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Abstract: We consider the two-dimensional space-time fractional differential equation with the
Caputo’s time derivative and the Riemann-Liouville space derivatives on bounded domains. The
equation is subjected to the zero Dirichlet boundary condition and the zero initial condition. We
discretize the equation by finite difference schemes based on Grünwald-Letnikov approximation. Then
we linearize the discretized equations into a sparse linear system. To solve such linear system, we
propose a gradient-descent iterative algorithm with a sequence of optimal convergence factor aiming
to minimize the error occurring at each iteration. The convergence analysis guarantees the capability
of the algorithm as long as the coefficient matrix is invertible. In addition, the convergence rate and
error estimates are provided. Numerical experiments demonstrate the efficiency, the accuracy and the
performance of the proposed algorithm.
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1. Introduction

In modern days, fractional differential equations (FDEs) play an important role in applied
mathematics, science, and engineering; see e.g. [1–4]. FDEs are powerful to model many physical
phenomena due to a noninteger order in time and space.

Let us consider the standard two-dimensional (2D) diffusion equation (see e.g. [5]).

∂u(x, t)
∂t

− ∆u(x, t) = 0, (1.1)
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where x ∈ V ⊆ R2 and t ∈ [0,T ] ⊆ R+. Here, ∆ denotes the Laplacian operator with respect to the
spatial variable x = (x, y) ∈ R2. In physical contexts, the function u(x, t) represents the density of a
diffusing material at location x and time t. Let us denote the Gamma function by Γ. From Eq (1.1), if
we replace the first-order time derivative with the Caputo’s derivative [2]

CD1
t u(x, y, t) =

∂u
∂t

(x, y, t), and CDβ
t u(x, y, t) =

1
Γ(1 − β)

∫ t

0

∂u(x, y, τ)
∂τ

dτ
(t − τ)β

for 0 < β < 1,

and replace the second-order space derivative with the Riemann-Liouville derivatives [6].

RLD2
xu(x, y, t) =

∂2u
∂x2 (x, y, t), and RLDα1

x u(x, y, t) =
1

Γ(2 − α1)
∂2

∂x2

∫ x

0

u(ξ, y, t)
(x − ξ)α1−1 dξ for 1 < α1 < 2,

and similarly for RLDα2
y u(x, y, t), then we get the 2D space-time fractional diffusion equation (e.g. [7]).

CDβ
t u(x, y, t) − RLDα1

x u(x, y, t) − RLDα2
y u(x, y, t) = f (x, y, t). (1.2)

Here, we impose the function f (x, y, t) on the right hand side of the equation. Physical interpretations
restrict the fractional orders so that α1 ∈ (1, 2], α2 ∈ (1, 2], and β ∈ (0, 1]. When β = 1, Eq (1.2) is
known as the 2D time fractional diffusion equation.

In recent years, there are many studies about theory of (1D or 2D) space-time (or time) fractional
diffusion equations and related equations, e.g. [8–13]. These differential equations were successfully
used to describe many physical phenomena, e.g. random walk models [14–17], and anomalous
diffusion processes [18–21].

In general, FDEs do not posses exact solutions in closed froms. Thus, numerical methods
have been implemented for several types of FDEs, e.g. the variational iteration method [22], the
homotopy analysis method [23, 24], Adomian decomposition method [25, 26], B-spline collocation
schemes [27–30], and the collocation method based on fractional Legendre functions [31]. There
are also numerical methods using either finite difference or finite element methods to a discretization
of certain FDEs; see e.g. [32–36]. Finite difference techniques based on Grünwald-Letnikov
approximation for fractional derivatives were investigated by many authors, e.g. [1, 37, 38].

The main objective of the present paper is to propose an iterative algorithm to produce well-
approximated solutions of the 2D space-time fractional diffusion Eq (1.2), subjected to the zero
Dirichlet boundary condition and the zero initial condition. First, we discretize Eq (1.2) via Grünwald-
Letnikov approximation for the Riemann-Liouville and the Caputo derivatives (see Section 3). Then,
we linearize the discretized equations into a linear system with a sparse cofficient matrix. In particular,
we discuss the numerical scheme for its interesting special case, namely, the 2D time fractional
diffusion equation. To solve the linear system, we apply the gradient-descent technique to derive an
iterative procedure with suitable directions and step sizes (see Section 4). We show that the produced
approximate solutions converge to a unique solution for any given initial vector (see Section 5).
Theoretical performance of the proposed algorithm are discussed through the convergence rate and
error estimates. We verify the capability and theoretical performance of the proposed algorithm by
making two numerical experiments (see Section 6). We compare the performance of the proposed
algorithm with well-known iterative methods for linear systems in the literature, e.g. GI, LSI, SOR,
and JOR algorithms.
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2. Preliminaries

In this section, we recall relevant background that used in later discussions.

