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1. Introduction 

In this work, we consider the one-dimensional Bratu-type BVPs: 

( ) ( ) 0, 0 1,u t W u t + =           (1) 

mailto:n.sooppy@psau.edu.sa
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( ) ( )0 0, 1 0,u u= =          (2) 

where   is a positive physical parameter and ( )W u  is non-linear function. The Bratu-type (BT) 

problem appears in a large variety of application regions, for example, fuel ignition model of thermal 

combustion, thermal reaction, chemical reactor theory and nanotechnology, radiative heat transfer, the 

Chandrasekhar model of the expansion of the universe [1–4]. These models play a significant role in 

physical phenomena and arises non-linear differential equations [5–10]. The non-linear differential 

equations are complicated to solve either analytically or numerical. Much attention has recently been 

devoted to search for better and more efficient solution methods for finding the approximate solution 

of non-linear models. Numerical methods play a significant role for finding the approximate solution 

of non-linear problems. 

The BVPs defined by Eq (1) with boundary conditions (2) have substantial literature on numerical 

and analytical solutions. Wazwaz [11] has presented Adomian decomposition method to find the 

reliable solution of BT equation. Caglar et al. [12] have presented three-degree B-spline collocation 

method (BSCM) for finding the numerical treatment of BT problems. Roul and Thula [13] have 

discussed a fourth order BSCM for finding the numerical treatment of BT and Lane-Emden problems. 

Feng et al. [14] have discussed the Homotopy perturbation method for obtaining the solution of BT 

problem. Variational iteration method has been presented by Batiha [15] to calculate the approximate 

solution of BT equation. Aksoy and Pakdemirli [16] have developed the perturbation iteration theory 

for linear and non-linear second-order differential equation and implemented on BT equation to obtain 

the solution. Venkatesh et al. [17] have discussed the Haar wavelet approach for solving initial and 

boundary value problem of BT. Abukhaled et al. [18] have presented the cubic BSCM, an adaptive 

spline collocation, and optimal collocation techniques for calculating the numerical treatment of BT 

equations. Raja and Ahmad [19] have discussed the artificial neural networks to find the numerical 

solution of one-dimensional BT equation with the use of three type of transforms function including 

log-sigmoid, radialbasis, and tan-sigmoid transfer functions. Hohsen [20] has done the survey of 

different numerical techniques for one-dimensional and two-dimensional BT problems. Ghazanfari 

and Sepahvandzadeh [21] have discussed the solution of fractional BT equations by using the Adomain 

decomposition method based on Taylor series. Darwish and Kashkari [22] have developed the optimal 

Homotopy asymptotic method to obtain the approximate solution of second order BT initial value 

problems. Abd-Elhameed et al. [23] have proposed operational matrix method based on shifted 

Legendre polynomials to find the numerical solution of second order linear and non-linear boundary 

value problems. Babolian et al. [24] have investigated reproducing kernel method for solving the 

fractional order BT equations. Wazwaz [25] has used successive differentiation method for obtaining 

the solution of non-linear BT problems. Raja et al. [26] have introduced bio-inspired computing 

technique for solving BT equations. They took advantage of artificial neural networks’ strengths to 

find the solution of one-dimensional BT problem. The validity of the model is dependent on the 

weights of the artificial neural networks being properly adjusted. Masood et al. [27] have applied 

mexican hat wavelet based neural network for the approximate solution of non-linear BT equation. 

Grover and Tomer [28] have presented the differential transform method to compute the numerical 

solution of the fractional BT equations and caputo derivative is used to represent the fractional 

derivative. Keshavarz et al. [29] have discussed an effective numerical method based on the Taylor 

wavelets for solving initial and boundary value problems of BT equations. Sakar et al. [30] have 

developed reproducing kernel approach based on Legendre polynomials to obtain numerical treatment 
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of fractional BT BVPs. Tomar and Pandey [31] have introduced an efficient analytical iterative method 

to obtain the solution of initial and boundary value BT problems. 

The B-spline function is widely used with combination of other effective numerical methods to 

find numerical solution of different types of problems which are arises in various physical phenomena such 

as nonlinear Schrödinger equation [32], complex modified Korteweg-de Vries (mkdv) equation [33], 

kdv-mkdv equation [34], modified equal width wave equation [35] and modified Kawahara 

equation [36], etc. Başhan [37,38] has presented the Crank–Nicolson scheme and differential 

quadrature method (DQM) based on quintic B-spline basis function to find the numerical solution of 

mkdv equation and coupled kdv equations. Mirzaee and Alipour [39–43] have presented the Bicubic, 

cubic, and quintic B-spline collocation method for finding the numerical treatment of two-dimensional 

weakly singular stochastic integral equation, dimensional stochastic itô-Volterra integral equation, 

fractional-order linear stochastic integro-differential equation, and multidimensional non-linear 

stochastic quadratic integral equation. Mirzaee and Alipour [44] have used fractional-order orthogonal 

Bernstein polynomial for solving non-linear fractional partial Volterra integro-differential equations. 

