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1. Introduction

We denote by H(®), the set of all analytic function defined in the open unit disc ® =
{ € C: || < 1}. Also, we will denote by II, the subclass of H(®) and has a Taylor series expansion
of the form

XO =0+ and". (1.1)
n=2

We let S to denote the class of functions in IT which are univalent in ®. In I1, we classify the collection
¥ of functions #() € IT with #(0) = 1 and R ¥(¢) > 0. The class of functions in ¥ are not univalent.
However, if the family of functions in ¥ are single valued then the set ¥ is normal and compact [1,
p. 136].
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For a function ¥({) € ¥, it is known that the transformation

1—
Q@) = Tg [(1+0) = (1 - 09O (12)

is regular in ® and Re [Q({)] > 0 in © (see [2, p. 104]). It should be noted that #() € F does not

imply that Q({) € F. For example, if we let 3({) = i—fﬁ in (1.2) which is an extremal function in class

¥, then Q({) = 0. The transformation €(¢) is invariant if () = 1:5; Suppose #({) = 1+ 3>, 9,"
is in 7, then o

Q) =20+ Q0 —th =2+ Y (20 —py = Bue) I,

n=2
and for n > 1 we have (see [3, Theorem 10])
Gurt = O < @n+ D2 - 0]
and
[Pl = 1Tl < Cn+ 1) (2 = [h]).

1.1. Koebe function

It is well-known that Koebe function 9(¢) = £/(1 — ¢)* maps unit disc on to entire complex plane
except for a horizontal slit from —1/4 to —co and it acts as an extremal function for most of subclasses
in univalent function theory. If we let #(2) = £/(1 — ¢)? in (1.2), then () maps open unit disc onto
entire complex plane except for a vertical oval slit on the imaginary axis from —2i to 2i (see Figure 1).
Also Q(¢) has the following series representation at { = —1,

QO =-1-2+D-C+ 1)’ -(+1)P -+ D' -+ 1)’ -+ D +0[g+1].

1.2. Overlapped clover leaf-like domain

It is well-known that function ¢ + /1 + £ maps open unit disc onto a shell-shaped region. Now if
we let 9(0) = £ + +/1 + 2 (the branch of the square root is chosen to be the principal one) in (1.2),
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then €({) maps O onto the right half plane, having real part greater than 0 and symmetric with respect
to real axis. Also we observe that the image of a unit circle under the function () is translated into a
overlapped clover leaf like curve (see Figure 2). The image of )({) becomes circular when the radius
of the disc is smaller (see Figure 3). Clearly, the function €(¢) is not univalent in ® and has series
expansion of the form

3 4 5 6 7 8 9 10
£ _3¢ §—+§—+§ 3% +3i 7L+0

Qo =1-2-=— CE . T + 0, 1.3
© 2 8 4 16 8 128 64 256 128 <] (1.3)

j - - '\\
as| ,// 7 - _XQ{‘:"“

/ 7 \". ™,

] ;//// ) \\ | '|I

{ 0.5 1.0 \l: il I|

Al // !

\&E S
0.5 \\\ \\‘-\, fi//

\\\‘ xka____ o /ﬁ,’/f.t

(a) (b)

Figure 2. (a) Mapping of [{| = 1 under Q(¢) if 3(0) = £ + /1 + £%; (b) Mapping of [{] < 1
under Q) if H() = ¢+ /1 + 22

(a) (b)

Figure 3. (a) Image of || < 0.5 under Q(¢) if 3() = £ + /1 + ¢%; (b) Image of || < 0.65
under Q) if H() = £+ /1 + 22

AIMS Mathematics Volume 7, Issue 5, 8701-8714.



8704

1.3. Starlike domain

Taking #(0) = €° in (1.2), we find that Q(/) maps open unit disc onto a domain which is starlike
with respect to 1 (see Figure 4) and has series representation of the form

2573 1124 1922 29/° 4177 1128 717
Q({):l_é_g__i_ ¢ 19 29 4lgt 1187 {

10
2 6 24 120 720 5040 40320 72576 3628800+0[§]'

_—
—

(b)

Figure 4. (a) Mapping of || < 1 under the transformation (/) = ¢¢; (b) Mapping of |/] < 1
under the transformation of Q(2) if 9(0) = é€°.