2.1. Grünwald-Letnikov approximation for fractional derivatives

The discretization of fractional derivatives is often done by finite difference schemes based on
Grünwald-Letnikov type (see e.g. [37,38]). For the 2D problem, we have the following approximation
for Riemann-Liouville fractional derivatives of order α > 0:

RLDα
x u(x, y, t) = lim

Nx→∞

1
hαx

Nx∑
k=0

gα,ku(x − (k − 1)hx, y, t), (2.1)

RLDα
y u(x, y, t) = lim

Ny→∞

1
hαy

Ny∑
k=0

gα,ku(x, y − (k − 1)hy, t), (2.2)

where the coefficients gα,k are defined as

gα,k =
Γ(k − α)

Γ(−α)Γ(k + 1)
.

Alternatively, we have the recusive formula for gα,k:

gα,0 = 1, gα,k =
(
1 −

α + 1
k

)
gα,k−1.

We can compute the Grünwald-Letnikov approximation for Caputo’s fractional derivatives via the
difference formula.

RLDα
t f − CDα

t f =

bαc∑
ν=0

rαν (t) f (ν)(0), where rαν (t) =
tν−α

Γ(ν + 1 − α)
. (2.3)

Here, b·c denotes the floor function. When α ∈ (0, 1], the correction term on the right hand side of (2.3)
is equal to zero when we consider the zero initial value, i.e., u(x, y, t = 0) = 0; see e.g. [38].

2.2. Mittag-Leffler functions

The Mittag-Leffler function Ea,b on two parameters a, b > 0 is a generalization of the exponential
function defined by the Taylor series.

Ea,b(x) =

∞∑
k=0

xk

Γ(ak + b)
.

Mittag-Leffler functions arise naturally in certain fractional differential equations, in particular, in our
numerical examples (Section 6).
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2.3. Auxiliary results from matrix analysis

All matrices and vectors considered throughout this paper are real. The Frobenius norm of a
rectangular matrix A is defined by ‖A‖F =

√
tr(AT A). The Frobenius norm of a vector coincides

with the Euclidean vector norm. The spectral norm ‖ · ‖2 of a square matrix is defined to be the largest
singular value of the matrix, or equivalently, the matrix norm induced by the Euclidean vector norm.
Thus, we have the following relation (see e.g. [39]).

‖Ax‖F 6 ‖A‖2 ‖x‖F (2.4)

for any square matrix A and vector x of conformable sizes. The condition number κ(A) of a square
matrix A is defined to be the ratio between the largest and the smallest singular values of A. In
particular, if A is invertible, we have

κ(A) = ‖A‖2 ‖A−1‖2. (2.5)

We recall gradient formulas for the trace of certain matrix products:

Lemma 2.1. (e.g. [39]) For matrices A, B, X of compatible sizes, we have

d
dX

tr(AX) = AT ,

d
dX

tr(XAXT B) = BXA + BT XAT .

3. Discretization and linearization of the 2D space-time fractional diffusion equation

In this section, we consider the 2D space-time fractional diffusion equation, and its interesting
special case, namely, the 2D space fractional diffusion equation. We discretize these differential
equations in which the Riemann-Liouville and the Caputo’ derivatives are approximated by Grünwald-
Letnikov approximation. Then we form a linear system from the discretized equations.

Let us consider the 2D space-time fractional fractional diffusion equation of the form

CDβ
t u(x, y, t) − RLDα1

x u(x, y, t) − RLDα2
y u(x, y, t) = f (x, y, t), (3.1)

on bounded domains x ∈ [ax, bx], y ∈ [ay, by], and t ∈ [0,T ]. The equation is subjected to the zero
Dirichlet boundary condition

u(x = ax, y, t) = u(x = bx, y, t) = u(x, y = ay, t) = u(x, y = by, t) = 0,

and the zero initial condition, i.e., u(x, y, t = 0) = 0.

