linear H-self map exists a fixed point. Now we prove that H agrees with all
the restrictions of Theorem 4.1. Let (4.8) and (4.9) hold, so using

{1 =P+ DNf(y)—B(J1 + DAY — (i + gV} < 1,

{1 =+ 0n+y81(y) = Bi(P + D fa(y) = Bo(J1 + D s} < 1,
¢=1(0,0,0,0,0), C={l=yn—pn— gy} <1,

{1 =784() —B3(Q+ P)fas(y)} < 1,

{1=B3(Q+ P)fs(y) — (yy +6)gs(M} < 1.

The above expression shows that all conditions of Theorem 4.1 exist for the nonlinear map-H. So
every restrictions mentioned in Theorem 4.1 are agreed for the given non-linear map-H. Hence H is
Picard H-stable, which finishes the proof of Theorem 4.2.

5. Special solution uniqueness

In this portion, we are going to show the uniqueness of the special solution of Eq (1.2) applying
the numerical algorithm. Here first we assume an exact solution for Eq (1.2), for which the special
solution converges for a large quantity m. Here we take the Hilbert space H = L((a, b) X (0, T))) which
can be formulated as follow:

f:(a,b)x(0,T) — R, s.t. ffuydudy < o0,

Now, we adopt the given operator

by — S = BrSnly — BaS nly + iRy,
BaSuly + BrS wln — pndy — Snln — Yulh,
G I, Ry, S, 1) = 3 vuly — Ry — ARy,
by =Sy = B3S I,
BaSvIn = vl — 6,1,

The target of this portion is to prove that the inner product of
G((Zu — 2,2\ — I, 231 — Z32, 24y — Zap, Zs) — Zsy), (Xl,Xz,X3,X4,X5)),
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where (Zy1 — Z12), (Zo1 — Z23), (Z31 — Z32), (Z41 — Zyp) and (Zs; — Zsp) are special solution of system.
However,

G((le - Z12’ Z21 - ZZZ’ ZSl - Z32, Z41 - Z42» ZSI - ZS2), (Xl’ XZ’ XS» X4, XS))

(=B1(Z11 — Z1)(Za1 — Zn2) — pin(Zn1 — Z12) — Ba(Ziy — Z12)(Zs1 — Zsp) + An(Zz1 — Z32), X1),
B1(Z11 = Zio)(Zo1 — Zn) + Po(Zy1 — Z12)(Zs1 — Zsy) — un(Zay — Z22) — 61(Zoy — Z22) (5.1)
=1 — Y221 — Z22), X2),

Yn(Za1 = Za2) — uin(Z31 — Z32) — (n)(Z31 — Z32), X3),

(=vwZa1 = Zs2) = B3(Za1 — Zun)(Zo1 — Z22), X4).(B3(Za1 — Zip)(Zs1 — Zs2), X5).

Here, we calculate the initial equation showing in the model without forgetting the general procedure:
(_ﬁl (le - ZlZ)(ZZI - ZZZ) - ,uh(le - Z12) _ﬁZ(le - ZlZ)(ZSI - Z52) + /lh(Z:s‘l - Z32), Xl)

=(—p1(Z11 — Z12)(Zo1 — Z2), X1) + (—un(Zi1 — Z12), X1) + (=Bo(Z11 — Z12)(Zs1 — Zsy), X1) (5.2)
+ (231 = Z32), X1).

Because the play of both solutions is nearly same, so we can consider that

(Zn = Z12) = (Zay) — Znp) = (231 — Z3n) = (Zay — Zap) = (Zs1 — Zs2).
Then Eq (5.2) becomes

[-B1(Zi1 = Z12)* — p(Z11 — Z12) = Bo(Zi1 — Z3y) + An(Zny — Z12), X1
By the relation of inner product and norm, we receive the given results:

[-B1(Z11 = Z12)* = w(Zy1 = Z1o) = Bo(Z11 = Zio)a + W(Ziy = Z12), X1]
=[-B1(Z11 — Z12)*, X1) + (~un(Zi1 = Z12), X0) + (=Bo(Z11 — Z12)*, X0) + (W(Z11 — Z1n), X1
<BillZ11 = Z) WXill—ualZiy = ZNX=B2NZ11 = Zi)* WX+ A4l Z1y = Zi)IL X
=B1v1 + i + Bavi + AWN(Zi1 — Zi)|III Xl