For y e Il given by (1.1) and 0 < g < 1, the Jackson’s g-derivative operator or g-difference operator
for a function y € Il is defined by (see [4,5])

Dy () {X,(O)’ re=o (1.4)
X (D) = x()—x(ql) . )
e | § 0.
i-qr > "¢7

From (1.4), if y has the power series expansion (1.1) we can easily see that D x({) = 1 + ] [n],a.{ =l
n=2
for  # 0, where the g-integer number [n], is defined by

1-4"
[n]q‘_ 1_q9

and note that linll Dyx({) = x'(£). Throughout this paper, we let denote
Und

([nlk == [nlgln + 1y[n + 2], ... [n+ k= 1],.
The g-Jackson integral is defined by (see [6])

Y4 s3]
1, Q)] = fo X(Odyt = {1 =) Y X, (1.5)
n=0
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provided the g-series converges. Further observe that

Bylgx () =x(@)  and I, D () = x(§) — x(0),

where the second equality holds if y is continuous at { = 0. The significance of the g-derivative
operator D, is quite evident by its applications in the study of several subclasses of analytic functions.
The firm base of the usage of the g-calculus in the context of geometric function theory was efficiently
established, and the use of the generalized basic (or g-) hypergeometric functions in geometric function
theory was made by Srivastava (see, for details, [7, 8]). Recently lots of results have been established
in this duality theory (see [9-18]).

Let x({) and g({) be analytic in ®. Then we say that the function y({) is subordinate to g({) in
0, if there exists an Schwarz function w({) in ® such that |w({)| < [£] and x({) = g(w({)), denoted
by x({) < g(&). If g({) is univalent in ®, then the subordination is equivalent to y(0) = g(0) and
X(©) C g(0).

For 0 < n < 1, let §*(n) and C(n7) denote the classes of starlike functions of order n and convex
functions of order n, respectively. Using the concept of subordination for holomorphic functions, Ma
and Minda [19] introduced the classes

Q)
x()

o)
xX'(0)

S*(¢)={X€Hi <¢(§)} and C(¢)={X€HI 1+ <t//(§)},

where ¢ € F with ¢'(0) > 0 maps ©® onto a region starlike with respect to 1 and symmetric with
respect to real axis. By choosing ¢ to map unit disc onto some specific regions like parabolas, cardioid,
lemniscate of Bernoulli, booth lemniscate in the right-half of the complex plane, various interesting
subclasses of starlike and convex functions can be obtained.

Robertson [3] introduced the following class of analytic functions which satisty the condition

2UG) 1+
%{<RO T1o¢

Starlike functions with respect to a boundary point didn’t receive much attention of the researchers, for
developments pertaining to starlike functions with respect to a boundary point refer to the recent study
by Lecko, Murugusundaramoorthy and Sivasubramanian in [20,21] and references provided therein.
Throughout this study, w({) = Y-, w,{", { € © will denote the Schwarz function such that w(0) = 0
and w({)| <1, € 0.
We now begin with the following difinition.

}>0, (G(0) = 1; £ € ).

Definition 1.1. For 0 < a < 1, we say that the function y € IT belongs to the class KL () if it satisfies
the subordination condition

al’x" () + X' Q)
(I = ax () + ')

1+1;{
¢

(1+§)—(1—§)( )]<lﬂ(§), (1.6)

where ¢ € ¥ and has a series expansion of the form
WO =6+ AL+ S+ S+ (420, 6€C\ {0} €0). (1.7)
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Remark 1.1. We note that the function

1-¢
P =1
9] T

alx"(O) + &X' () )]
(I —ax () + adx'()

is well-defined and analytic in ©. Further, R[P({)] > 0 if R (&%—iﬁf}%) > 0 and is chosen so that
this function does not vanish in ® (see [3, Lemma 1]). ’

(1+§)—(1—{)(

Just swapping the geometry in the definition of K.L*(y) from left hand side to right hand side, we
now define the following.