3.1. The 2D space-time fractional diffusion equation

Consider Eq (3.1) with fractional orders β ∈ (0, 1] and α1, α2 ∈ (1, 2]. We discretize xi = ax + ihx,
y j = ay + jhy and tk = kht where hx, hy and ht are defined by

hx =
bx − ax

Nx
, hy =

by − ay

Ny
, and ht =

T
Nt
. (3.2)
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The approximated solution u(xi, y j, tk) at a point (xi, y j, tk) is written by ui jk. For convenience, we define

ξl =
gβ,l
gβ,0

, ϕp =
gα1,phβt
gβ,0hα1

x
, ψq =

gα2,qhβt
gβ,0hα2

y
and σ =

hβt
gβ,0

.

From the difference Formula (2.3) and the Grünwald-Letnikov Formulae (2.1) and (2.2), we obtain

1

hβt

k+1∑
l=0

gβ,lui, j,k−l+1 −
1

hα1
x

i+1∑
p=0

gα1,pui−p+1, j,k+1 −
1

hα2
y

j+1∑
q=0

gα2,qui, j−q+1,k+1 = fi, j,k+1,

or equivalently,

ui, j,k+1 +

k+1∑
l=1

ξlui, j,k−l+1 −

i+1∑
p=0

ϕpui−p+1, j,k+1 −

j+1∑
q=0

ψqui, j−q+1,k+1 = σ fi, j,k+1,

for each i ∈ {1, . . . ,Nx − 1}, j ∈ {1, . . . ,Ny − 1} and k ∈ {1, . . . ,Nt}. For convenience, let us denote
Nxy = (Nx − 1)(Ny − 1) and N = NxyNt. Thus, Eq (1.2) can be linearized into a system of N linear
equations in N unknowns u111, . . . , uNx−1,Ny−1,Nt .

To form a linear system, let

U =



u1,1,1 u1,1,2 · · · u1,1,Nt
...

... · · ·
...

u1,Ny−1,1 u1,Ny−1,2 · · · u1,Ny−1,Nt
...

... · · ·
...

uNx−1,Ny−1,1 uNx−1,Ny−1,2 · · · uNx−1,Ny−1,Nt


, F =



f1,1,1 f1,1,2 · · · f1,1,Nt
...

... · · ·
...

f1,Ny−1,1 f1,Ny−1,2 · · · f1,Ny−1,Nt
...

... · · ·
...

fNx−1,Ny−1,1 fNx−1,Ny−1,2 · · · fNx−1,Ny−1,Nt


.

Then put u = Vec(U) and f = σVec(F). Here, Vec(·) is an operator that turns a matrix into a column
vector by stacking columns of the matrix consecutively; see e.g. [40, Ch. 4]. Hence, we obtain a linear
system

Pu = f, (3.3)

where the coefficient P is a block lower-triangular matrix

P =



A 0 0 · · · 0
ξ1INxy A 0 · · · 0
ξ2INxy ξ1INxy A · · · 0
...

. . .
. . .

. . .
...

ξNt−1INxy · · · ξ2INxy ξ1INxy A


,

and

A =



B −ϕ0INy−1 0 · · · 0
−ϕ2INy−1 B −ϕ0INy−1 · · · 0
−ϕ3INy−1 −ϕ2INy−1 B · · · 0

...
. . .

. . .
. . .

...

−ϕNx−1INy−1 · · · −ϕ3INy−1 −ϕ2INy−1 B


,
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B =



1 − ϕ1 − ψ1 −ψ0 0 · · · 0
−ψ2 1 − ϕ1 − ψ1 −ψ0 · · · 0
−ψ3 −ψ2 1 − ϕ1 − ψ1 · · · 0
...

. . .
. . .

. . .
...

−ψNy−1 · · · −ψ3 −ψ2 1 − ϕ1 − ψ1


.

We shall seek for a well-approximated solution u of the linear system (3.3). Note that the system (3.3)
has a unique solution if and only if P is invertible, or equivalently, A is invertible. Once we find the
vector u, we can obtain the matrix U due to the injectivity of the operator Vec(·).

