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1. Introduction

Topological indices have become an important research topic associated with the study of their
mathematical and computational properties and, fundamentally, for their multiple applications to
various areas of knowledge (see, e.g., [1-3]). Within the study of mathematical properties, we will
contribute to the study of inequalities and optimization problems associated with topological indices.
Our main goals are the Sombor indices, introduced by Gutman in [4].

In what follows, G = (V (G), E (G)) will be a finite undirected graph, and we will assume that each
vertex has at least a neighbor. We denote by d,, the degree of the vertex w, i.e., the number of neighbors
of w. We denote by uv the edge joining the vertices u and v (or v and u). For each graph G, its Sombor
index is

SOG) = > \Jd2+d2.

uveE(G)
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In the same paper is also defined the reduced Sombor index by

$0u@) = Y Ndi =1+ (d,~ 1)

uveE(G)

In [5] it is shown that these indices have a good predictive potential.
Also, the modified Sombor index of G was proposed in [6] as

"SO(G) = (1.1)
MV;@ a2+ d2
In addition, two other Sombor indices have been introduced: the first Banhatti-Sombor index [7]
1 1
BSOG) = ) =t (1.2)
uveE(G) u v
and the a-Sombor index [8]
S0LG) = >\ (s +dn'", (1.3)
weE(G)

here @ € R\ {0}. In fact, there is a general index that includes most Sombor indices listed above: the
first (o, B) — KA index of G which was introduced in [9] as

KA, 5(G) = KAéﬁ(G) = Z (dy + d‘v’)ﬁ, (1.4)
uveE(G)
with @, € R. Note that SO(G) = KA, ,2(G), "SO(G) = KA>_1,2(G), BSO(G) = KA_;,2(G), and
SO0.(G) = KA, 1,0(G). Also, we note that KA, 3(G) equals the general sum-connectivity index [10]
X8(G) = Xuver)(du + d,)’. Reduced versions of SO(G), ™S O(G) and KA, 3(G) were also introduced
in [4,6,11], e.g., the reduced (a, 8) — KA index is

reaKAep(G) = > ((dy= 1)+ (d, - 1)),
uveE(G)

If @ < 0, then ,.4KA,3(G) is just defined for graphs without pendant vertices (recall that a vertex is
said pendant if its degree is equal to 1).

Since I. Gutman initiated the study of the mathematical properties of Sombor index in [4], many
papers have continued this study, see e.g., [12—18].

Our main aim is to obtain new bounds of Sombor indices, and to characterize the graphs where
equality occurs. In particular, we have obtained bounds for Sombor indices relating them with the first
Zagreb index, the forgotten index and the first variable Zagreb index. Also, we solve some extremal
problems for Sombor indices.

2. Inequalities for the Sombor indices

The following inequalities are known for x,y > 0:
Xy < (x+y) <27 4y ifa> 1,
271+ ) < (x+ ) < x4y if0<a<,
(x+y)* <271 +y%) if a <0,
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and the second, third or fifth equality is attained for each a if and only if x = y. These inequalities
allow to obtain the following result relating KA indices.

Theorem 1. Let G be any graph and a,3, A € R\ {0}. Then

KAupa 1(G) < KAy p(G) < 2°'KAup1.4(G) if B> A4, 1>0,

2P KA g 1(G) < KAup(G) < KAupa 2(G) ifB<A4,p1>0,
KAup(G) < 2P KAupaa(G)  if $<0,1>0,
KAup(G) > 2P KAupjaa(G)  if >0,1<0,

and the second, third, fifth or sixth equality is attained for each «, 3, A if and only if all the connected
components of G are regular graphs.