Definition 1.2. For a function %({) € ¥,0 < a < 1,6 € C\ {0} and 4 > 1 is real , we say that the
function y € I1 belongs to the class CL5(Q) if it satisfies the subordination condition

, Lot @ +x @1
(1 —a)x(Q) + aldx'({)
where Q(() is defined as in (1.2) with 9¥(0) = 1.

<1+ Q(), (1.8)

Remark 1.2. The left hand side of (1.8) was motivated by the so-called A-pseudo starlike functions
introduced and studied by Babalola in [22].

For completeness, we will now define g-analogue of the KL () and CL; () as follows.

Definition 1.3. For 0 < « < 1, we say that the function y € IT belongs to the class KQ"(y) if it satisfies
the subordination condition

1-7

1+ —
¢

gDy (D (D) + LD ()
(I —a)x() + adDyx ()

(1+§)—§(1—§)( )]<lﬁ(§), (1.9)

where € F is given by (1.7).

Definition 1.4. For 0 < @ < 1 and 4 > 1 is real, we say that the function y € II belongs to the class
CQ(Q) if it satisfies the subordination condition

54 ({ [@gd D (D (x () + Dy (D1
(I —a)x() + adDx ()

) <1400 (1.10)

where Q(() is defined as in (1.2).

Remark 1.3. Even though the classes that were defined are closely related to the various subclasses of
analytic functions, but unfortunately we couldn’t find any special cases which could be readily obtained
by giving some fixed values to the parameters involved.

2. Preliminaries

In this section we state the results that would be used to establish our main results which can be
found in the standard text in geometric function theory.
Lemma 2.1. /23, p. 41]If9() =1+ Y 9,{" € T, then |8,| < 2 for all n > 1, and the inequality is
n=1

1+
sharp for ¥,({) = 1_—/15, 1] < 1.
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Lemma 2.2. [I19]If9() =1+ i 9,0" € F, and v is complex number, then
n=1

|192 — vﬁﬂ <2max{1;|2v - 1]},

and the result is sharp for the functions

U~

1 1+2
HO =15 ad 90 = T

3. Integral representation

Theorem 3.1. If y € KL (W), then

X&) = cex p{f(”[l— (- z)Z{I ylw®l) - 1]d } fa=0
fOeXp{ [}_ a- ,)2 [W(l‘)]} ] }dn’ ifCZZl,

Proof. By the definition of K.L(y), we have

—¢

1
1+—=2
'4

al’x" () + X' ()
(I =) + ady' ()

Suppose that F,({) = (1 — a)x({) + alx’({), then the condition (3.2) can be rewritten as

(1+{)—(1—§)( )]=¢'[W(§)].

F ) 1

F ¢ ¢

[1+¢, ¢
[-¢ " a-¢p

{1 =y} - 1]-

Integrating the above expression, we have (integrating ¢y to { with {; # 0 and then let {; — 0),

Fa(é/) _ ‘(1 1+1¢ t ~ ~
log{ ¢ }_fo t 1—t+(1_t)2{1 Ylw@®l} l}dt.
Or equivalently,
C1[1+1 t
Fa(§)={exp{f0 A ta—p ! —lﬁ[W(t)]}—l]dt}.

Thus, if y € KL (), then we have

C11+¢ t .
X({)={exp{j; p 1_t+(l_t)z{l—:p[w(t)]}—l]dt}, ifa=0,
and ,
o “1|1+¢ t 3 3 e
éﬁ(({)—{exp{ﬁ; 1—t+(1—t)2{1 Ylw()]} l]dt}, ifa=1.

On simplifying and integrating (3.4), we can establish the assertion of Theorem 3.1.

3.1

(3.2)

(3.3)

(3.4)

O
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To obtain the integral representation of the form (3.1) for the g-analogue class, we need the
following result obtained by Agrawal and Sahoo [24]. For y € H(®) and 0 < g < 1, we have

q)(({) q-1
1
09 Ing ?

where I,y is the Jackson g-integral, defined as in (1.5).

gx (), (3.5)

Theorem 3.2. If y € KQ" (), then

o {é, oxo 23 41[%f <1 1)2{1—1//[w(t)]}—1]d ), =0 56

fo exp(lnq "1 [}L + s (1= ylw()]) - 1] dt)dy. ifa=1.
Proof. Suppose that G,({) = (1 — a)x({) + alDyx({), then the condition (1.9) can be rewritten as