3.2. An interesting special case: The 2D space fractional diffusion equation

Here, we consider the 2D space fractional diffusion equation

∂u(x, y, t)
∂t

− RLDα1
x u(x, y, t) − RLDα2

y u(x, y, t) = f (x, y, t), (3.4)

where α1, α2 ∈ (1, 2], the spatial domain is [ax, bx]×[ay, by], and the temporal domain is [0,T ]. Eq (3.4)
is a special case of Eq (3.1) for which the fractional order β is equal to 1.

We discretize Eq (3.4) by computing an approximated solution at (xi, y j, tk) with xi = ax + ihx,
y j = ay + jhy and tk = kht where hx, hy and ht are defined as (3.2). The first-order and the fractional-
order derivatives are approximated by the forward time difference method and the Grünwald-Letnikov
approximation (2.1) and (2.2), respectively. For convenience, we define

γp =
gα1,pht

hα1
x

and δq =
gα2,qht

hα2
y

.

From Eq (3.4), we obtain that for each i ∈ {1, . . . ,Nx − 1}, j ∈ {1, . . . ,Ny − 1} and k ∈ {1, . . . ,Nt},

ui, j,k+1 − ui, j,k

ht
−

1
hα1

x

i+1∑
p=0

gα1,pui−p+1, j,k+1 −
1

hα2
y

j+1∑
q=0

gα2,qui, j−q+1,k+1 = fi, j,k+1,

or equivalently,

ui, j,k+1 − ui, j,k −

i+1∑
p=0

γpui−p+1, j,k+1 −

j+1∑
q=0

δqui, j−q+1,k+1 = ht fi, j,k+1.

We use the notations Nxy, N, U, F, u, and f as same as those in Subsection 3.1. Then we can put
the discretized equations into a system of N linear equations in N variables u111, . . . , uNx−1,Ny−1,Nt and
displayed as

Pu = f. (3.5)

In this case, P is a block lower-triangular matrix as follows:

P =



Ã 0 0 · · · 0
−INxy Ã 0 · · · 0

0 −INxy Ã · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 −INxy Ã


,
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where

Ã =



B̃ −γ0INy−1 0 · · · 0
−γ2INy−1 B̃ −γ0INy−1 · · · 0
−γ3INy−1 −γ2INy−1 B̃ · · · 0

...
. . .

. . .
. . .

...

−γNx−1INy−1 · · · −γ3INy−1 −γ2INy−1 B̃


,

B̃ =



1 − γ1 − δ1 −δ0 0 · · · 0
−δ2 1 − γ1 − δ1 −δ0 · · · 0
−δ3 −δ2 1 − γ1 − δ1 · · · 0
...

. . .
. . .

. . .
...

−δNy−1 · · · −δ3 −δ2 1 − γ1 − δ1


.

4. Proposing a gradient-descent iterative algorithm

In this section, we apply the gradient-descent technique to derive an iterative procedure for solving
the linear system (3.3) and, in particular, the system (3.5). Assume that the coefficient matrix P is
invertible. Then we can solve for the analytical solution u∗ directly by

u∗ = P−1f. (4.1)

For approximate solutions, we measure an error using the quadratic norm-error function

Ω : RN → R, Ω(u) =
1
2
‖Pu − f‖2F . (4.2)

We introduce a gradient-descent iterative solver described by the recursive formula

uk+1 = uk − τk+1∇Ω(uk). (4.3)

We pick an arbitrary initial solution u0, so that Eq (4.3) iteratively computes the next solution uk+1 and
form a sequence of approximate solutions. Due to the gradient direction ∇Ω(uk) and a convergence
factor τk+1, the sequence {uk}

∞
k=0 would converge to the exact solution u∗.

To find the gradient of Ω, we apply Lemma 2.1 to derive

∇Ω(u) =
1
2

d
du

(Pu − f)T (Pu − f)

=
1
2

d
du

tr((Pu − f)(Pu − f)T )

=
1
2

d
du

tr(PuuT PT − fuT PT − PufT + ffT )

= PT (Pu − f).

Hence, the iterative equation takes the form

uk+1 = uk + τk+1PT (f − Pu).

AIMS Mathematics Volume 7, Issue 5, 8471–8490.
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According to the gradient-descent, the convergence factor τk+1 is generated in order to minimize the
error occurring at each iteration. Thus, we define a new function sk+1 : [0,∞) → R to be an error at
step k + 1:

sk+1(τ) := Ω(uk+1) =
1
2
‖P(uk + τPT (f − Pu)) − f‖2F .