Proof. If a = B/A, x = d and y = d, then the previous inequalities give

diP" + dP < (dy + d)P < PN+ dPyif A 1,
NP+ dPPIYy < (dY + dYYPI < dP Tt if0<pla<d,
(dy +dy Pt < 2PN @+ afthy it B/A <O,
and the second, third or fifth equality is attained if and only if d, = d,.
Hence, we obtain
(dPI+ dPIY < (@ +dYP < 2P dPI + dPIYif gra> 1, 4> 0,
M@ 4 dPIY < (dY + dVP < (dPIM 4+ PN if B/A> 1,4 <0,
M@+ dPIY < (d + d¥P < (dPI + Pt if 0<B/A<1,1>0,
(dP+ dPIY < (@ +dP < 2PN dPI + dPIY if 0<B/a<1,A<0,
(d* +d"P <254 a1t + aFIHt if < 0,1> 0,
(d* +d"Y > 254 a%P* + a'Ht i > 0,2<0,

and the equality in the non-strict inequalities is tight if and only if d, = d,.
If we sum on uv € E(G) these inequalities, then we obtain (1). |

Remark 2. Note that the excluded case B = A in Theorem 1 is not interesting, since KA1 2(G) =
KA. 3(G) if g = A

The argument in the proof of Theorem 1 also allows to obtain the following result relating reduced
KA indices.

Theorem 3. Let G be any graph and a,,1 € R\ {0}. If @ < 0 or aBA < 0, we also assume that G
does not have pendant vertices. Then
redKAapi 1(G) < reaKAap(G) < 2P, 0K A g, a(G) if >4, B1>0,
257 K Aup 1 A(G) < 1eaKAup(G) < reaKAupaa(G) ifp<a,pa>0,
redKAug(G) < 2P, 0K Aupya, 1(G) ifp<0,4>0,
redKAap(G) = 2P, 1K Ao a 2(G) if >0,4<0,

and the second, third, fifth or sixth equality is attained for each a, 3, A if and only if all the connected
components of G are regular graphs.
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If we take 8 = 1/ and u = 1/41in Theorem 1, we obtain the following inequalities for the a-Sombor
index.

Corollary 4. Let G be any graph and a, i € R\ {0}. Then
S0,(G) < SO(G) <2V VESO(G)  if u> a, au >0,

21¢711S0,(G) < SOL(G) < SO(G)  if u<a, au >0,
S0.(G) <2V VHSO,(G)  if @ <0,u>0,

and the second, third or fifth equality is attained for each a,u if and only if all the connected
components of G are regular graphs.

Recall that one of the most studied topological indices is the first Zagreb index, defined by

MG = ) d.
ueV(G)

If we take p = 1 in Corollary 4, we obtain the following result.

Corollary 5. Let G be any graph and a € R \ {0}. Then

M(G) < SO,(G) < 2" 'M(G) if0<a<],
2V IM(G) < SO0,(G) < Mi(G)  if a> 1,
S0,(G) <2V 'M(G)  ifa<O,

and the second, third or fifth equality is attained for each « if and only if all the connected components
of G are regular graphs.

If wetake @ = 2,8 =—1/2 and 1 = 1/2 in Theorem 1, we obtain the following inequality relating
the modified Sombor and the first Banhatti-Sombor indices.

Corollary 6. Let G be any graph. Then
1
"SO(G) < 3 BSO(G)

and the bound is tight if and only if all the connected components of G are regular graphs

In [19-21], the first variable Zagreb index is defined by

MG = ) df,
ueV(G)

with @ € R.

Note that M{ generalizes numerous degree-based topological indices which earlier have
independently been studied. For @ = 2, @ = 3, @ = —1/2, and @ = -1, MY is, respectively, the
ordinary first Zagreb index M,, the forgotten index F, the zeroth—order Randi¢ index °R, and the
inverse index ID [2,22].

The next result relates the KA,z and M¢*! indices.
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Theorem 7. Let G be any graph with maximum degree A, minimum degree 6 and m edges, and « €
R\ {0}, B> 0. Then

Mi”l(G) + 2AY25% 2 28

KA, 4(G) > if0<B<1/2,
s ( \/z(A(z/Z + 59/2)
M* N (G) + 2A%25°2m
KA.5(G) 2 (— () ) "l =12,
V2 (A2 + §l2)

and the second equality is attained for some a,f if and only if G is a regular graph.