DyGa0) 1 _ 1+§Jr 4
G ¢ |1=¢" -

Applying the g-integration to the above expression (see (3.5)), we have,

g=1, (60 _f@
lnq & é( a 0 t

{1 =ylw( D]} - 1]-

1+t+
1-¢r (1 t)2

{1 -ylw®]} - 1]

Or equivalently,
3 Ing 11 +t t
GolD) = gexp{q 1 fo ot o ol - 1]64,;}.
Thus, if y € KQ"(¥), then we have
Ing (“1[1+¢ t L
x() = {exp{q 7 ﬁ T + a1 {1 —ylw®]} - l]dqt}, ifa=0,
and .
(" Ing ("1|1+¢ t o
x() = L exp{q_ 7 f; 1T + e {1 —ylw®)]} - l]dqt}a’qn, ifa=1.
Hence the proof of Theorem 3.2 is completed. O
Theorem 3.3. If y € CL{(Q), then
A-1 (“[1-6+Q s\
x(0) = { - f [ +t (W(t))] dt} . (fa=0) (3.7)
0
and 1
Y _ _ 1/4 =)
0= [ 1{1 I dt} dn. Gfa=1), (38)
on| 4 Jo !
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Proof. It we let F,({) = (1 —a)x({) + alx'({), then Eq (1.8) can be rewritten as

’ A
AEOF | oo

Fo(0)

The condition (3.9) is equivalent to

{1 -6+ QN

[(Fa) ™ = -1/ i

Now following the steps as in Theorem 3.1, we can establish the assertion of Theorem 3.3.

Theorem 3.4. If y € CQ}(Q), then

3 3 1/2 pe)
X({)={/l 1f0"[1 ‘”Q(W‘”)] dqt} . ifa=0

A t

and

4 _ _ 1/a -1
x@):fl{ﬂ 1f”[1 5+Q(W(”)] dqt} A, ifa=1.
on| 4 Jo t

Proof. By the definition CL}(€2), we can rewrite (1.10) as

(f[angq(bq()((g)) + Dq)(({)]/l
(I = )x() + adDyx ()

Taking G,({) = (1 — a)x({) + ad®,[x({)], we can rewrite (3.12) by

) = 1-6+Qw)].

0,6.0) _ [ 1 =6+ QIw()] ]””
[Ga()]' ¢

In quantum calculus, it is impossible to have a general chain rule. However we know that

lnq Dqga({)
q_l ga({) -

tDq[log ga(é{)] =

Hence we can easily prove that

A1 A-1
D, [1G(OVT | = = DulGu OGO

Using this equality, the condition (3.13) can be equivalently written as

A-1[{1=6+QwOn"
A l '

Following the steps as in Theorem 3.2, we can establish the assertion of Theorem 3.4.

2, 6u0) 7| =

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

O
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4. Bounds for the initial coefficients and Fekete-Szego inequalities
Theorem 4.1 and Theorem 4.2 establish the estimates for the initial coefficients and Fekete-Szego
inequalities for the class KL (¥) and CL](£2), respectively.

Theorem 4.1. Let y € KL () have a Taylor series expansion of the form (1.1) and () = 6 + A{{ +
Azé/z +A3§3 +.- (A > 0; 6 € C\ {0}; [ € @), then

|6 -3
las| < d+a) (4.1)
(A +16 -4+ 1)
sl < *2)
and u € C,
oo (A= 4P 1) Ju(s = 3))
I T 7o M o ()
Proof. Let y € KL (). Then by the definition of subordination, there is a function w(¢) such that
1-¢ al’x" Q) + ' () )]
1 1 —(1- = .
+—= |1+~ o((l_a))(@)mg,@ v [w(@)]
Define the function #({) by
1 1
0(4):1+11§+12§2+~--:IJ_FXE2<£§, (( €0). (4.4)
We note that ¥/(0) = 1 and ¢ € ¥ (see Lemma 2.1). Using (4.4), it is easy to see that
_9@Q-1 1 Ay B\
w({) = 9O+l E[llf‘*'(lz—a)( +(l3—lllz+z)§ +oe
so we have
2.1 ’
L= 2y (] — e X (&) + X' ()
O O+ et @
Cones Ml A, G AN s
=0-1Dl+ > I+ > {52 2(1 Al)}{ + e 4.5)
The left hand side of (4.5) will be
2.1 ’
1= = (1 = )2 alx"() + o' () ——(1
(=)= (=Pl = - (L @)l
—f20+20) a3 -1+ @)’@ - 201 + @)ar} P + -+ . (4.6)
From (4.5) and (4.6), we have
GRS
a, = 110 4.7
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and /
1 Al 5
= — —-(0—-4 1]. 4.8
S| 2 OV (+8)
By applying Lemma 2.1 in (4.8), we obtain (4.2). Using (4.7) and (4.8) together with Lemma 2.2 we
can establish (4.3). O