Using properties of the matrix trace, we obtain the derivative of sk+1 as follows:

d
dτ

sk+1(τ) = τ tr(PPT (f − Tuk)(f − Tuk)T PPT ) − tr(PPT (f − Puk)(f − Puk)T ).

It is easy to check that the second-order derivative d2

dτ2 sk+1(τ) is positive. Setting d
dτ sk+1(τ) = 0, we have

the minimizer of the function sk+1(τ) as follows:

τk+1 =
tr(PPT (f − Puk)(f − Puk)T )

tr(PPT (f − Puk)(f − Puk)T PPT )

=
‖PT (f − Puk)‖2F
‖PPT (f − Puk)‖2F

.

We call {τk+1}
∞
k=0 the sequence of optimal convergence factors. We now describe the Frobenius norms

‖PT (f − Puk)‖F and ‖PPT (f − Puk)‖F more precisely. To avoid duplicated multiplications, let y = PT f
and V = PT P. Consider

PT (f − Puk) = y − Vuk =


y1
...

yN

 −

v11 . . . v1N
...

...

vN1 . . . vNN



u1
...

uN

 =


y1 −

∑N
i=1 v1iui
...

yN −
∑N

i=1 vNiui

 .
Let us denote yi and vi j for the ith entry of y and the (i, j)th entry of V , respectively. It follows that

‖PT (f − Puk)‖2F =

N∑
i=1

(yi −

N∑
j=1

vi ju j)2.

In a similar way, by denoting z = Py and W = PV , we obtain

‖PPT (f − Puk)‖2F =

N∑
i=1

(zi −

N∑
j=1

wi ju j)2.

We combine the direction and the step size altogether to obtain the following iterative algorithm for
solving Eqs (3.3) and (3.5), see Algorithm 1.
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Algorithm 1: A gradient-descent iterative solver for the linear system (3.3) arising from the
2D space-time fractional diffusion equation.

Input: P, f, u0

y = PT f;
V = PT P;
z = Py;
W = PV;
for k = 1, . . . , n do

τk+1 =
∑N

i=1(yi −
∑N

j=1 vi juk j)
2/

∑N
i=1(zi −

∑N
j=1 wi juk j)

2;
uk+1 = uk + τk+1(y − Vuk);

end

To break the procedure, one can impose a stopping rule ‖Puk − f‖F < ε or ‖uk −uk−1‖F < ε, where ε
is a satisfactory error. Note that the coefficient matrix P is sparse, so that the computational procedures
need not so much time.

5. Capability and theoretical performance of the proposed algorithm

In this section, we investigate the capability and theoretical performance of Algorithm 1 through
error esimates and the convergence rate.

To show that Algorithm 1 is applicable for any initial vector, let us recall the following
approximations for strongly convex functions on Rn. Recall also that for real symmetric matrices A and
B of the same size, the matrix ordering A 6 B means that the difference B − A is positive semidefinite.

Lemma 5.1. ( [41]) Let f : Rn → R be a strongly convex function, i.e., there exist two numbers
φ,Ψ > 0 such that the matrix orderings φI 6 ∇2 f (x) 6 ΨI hold for all x ∈ Rn. Then, for any u, v ∈ Rn,
we have

f (v) > f (u) + ∇ f (u)T (v − u) +
φ

2
‖v − u‖2F , (5.1)

f (v) 6 f (u) + ∇ f (u)T (v − u) +
Ψ

2
‖v − u‖2F . (5.2)

Theorem 5.2. Consider the linear system (3.3) where the coefficient matrix P is invertible. Denote by
κ the condition number of P. Then the following statements hold:

(i) For any initial vector u0, the sequence of approximate solutions {uk} generated by Algorithm 1
converges to a unique solution u∗.