Proof. If uv € E(G) and a > 0, then
V2692 < \Jdo +de < V2 A

If @ < 0, then the converse inequalities hold. Hence,

(Vg +dg - V26"2)(V2 A" — a4 d5) > 0,

V2(A™? + 6°7) \Jd2 + d2 > d + dY + 2012612,

Since

D di+d)= ) dudi= ) dit = MyTG),

uveE(G) ueV(G) ueV(G)
IfO<pB<1/2,then1/(26) > 1 and

D, NdEd = Y (i)'

uveE(G) uveE(G)

<( > @ +d3)ﬂ)”(2ﬁ ' = KA, (GO,

uveE(G)

Consequently, we obtain
M (G) + 2076 m

\/j (A2 4 §2/2)

KAa’ﬁ(G)l/(Zﬁ) >

If B> 1/2, then 28 > 1 and Holder inequality gives

D, Ndi+di= ) (g + )P

uveE(G) uveE(G)
1/(28) 28/(28-1)\2B~1D/(2B)
(3 @) 3 e
uveE(G) uveE(G)

— m(Zﬂfl)/(Zﬂ)KAmﬂ(G)1/(2ﬂ)'
Consequently, we obtain

M?“(G) + 2AY25% 2y
\/Q(Aa/z + 5a/2)

KAus(G)'/OP > m(1=2)/2B)
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If G is regular, then

(MO + 2 sy 2+ 2
\2 (A2/2 4 512) V2 2A02
2
= (\/EA“/zm) Bml_zﬂ
= 2AY'm = KAy 4(G).

If the second equality is attained for some «, B, then we have d; + d; = 20“ or d; + dy = 2A® for
each uv € E(G). Also, the equality in Holder inequality gives that there exists a constant ¢ such that
dy+dy = c forevery uv € E(G). Hence, we have either dj} +d;) = 26 for each edge uv or d +d_ = 2A?
for each edge uv, and hence, G is regular. O

If we take @ = 2 and 8 = 1/2 in Theorem 7 we obtain:

Corollary 8. Let G be any graph with maximum degree A and minimum degree 8, and m edges. Then

F(G) + 2A6m

SOG) >
@ V2 (A +6)

and the bound is tight if and only if G is regular.

In order to prove Theorem 10 below we need an additional technical result. A converse of Holder
inequality appears in [23, Theorem 3], which, in the discrete case, can be stated as follows [23, Corollay
2].

Proposition 9. Consider constants 0 < o < Band 1 < p,qg < cowith 1/p+1/qg =1. If wi,zx = 0
satisfy az; <w;, <z} for 1 <k <n, then

( n Wf)l/p( Zn: ZZ)I/q < Cpla,p) i WiZks
k=1

k=1 k=1
where 1 129 1 ,6\1/Cp)
(04 q 14

5 , when 1l < p <2,
4 q a

Cpla.p) =

, when p > 2.

1,B\1/cp 1, a\1/2p)
—_ — + —_ —
gy ey
If wi,...,wy,) # 0, then the bound is tight if and only if w} = az] for each 1 <k < nand a = .

Recall that a bipartite graph with X and Y partitions is called (a, b)-biregular if all vertices of X have
degree a and all vertices of Y have degree b.
The next result relates several KA indices.

Theorem 10. Let G be any graph, a,B,u € R and p > 1. Then
Dﬁ KAa,p(ﬂ—ﬂ)(G)KAa,p#/(p—l)(G)p_l < KAmﬁ(G)p < KA‘LP(ﬁ—#)(G) K‘L‘vt,pu/(p—1)(G)p_1
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where
Co@s YD, @ay I EY ifa(p—pusty) > 0.
D, =
Cp(QAT P, @y D) if e - ity ) <O,
and C, is the constant in Proposition 9. The equality in the upper(lower) bound is tight for each
a,B, 1, p if G is a biregular graph (with a(B — ,uI% ) # 0 if and only if G is a regular graph.)