Theorem 4.2. Let y € CL(Q) have a Taylor series expansion of the form (1.1) and Q({) be defined
as in (1.2), then

16
@l < o T ha v *+3)
16 2020% - 42+ 1) (29, - 0, - 2)
ol < a2 | +max{1" QA-1y B 1'” 10
and u € C,
- ] < 16 A [pes-0-2) (2,1(31 — 1)(1 +20)
3THRLE 3T+ 20) T2 (1 +ay @11)

+ (2242 + 1)) - 1'}+3].
Proof. Let y € CL;(£2). Then by the definition of subordination, there is a function w(¢) such that

, Lo @ +x @l
(I = a)x(0) + adx'({)

Equivalently, the Eq (4.12) can be rewritten in the form

=1+ Qw()]. (4.12)

1+22-D{U +@)axl + [2(1 +2a)as + QA =421+ 1D)(1 + a)zag] =GB -0)

5 (502 5 4.13)
+(2’l91—192—2)11§+ (2191—292—2)]24-11 7—193—21914-1 §+
From (4.13), we have
QY- -2)
= , 4.14
2= oA D +a) “4.14)
1 59,
= 20 -0 =D)L+ P == —9; - 209, + 1 4.15
as (3/1—1)(1+2a/)( 1 2 )2+1(2 3 1t ) ( )

QA2 =42+ 1) (20 — 9, - 2)* B
- 21— 1) '

By applying Lemma 2.1 in (4.15), we obtain (4.10). Using (4.14) and (4.15) together with Lemma 2.2,
we can get (4.11) O

We just state the following result which can be obtained by retracing the steps as in Theorem 4.1
and Theorem 4.2, respectively.
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Theorem 4.3. Let y € KQ" () have a Taylor series expansion of the form (1.1) and y({) = 1 + A1 +
Azé/z +A3§3 +, (A > 0; [ e @), then

|6 3l

las] € ————,
2= (1 + ag)

[qlA] +16 — 4] + 1]
¢*(qg + D[1 + ag(g + DY’

las| <

and u € C,
[qlAi] + 16 — 4] + 1] N Alulls — 32

g+ DI +aglg+ D] ¢*(1 +ag)?*

Theorem 4.4. Let y € CQ}(Q) have a Taylor series expansion of the form (1.1) and Q) is defined as
in (1.2), then

2
las — pas| <

16
[(1+ @) - 1] + aq)

las| <

16
=TT+ aq( + I + g +g) 1]
A= D1+ 9 = 201 + A +2| @28, - 9, - 2)
[A(1 +q) — 112 “Hip

|as]

{3 + max {1,

2
laz — ﬂazl <

and u € C,

16

[1+ag(l + PIA + g+ ¢?) — 1]

2ull + aq(1 + PlA(1 + g+ ¢») —1])
(1 + ag)?

Q29 -9, - 2)
[(A+a-1F

max{l,

+ A=D1+ g - 201 + A+ 2]) -1

b

Inspired by the class of starlike functions with respect to boundary point, we familiarised a subclass
of analytic functions by exposing certain analytic description subordinate to a common function. To
add more versatility to our study, we defined a new family including the study of pseudo starlike
functions. Integral representation and the solution to the Fekete-Szego problem of the function class
introduced here have been investigated. Further, by replacing the ordinary differentiation with the
quantum differentiation we have attempted at the discretization of the results.

5. Conclusions
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