(ii) Error estimates of ‖Puk − f‖F compared to the preceding step and the initial step are described
by the following inequalities:

‖Puk − f‖F 6 (1 − κ−2)
1
2 ‖Puk−1 − f‖F , (5.3)

‖Puk − f‖F 6 (1 − κ−2)
k
2 ‖Pu0 − f‖F . (5.4)

In particular, the relative error decreases at every iteration.
(iii) Algorithm 1 has the convergence rate (in regard to the relative error ‖Puk − f‖F) governed by√

1 − κ−2.
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(iv) Moreover, the following error estimates for ‖uk − u∗‖F hold:

‖uk − u∗‖F 6
√
κ2 − 1 ‖uk−1 − u∗‖F , (5.5)

‖uk − u∗‖F 6 κ(1 − κ−2)
k
2 ‖u0 − u∗‖F . (5.6)

Proof. If there exists an integer k > 0 so that a vector uk makes ∇Ω(uk) to be zero, we have uk = u∗
and the result holds. So we assume that ∇Ω(uk) , 0 for all k. Now, we compute the second-order
derivative ∇2Ω(u) = PT P, which is a positive semidefinite matrix. Let λmin and λmax be the smallest
and the largest eigenvalues of PT P, respectively. From the spectral theory of matrices, we obtain

λminI 6 PT P 6 λmaxI,

where I is the identity matrix of compatible size. Hence, Ω is a strongly convex function in which
φ = λmin and Ψ = λmax. Applying Eq (5.2) to the function sk+1(τ), we have

Ω(uk+1) 6 Ω(uk) − τ‖∇Ω(uk)‖2F +
λmaxτ

2

2
‖∇Ω(uk)‖2F . (5.7)

Let us define the right-hand side (RHS) of (5.7) to be a function of τ, namely,

f (τ) := Ω(uk) − τ‖∇Ω(uk)‖2F +
λmaxτ

2

2
‖∇Ω(uk)‖2F .

We can verify that 1/λmax is a minimizer of f . Minimizing (5.7) both sides by τ = 1/λmax, we obtain

Ω(uk+1) 6 Ω(uk) −
1

2λmax
‖∇Ω(uk)‖2F . (5.8)

Applying Eq (5.1) to the function Ωk + 1(τ), we have

Ω(uk+1) > Ω(uk) − τ‖∇Ω(uk)‖2F +
λminτ

2

2
‖∇Ω(uk)‖2F . (5.9)

Similarly, we have that τ = 1/λmin is a minimizer of the RHS of (5.9). We continue in this fashion to
obtain

0 > Ω(uk) −
1
λmin
‖∇Ω(uk)‖2F +

1
2λmin

‖∇Ω(uk)‖2F

= Ω(uk) −
1

2λmin
‖∇Ω(uk)‖2F .

Now, ‖∇Ω(uk)‖2F > 2λminΩ(uk), and hence by taking account of (5.8), we get

Ω(uk+1) 6 (1 −
λmin

λmax
)Ω(uk) = (1 − κ−2)Ω(uk). (5.10)

Since P is an invertible matrix, all eigenvalues of PT P are strictly positive, and thus 1 − κ−2 < 1. By
recurring the above inequality, it follows that for any k ∈ N,

Ω(uk) 6 (1 − κ−2)kΩ(u0) (5.11)
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Therefore, Ω(uk) → 0, i.e., uk → u∗ as k → ∞. Moreover, from the error bounds (5.10) and (5.11),
we get the inequalities (5.3) and (5.4), respectively. Thus, the asymptotic behavior of uk with respect
to the relative error ‖Puk − f‖F is governed by

√
1 − κ−2.

From the estimate (5.4) and the norm properties (2.4) and (2.5), we derive

‖uk − u∗‖F = ‖P−1Puk − P−1Pu∗‖F
6 ‖P−1‖2‖Puk − f‖F
6 ‖P−1‖2(1 − κ−2)

k
2 ‖Pu0 − f‖F

6 ‖P−1‖2‖P‖2(1 − κ−2)
k
2 ‖u0 − u∗‖F

= κ(1 − κ−2)
k
2 ‖u0 − u∗‖F .

Similarly, we can have the error estimate ‖uk − u∗‖F compared to the preceding step ‖uk−1 − u∗‖F using
Eqs (2.4) and (2.5) together with the bound (5.3). �

Theorem 5.2 implies that the condition number κ of the sparse matrix P effects the convergence
behaviour. Indeed, Algorithm 1 converges faster to the exact solution if κ is close to 1.

6. Capability and performance of the algorithm through numerical experiments

In this section, we implement numerical experiments to perform the capability and performance of
Algorithm 1, which is denoted by TauOpt. All experiments have been carried out by MATLAB R2020b
with PC environment Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz, RAM 8.00 GB. To measure
the time consuming (in seconds) taken for each simulation, we apply the tic and toc functions in
MATLAB and abbreviate them TC. At the kth iteration step, we concern the relative error ‖f−Puk‖F . In
each example, we provide tables and figures to demonstrate the accuracy and efficiency of algorithms.
We compare the performance of the proposed algorithm with famous iterative methods for the linear
system, for instance, GI algorithm [42], LSI algorithm [42], SOR algorithm, and JOR algorithm [43].