Again repeating the similar manner, from the second equation of the model (5.1), we get the outputs
[B1(Z11 — Z12)(Za1 — Zn2) + Bo(Ziy — Zio)Zsy — Zsz) — un(Zay — Zp2) — 6(Zay — Zn2) — yi(Zoy — Z22), Xa]

< Bill(Za1 = Zo) 1 Xall=B2l(Zay — Zoo)* WIXall+ (s + i + Yl Zar — Zo) X
= (B1va2 + Bova + i + 0 + Yi)ll(Za1 — Zn)IIII X2l

(5.3)

(5.4)
Following similar manner, the third equation of the model (5.1) gives that
(Yi(Zor = Z22) = pin(Zs1 = Z32) — (Za1 — Z32), X3) < (yn + pn + A(Zz1 — Zap)II[1X]]. (5.5)
The fourth one is
(=V(Za1 — Zap) = B3(Zay — Zo)(Za1 — Z22)), Xa) < (Yo + B3Va)ll(Zar — Zap)||lIXall- (5.6)
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And the fifth one is
(B3(Zs1 — Zip)Zoy — Z2) — yi(Zs) — Zsy) — 6,(Zs1 — Zs3), X5)
<(B3vs + vy + O)(Zs1 — Zs)|IIX5]].-
Upon putting Eqs (5.3)—(5.7) in Eq (5.1), we get

(5.7)

G((Zu —Z12, 201 — 203, 7231 — 230, Zay — Zip, Zs51 — Zsy), (Xl,Xz,X3,X4,X5))

Bivi + w, + Bavi + W(Zi = Z)|ll1X4]],

Biva + Bava + pp + 6n + yll(Zar — Za)IXa I, (5.8)
Yn + i + WN(Zz1 = Za)IlIX5l,

vy + B3Vall(Zar = Za)|llIXall,

(B3vs + vy + 0,)(Zs1 — Zso)I[[1X5].

But, for sufficiently bigger value of m;, where i = 1,2,3,4,5 both solutions converge to the exact

solution, applying the consequences of topological results, here three very tiny positive parameters
exist Ly, , Ly s Ly Imyand 1,5 s.t.

IA

by
1= 20l WS = 2l S e ATl

by
My = Z2ill W = Zealt< 3 o ol

by
Ry = 2ol IR = ol S o~ Zo
ISy = Zall, ISy — Zall< 30, +Z4V_4)||X4||’

lms

Iv - Z ] IV - Z < Ve .
I stll, | 52l 3(B5V5 + ¥y + 6,)|1X]]

Now putting the exact solution to the right-side of Eq (5.8) and using the triangular inequality with
taking M = max(m,, my, ms, mag, ms), | = max(yg, L, by, bny» I, ), We get
Bivi + i + Bavi + W(Zyy — Zi)lIX4 ], !
B1va + Bava + pn + 6 + Yill(Zar = Zo)llIXall, |1
Yn + pn + AWZs1 = Zs)IIX;l, <41l

[

l

b

b

vy + B3valll(Zar = Zi)Il|Xall,
(B3vs + vy + 6(Zs) — Zs)IlIX5]].

As [ is very very small positive value, so on the basis of topological result, we get

b

Bivi + pn + Bavi + WW(Zi — Zi)IIXall, 0,
Biva + Bava + pp + 6n + yll(Zar — Zo)llIXall, |0,
Yn + pn + AW(Zs1 = Za)IIX5], <10, (5.9)
vy + B3va)ll(Zar — Za)||l1 X4l 0,
(B3vs + vy + 6,)(Zs1 = Zsp)I|[1X5]]. 0
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But, it is obvious that

Bivi + iy + Bavi + Ap) # 0,

(B1va + Bava + pp + 6 + yn) # 0,

Yn + i + A4) # 0, (5.10)
(yv + Bava) £ 0,

(B3vs +yv +6,) #0.