Proof. Holder inequality gives

KAws(G)= ). (d +dsf™(d + o)

uveE(G)
w1/ _m\-D/
< ( Z (d;; + dg)l’(ﬁ #)) p( Z (d;x + d\c}x)ﬂ#/(!’ 1))[7 p’
uveE(G) uveE(G)

KA(I,ﬁ(G)p < KAa,p(ﬂ—/J)(G) KA(I,pu/(p—l)(G)p_l .
If G is a biregular graph with m edges, we obtain
KA p-(G) KAw pusp-1) (G = (A + %P E (A + 67y P~ DpyyP!
= (A + §)PFIAY + 6"VHmP = (A” + 6*YPm)’ = KA, 5(G)".

Since
(dy +d)"™"

=
(dg + )™

— (da + da)P(ﬂ—Mﬁ)’
if ap(B — p557) > 0, then

o a\PB—1)
_ (dg+a)

a\PB—1557)
(26 ) s (d“ + da)pu/(p—l

2
< Ay,
and if ap(B —,up—’_’1 ) < 0, then

o a\P(B—1)
) < (du +dv) < (25a)P(.3—/1%).

a\PB—p+E
(ZA ) s (d“ +da)pu/(p—1) -

Proposition 9 gives

KAowp(G) = > (ds +dof™(dg +do)’

uveE(G)
—\1/P J(p—1\P=D/p
>Dy( D (@ +dy ") D @y any )T
uveE(G) uveE(G)

KAop(G) > DP KA pi—i)(G) KA pyusp-1(G)P ™.

Proposition 9 gives that the equality is tight in this last bound for some a, 5, u, p with a/(,B—,uI% )#0
if and only if
(250)P(ﬂ—/1ﬁ) — (ZAG)P(,B—#’%) & §=A,

i.e., G is regular. O
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If we take 8 = 0 in Theorem 10 we obtain the following result.

Corollary 11. Let G be any graph with m edges, a,u € R and p > 1. Then
KA pu(G) KAg pjp-1)(G)P ™' > mP .
The equality in the bound is tight for each a, u, p if G is a biregular graph.

If wetakea =2,8=0, p=2and u = 1/4 in Theorem 10 we obtain the following result.
Corollary 12. Let G be any graph with maximum degree A, minimum degree 6 and m edges, then
(A+96)?

ans

The equality in the upper bound is tight if and only if G is regular. The equality in the lower bound is
tight if G is a biregular graph.

m? <"SO(G) SO(G) <

Note that the following result improves the upper bound in Corollary 5 when @ > 1.

Theorem 13. Let G be any graph with minimum degree 6, and a > 1. Then
27 IM(G) < SO,(G) < Mi(G) — (2 - 2"%)s,
and the equality holds for some a > 1 in each bound if and only if G is regular.

Proof. The lower bound follows from Corollary 5. Let us prove the upper bound.
First of all, we are going to prove that

X +yO)Yr < x+ Y~ 1)y 2.1)

for every @ > 1 and x > y > 0. Since (2.1) is direct for @ = 1, it suffices to consider the case @ > 1.
We want to compute the minimum value of the function

fxy)=x+@Q" =1y

with the restrictions g(x,y) = x* +y* =1, x >y > 0. If (x, y) is a critical point, then there exists 4 € R

such that
1=dax*!,

2V — 1 = day™ !,
and so, (y/x)*' =2"* — 1 and y = (2"/* — 1)"/©@"Dx; this fact and the equality x* + y* = 1 imply
(1 + @Yo — 1y/@Dyyo = 1
x = (1+ QY = pye/e-by e,
y = @Y — Mg 4 @V — pefle-byte
fy) = (1+ @Y = 1ye/@by=le
+ @Y7 — 1)@V — yeD(] 4 (M - 1)0/(0_1))_1/“
=(1+ (zl/a _ l)a/(a—l))—l/af
+ (V7 — )@ 4 (Ve _ qyalta-Dylfe
= (1 + (2 = pye/le-Dyle=bie
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Ify=0,then x = 1 and f(x,y) = 1.
If y = x, then x = 27"/ = y and

fyy =27+ @127 = 1.

Hence, f(x,y) > 1 and the bound is tight if and only if y = 0 or y = x. By homogeneity, we have
f(x,y) > 1 for every x > y > 0 and the bound is tight if and only if y = 0 or y = x. This finishes the
proof of (2.1).