Example 6.1. Consider the 2D space-time fractional diffusion equation

CD1/3
t u(x, y, t) − RLD3/2

x u(x, y, t) − RLD3/2
y u(x, y, t) = f (x, y, t), (6.1)

where

f (x, y, t) = 1.1077t2/3 sin x sin y − tx−1/2(sin y)E2,0.5(−x2) − ty−1/2(sin x)E2,0.5(−y2).

The domains are x ∈ [0, π], y ∈ [0, π], and t ∈ [0, 0.1]. Indeed, the exact solution for this equation
subjected to the zero Dirichlet boundary condition and the zero initial condition is given by

u∗(x, y, t) = t sin x sin y.

According to the numerical scheme explained in Subsect. 3.1, we discretize Eq (6.1) by choosing
partition numbers Nx = 10, Ny = 10, and Nt = 20. Then the coefficient matrix P of the associated
linear system (3.3) is of size 1620 × 1620. In this case, the condition number of P is κ = 10.2976.
Theoretically, Algorithm 1 has the convergence rate governed by

√
1 − κ−2 = 0.9953. Table 1 shows
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the comparisons between numerical solutions and the exact solution for certain values of x, y, t in the
domain. After running 250 iterations, we see that the 4-digits numerical solutions are very close to the
exact solution. Also, Figure 1 illustrates the 3D plot of the exact and numerical solutions in the cases
that t = 0.01, 0.02, . . . , 0.06. Besides, we compare the performance of Algorithm 1 with SOR, JOR, GI
and LSI algorithms. The results, shown in Table 2 and Figure 2, indicate that Algorithm 1 performs
well in both iteration numbers and computational time.

Table 1. The numerical and analytical solutions for Example 6.1.

u(x, y, t)

y = 0.4π y = 0.6π

x = 0.1π x = 0.3π x = 0.5π x = 0.7π

t numerical analytical numerical analytical numerical analytical numerical analytical

0.005 0.0029 0.0029 0.0078 0.0079 0.0097 0.0098 0.0079 0.0080

0.010 0.0042 0.0043 0.0115 0.0116 0.0144 0.0145 0.0117 0.0118

0.015 0.0055 0.0056 0.0152 0.0153 0.0190 0.0192 0.0155 0.0156

0.020 0.0068 0.0069 0.0188 0.0190 0.0237 0.0239 0.0193 0.0195

0.025 0.0081 0.0082 0.0225 0.0227 0.0283 0.0286 0.0231 0.0233

0.030 0.0094 0.0095 0.0261 0.0264 0.0330 0.0332 0.0269 0.0271

0.035 0.0107 0.0108 0.0298 0.0300 0.0377 0.0379 0.0307 0.0309

0.040 0.0120 0.0121 0.0335 0.0337 0.0423 0.0426 0.0345 0.0347

0.045 0.0133 0.0134 0.0371 0.0374 0.0470 0.0472 0.0383 0.0385

0.050 0.0146 0.0147 0.0408 0.0410 0.0516 0.0519 0.0421 0.0424

Table 2. Relative error and time consuming for Example 6.1.

Method Relative error TC

TauOpt 0.0037 6.1169

SOR 0.9177 116.6804

JOR 0.9010 96.6348

GI 0.8103 4.7887

LSI 0.7223 90.4681
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t = 0.01 t = 0.02

t = 0.03 t = 0.04

t = 0.05 t = 0.06

Figure 1. The 3D plot of the exact (left) and numerical (right) solutions for Example 6.1.
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Figure 2. The relative error plot for Example 6.1.

Example 6.2. Consider the 2D space fractional diffusion equation

∂u(x, y, t)
∂t

− RLD4/3
x u(x, y, t) − RLD4/3

y u(x, y, t) = f (x, y, t), (6.2)

where

f (x, y, t) = (y2 − y − 2.2155ty2/3 + 0.7385ty−1/3)(sin 2x) − 2tx−1/3(y2 − y)E2,2/3(−4x2),

subjected to the zero Dirichlet boundary condition and the zero initial condition. The domains are
x ∈ [0, π], y ∈ [0, 1], and t ∈ [0, 0.1]. Indeed, the exact solution for this problem is given by

u∗(x, y, t) = t(y2 − y)(sin 2x).