Therefore, we have

1Z11 = Zi2l|= 0,
1Z21 — Zxl|= 0,
1Z31 — Zal|= 0, (5.11)
1Z41 = Zaol|= 0,
1Zs1 = Zs2||= 0,
which yields that
Ziy =2, 2oy =2y, 23y = Zsp, Zay = Zap, Zs) = Zsy. (5.12)

This completes the proof of uniqueness.
6. Numerical simulations and discussions

This portion gives the numerical simulation results based on the numerical algorithm as Eq (3.5)
for leptospirosis disease model (1.2). The numerical method employed on Eq (1.2) hinged with (3.5).
The numerical simulations are performed by adopting the parameter numerical values, b; = 0.121,
w, = 0.0121, 5, = 0.14, 5, = 0.02, 85 = 0.10, 4, = 1, 0, = 0.8, y, = 0.25, b, = 0.002, y, = 0.23,
0, = 0.001. In this practical work, the integer order cases are plotted in the company of Figure 1. Here
we have just checked that how the given model is behaving at the classical sense. After following it,
in the assembly of Figure 2, we plotted the model dynamics at distinct derivative operator orders a.
Here the disease shows almost same nature at each values but just the amount of the given population
varies at distinct values. The assembly of Figures 3 and 4 is dedicated to the model dynamics at the
values of parameters S, 3, B3. From the given plots we can see that the impact of fractional order is
measurable and every value demonstrates a unique nature of the given disease. The given parameter
range is the best fit for the given model structure.
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Figure 1. Dynamics of given model classes in the sense of Caputo-Fabrizio operator by
utilizing the mentioned parameter values.
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7. Sensitivity analysis

Here sensitivity analysis is performed to show that which parameters are useful in reducing the
infection spread of the disease. Forward sensitivity structure is taken as a important part of epidemic
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modelling, albeit its analysis become austere for tough biological dynamics. Epidemiologist and
ecologist have given their much attention to the calculation of sensitivity analysis of Ry.

Definition 7.1. The normalized forward sensitivity index of the Ry which based on differentiably on a
variable I' is given by

I' OR,

_ - 9o 1
Ry o .1

r

There are three general techniques which are basically utilized to find the sensitivity indices: (1)
By a Latin hypercube sampling technique; (ii) by direct differentiation; (iii) by linearising model and
then simulating the obtained set of linear algebraic constraints. Here we adopt the direct differentiation
technique because it gives analytical forms for the indices. These indices demonstrates the impact
of different supports jointed with the infection spread and also provides us considerable knowledge
about the comparative variations between R, and various parameters. Definitely, it provides the help in
texturing the control techniques.

The parameter values by, B2, B1, An, On, Yn, bo and B3 have a positive impact on the reproductive
number R, which exemplify that the decay or growth of given parameters call by 10% will decrease
or increase the reproductive number by 10%, 1.70%, 8.2%, 4.27%, 2.3%, 1.7%, 1.7% and 0.2%
respectively. But another side, the parameters index of u;,, v, and 9, shows that raising their values
by 10% will reduce the value of reproductive number Ry by 9.9%, 2.6% and 1.0% respectively. A, has
no impact on reproduction number. Graphical representations of the sensitivity index is explored in
Figures 5-11 which demonstrate the sensitivity of different parameters.

Sensitivity Analysis

Figure 5. The plot represents the sensitivity indices.
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8. Conclusions

In this research, we have simulated a leptospirosis model dynamics by using a non-classical type
derivative with the application of Banach contraction theorem and Picard successive approximation
algorithm. Here the fractional order derivative called Caputo-Febrizo of order @ has been used which
exists a non-singular exponentially decay type kernel. The given analysis have been justified by
applying well-known Sumudu transform alongwith proposed iterative scheme. Using the Banach
theorem, the existence of unique equilibrium solution have been exemplified. With the help of
Matlab, we have also presented numerical simulations to the approximate solutions which show the
effectiveness of the theoretical results. From the given simulations, we concluded that the mentioned
non-classical type model gives more emphatic structure as compare to the integer-order dynamics.
Hence we can say that given variable order structure approaches to time responses with super-slow
evolutions and super-fast transients directed to the steady-state, which impacts can not be smoothly
textured by the ordinary order systems. In the future, the above model texture can be further rebuilt by
more effective and advance models of dynamical systems. One may use Atangana Baleanu fractional
derivative or Hilfer fractional derivative to compare the results with our model. One can also employ
the fractional optimal control strategy to decrease the infected people and increased the susceptible
people by choosing suitable control variables. The stochastic version of this model will also be useful
to show the effect of white noise on the model.
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