Consequently,
d* +dH"" <d,+ 2" - 1)d, = d, + d, - (2 -2"")d,

foreach @ > 1 and d, > d,. Thus,
d* +dH"* <d, +d, - 22"

for each @ > 1 and uv € E(G), and the equality holds for some @ > 1 if and only if d, = d, = ¢.
Therefore,
S0,(G) < M\(G) — (2 —2"*)s,

and the equality holds for some @ > 1 if and only if d, = d, = ¢ for every uv € E(G), i.e., G is
regular. O

Corollary 14. Let G be any graph with minimum degree 6. Then
2712 M\(G) < SO(G) < My(G) — (2 - V2)6,

and the equality holds in each bound if and only if G is regular.

The upper bound in Corollary 14 appears in [14, Theorem 2.7]. Hence, Theorem 13 generalizes [14,
Theorem 2.7].

A family of topological indices, named Adriatic indices, was put forward in [24,25]. Twenty of
them were selected as significant predictors in Mathematical Chemistry. One of them, the inverse
sum indeg index, ISI, was singled out in [25] as a significant predictor of total surface area of octane
isomers. This index is defined as

ISIG) = ) dd”%z > li

weE(G) 4 V. weEG) d,

1
dy

In the last years there has been an increasing interest in the mathematical properties of this index. We
finish this section with two inequalities relating the Sombor, the first Zagreb and the inverse sum indeg
indices.

Theorem 15. Let G be any graph, then
V2 (M\(G) - 2ISI(G)) > SO(G) > M,(G) — 2ISI(G)
and the upper bound is tight if and only if all the connected components of G are regular graphs.
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Proof. 1t is well-known that for x,y > 0, we have
X4y < (x+y)F <22 +y%),
Va2 +y2 <x+y< V242 +)2,

and the equality

B+ B\ + &2 +2d,d, = (d, +d,)
give
(d, +d,)|d> + d2 +2d,d, > (d, + d,)*,

2d,d
2 2 utty
J@+¢+ZTE>%+%

SO(G) + 2ISI(G) > M,(G).
In a similar way, we obtain
1
— (d, +d,)\Jd? + d? +2d,d, < (d, +d,),
V2
2d,d,
&2+ &2+ 222 < N2 (d, + dy),
d,+d,
SO(G) + 2V2ISI(G) < V2 M/ (G).
The equality in this last inequality is tight if and only if 2(d> + d?) = (d, + d,)* for each edge uv,
i.e., d, = d, for every uv € E(G), and this happens if and only if all the connected components of G are
regular graphs. O

3. Optimization problems

We start this section with a technical result.

Proposition 16. Let G be any graph, u,v € V(G) with uv ¢ E(G), and a, 8 € R\ {0} with a8 > 0. Then
KA, 3(G U {uv}) > KAy p5(G). If @ > 0, then ,.qKA, (G U {uv}) > .aKA,p(G). Furthermore, if « <0
and G does not have pendant vertices, then ;.qKA, (G U {uv}) > ,,.KA,5(G).

Proof. Let {wy,...,w,} and {w!,...,w%} be the sets of neighbors of u and v in G, respectively. Since
af > 0, the function

Ux,y) = (x* +y*Y

is strictly increasing in each variable if x,y > 0. Hence,

KA, p5(G U {uv}) — KAy p5(G) = ((d, + D" + (d, + 1)“)'6+

d,
(@t D7+ Y - @+ )
=1

d,

(@ + ) +d2) - (de +d2))
k
> (dy + D* + (d, + D*)Y > 0.
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The same argument gives the results for the ,.,KA, s index. O

Given an integer number n > 2, let I'(n) (respectively, I.(n)) be the set of graphs (respectively,
connected graphs) with n vertices.

We study in this section the extremal graphs for the KA, g index on I:(n) and I'(n).

Theorem 17. Consider a,8 € R \ {0} with a8 > 0, and an integer n > 2.