According to the discussions in Subsection 3.2, we discretize Eq (6.2) using partition numbers Nx = 10,
Ny = 10 and Nt = 20. In this case, the condition number of the coefficient matrix P ∈ R1690×1690 is
κ = 26.7484. Hence, Algorithm 1 has the convergence rate governed by

√
1 − κ−2 = 0.9993. We run

Algorithm 1 for 500 iterations and report the comparison between numerical solutions and the exact
solution in Table 3. Figure 3 illustrates the 3D plot of the exact and numerical solutions in the cases
that t = 0.01, 0.02, . . . , 0.06. The results from Table 3 reveal that numerical solutions are very close to
the exact solution.
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In addition, we compare the performance of Algorithm 1 (TauOpt) with SOR, JOR, GI, and LSI
algorithms. The results of running 500 iterations are shown in Table 4. Figure 4 displays the
logarithmic relative error of each algorithm. It is seen that Algorithm 1 performs well in both iteration
numbers and time consuming.

Table 3. The numerical and analytical solutions for Example 6.2.

u(x, y, t)

y = 0.4π y = 0.6π

x = 0.2π x = 0.4π x = 0.6π x = 0.8π

t numerical analytical numerical analytical numerical analytical numerical analytical

0.005 -0.0021 -0.0022 -0.0013 -0.0014 0.0013 0.0013 0.0021 0.0022

0.010 -0.0032 -0.0033 -0.0019 -0.0021 0.0019 0.0020 0.0031 0.0034

0.015 -0.0042 -0.0045 -0.0026 -0.0028 0.0026 0.0027 0.0042 0.0045

0.020 -0.0053 -0.0056 -0.0032 -0.0035 0.0032 0.0034 0.0053 0.0056

0.025 -0.0064 -0.0067 -0.0040 -0.0042 0.0039 0.0041 0.0064 0.0067

0.030 -0.0074 -0.0078 -0.0046 -0.0049 0.0046 0.0048 0.0074 0.0079

0.035 -0.0085 -0.0089 -0.0053 -0.0056 0.0052 0.0055 0.0085 0.0090

0.040 -0.0095 -0.0100 -0.0060 -0.0063 0.0059 0.0061 0.0096 0.0101

0.045 -0.0106 -0.0111 -0.0066 -0.0070 0.0065 0.0068 0.0106 0.0111

0.050 -0.0116 -0.0122 -0.0073 -0.0077 0.0071 0.0075 0.0117 0.0123

Table 4. Relative error and time consuming for Example 6.2.

Method Relative error TC

TauOpt 0.0062 20.7160

SOR 0.0343 202.5196

JOR 0.0338 189.5905

GI 0.0342 10.6095

LSI 0.0211 178.5967
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t = 0.01 t = 0.02

t = 0.03 t = 0.04

t = 0.05 t = 0.06

Figure 3. The 3D plot of the exact (left) and numerical (right) solutions for Example 6.2.
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Figure 4. The logarithmic relative error plot for Example 6.2.

Note that in Examples 6.1 and 6.2, the condition numbers κ seem to be too much, so that the
convergences of the proposed algorithm would be not fast. However, due to the fact that the coefficient
matrix P is sparse and the convergence factor is chosen by an optimazation technique, the iterative
procedures lead to a desire solution with a satisfactory error in a short time.

7. Conclusions

We discretize the 2D space-time fractional and the 2D space fractional diffusion equations via the
finite difference scheme of Grünwald-Letnikov approximation. We transform the discretized equations
into a sparse linear system with coefficient matrix P. We propose an iterative solver based on the
technique of gradient-descent. The analysis confirms the capability of the proposed algorithm as long
as the matrix P is invertible with the convergence rate governed by

√
1 − κ−2, where κ is the condition

number of P. The numerical experiments indicate the accuracy and the efficiency of the proposed
algorithm compared to well-known iterative solvers for linear systems. Indeed, the iterative procedures
of the proposed algorithm lead to a desire solution with a satisfactory error in a short time since the
coefficient matrix P is sparse, the convergence factor is chosen by an optimazation technique, and the
procedures avoid duplicated computations.
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