(1) The complete graph K, is the unique graph that maximizes KA, g on 1.(n) or I'(n).

(2) Any graph that minimizes KA, g on 1.(n) is a path.

(3) If n is even, then the union of n/2 paths P, is the unique graph that minimizes KA, g on I'(n). If
n is odd, then the union of (n — 3)/2 paths P, with a path Ps is the unique graph that minimizes KA, g
onI'(n).

(4) Furthermore, if a,8 > 0, then the three previous statements hold if we replace KA,p with
redKAa,ﬁ-

Proof. Let G be a graph with order n, minimum degree 6 and m edges.

Items (1) and (2) follow directly from Proposition 16.

(3) Assume that n is even. It is well known that the sum of the degrees of a graph is equal to twice the
number of edges of the graph (handshaking lemma). Thus, 2m > né > n. Since af8 > 0, the function

Ux,y) = (x* +y*Y

is strictly increasing in each variable if x,y > 0. Hence, for any graph G € I'(n), we have

KAws(G)= » (di+dif 2 Y (17417

uveE(G) uveE(G)

= Pm > 2/3’% = 2By,

and the equality is tight in the inequality if and only if d, = 1 for all u € V(G), i.e., G is the union of
n/2 path graphs P,.

Finally, assume that n is odd. Fix a graph G € I'(n). If d, = 1 for every u € V(G), then handshaking
lemma gives 2m = n, a contradiction (recall that n is odd). Therefore, there exists a vertex w with
d,, > 2. By handshaking lemma we have 2m > (n — 1)6 + 2 > n + 1. Recall that the set of neighbors
of the vertex w is denoted by N(w). Since U(x, y) is a strictly increasing function in each variable, we
obtain

KAwp(G)= Y (di+dif+ > (d+adf

ueN(w) uveE(G),u,v+w
> Z (19 + 290 + Z (1% + 1%y
ueN(w) uveE(G),u,v#w

>2(1 +2°Y + 26(m - 2)

22(1+2a)’3+2ﬁ(”;rl -2)

-3
:2(1+2“)ﬁ+2ﬁ”T,
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and the bound is tight if and only if d, = 1 for all u € V(G) \ {w}, and d,, = 2. Hence, G is the union of
(n — 3)/2 path graphs P, and a path graph P;.
4) If @, B > 0, then the same argument gives the results for the ,.4KA, g index. O

We deal now with the optimization problem for ,,,KA, s when a, 8 < 0.
Given an integer number n > 3, we denote by I'?(n) (respectively, I."”(n)) the set of graphs

(respectively, connected graphs) with n vertices and without pendant vertices.

Theorem 18. Consider a,8 < 0, and an integer n > 3.
(1) The cycle graph C, is the unique graph that minimizes ,.qKA, g on L'’ (n).
(2) The union of cycle graphs are the only graphs that minimize ,.qKA, g on I'"?(n).
(3) The complete graph K, is the unique graph that maximizes ,.,KA, 3 on I’ (n) or TP (n).

Proof. Let G be a graph with order n, minimum degree 6 and m edges. Since a graph without pendant
vertices satisfies 0 > 2, handshaking lemma gives 2m > nd > 2n. Since «, 8 < 0, the function

U(x,y) = (x +y°Y

1s strictly increasing in each variable if x,y > 0. Hence, for any graph G € I""?(n), we have

KAws(G)= ) (di+dif> > (@ +27)
uveE(G) uveE(G)
= @Dy, 5 prlBy,

and the inequality is tight if and only if d, = 2 for all u € V(G), i.e., the graph G is the union of cycle
graphs. If G is connected, then it is the cycle graph C,,.
Item (3) follows from Proposition 16. O

4. Conclusions

In this paper, we contributed to the study of inequalities and optimization problems associated with
topological indices. In particular, we obtained new lower and upper optimal bounds of general Sombor
indices, and we characterized the graphs where equality occurs.

Specifically, we have obtained inequalities for these indices relating them with other indices: the
first Zagreb index, the forgotten index and the first variable Zagreb index. Finally, we solve some
extremal problems for general Sombor indices
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