The remaining part of the article is organized as follows. Derivation of the QBSCM is discussed 

in section 2. Error analysis of the QBSCM is described in section 3. Numerical results are exhibited in 

section 4 which shows the efficiency and accuracy of the QBSCM. Conclusions of the method are 

summarised in section 5. 

2. Derivation of quintic B-spline Collocation method 

In this section, QBSCM is described to find the numerical treatment of Eqs (1) and (2). Let 

 0 1 10 1N NP t t t t+= =     =   be the partition of the interval  0, 1  and generate the uniform 

mesh with equally spaced mesh points , 0,1, 2, , ,it ih i N= =  where 1 .h N=  We define the quintic 

spline space 5, PS   as ( ) ( )   4

5, : 0,1 ,PS q t q t C=    where ( )q t   is a quintic polynomial on the 

partition .P  The standard B-spline is defined [45,46] as  

( ) 11ˆ
!

n nQ x x
n
 +

+=           (3) 

where 1n +   represents the ( )1
th

n +   order central difference with unit step and the function nx+

defined as 

, if 0

0, if 0

n

n x x
x

x
+

 
= 


.         (4) 

Putting 
1

5,
2

it t
n x

h

−
= = −  in Eq (3), we obtain the following quintic B-spline (QBS) function 

( ) , 2, 1, , , 1, 2iQ t i N N= − − + +  for the space 5, PS  
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( )

( )  

( ) ( )  

( ) ( ) ( )  

( ) ( ) ( )  

( ) ( )  

( )  

5

3 3 2

5 5

3 2 2 1

5 5 5

3 2 1 1

5 5 5

3 2 1 15

5 5

3 2 1 2

5

3 2 3

, , ,

6 , , ,

6 15 , , ,

1
6 15 , ,

120
6 , ,

, ,

0, otherwise

i i i

i i i i

i i i i i

i i i i i i

i i i i

i i i

t t t t t

t t t t t t t

t t t t t t t t t

Q t t t t t t t t t t
h

t t t t t t t

t t t t t

− − −

− − − −

− − − −

+ + + +

+ + + +

+ + +

 − 

 − − − 

 − − − + − 



= − − − + − 


− − − 

− 









.     (5) 

Each basis function ( )iQ t  is fourth times continuous differentiable on  3 3, .i it t− +  From Eq (5), 

we can see that ( )
2

2

1
N

i

i

Q t
+

=−

=  on  0, 1  and each function ( )iQ t  are an element of 
5, .PS To enable 

the B-spline basis functions, we introduce six additional mesh points outside of the interval  0, 1 . The 

six extra knots of the partition P   as 3 2 1,t t t− − −    and 1 2 3, .N N Nt t t+ + +    Let 

 2 1 2 3, , , ,N NK Q Q Q Q− − + +=   is the set of QBS basis function and ( ) span .P K =   Since the 

basis function 2 1 2 3, , , ,N NQ Q Q Q− − + +  are linearly independent of the interval  0, 1 .  Therefore, 

( )P  is a ( )5 dimensionN + − QBS. It is to be seen that ( ) 5, PP S =  [47]. Let ( )S t  is the QBS 

interpolation function of ( )u t  at the knots it . Then the QBS is defined as  

( ) ( )
2

2

,
N

i i

i

S t Q t
+

=−

=          (6) 

where, ( )S t  satisfies the following interpolation formula 

( ) ( ) , 0,1, , ,i iS t u t i N= =        (7) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 4 6 82 41 1
, 0,1, , .

12 240
i i i iS t u t h u t h u t i N= − + =     (8) 

We represent 
( ) ( ) ( )m m

i iS S t=   for 0,1, ,i N=   and ( ) ( ) ( ) ( )
2

2

N
m m

i i

i

S t Q t
+

=−

=   be the 

approximation to ( ) ( ) ( ), 0,1,2,3,4 .
m

u t m = The values of ( ) ( ) ( ), ,i i iQ t Q t Q t ( ) ( )3

iQ t and ( ) ( )4

iQ t

at the mesh points are given in the Table 1. 
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Table 1. The values of quintic B-spline basis function ( ) ( ), 0,1,2,3,4
m

iQ m =  at mesh points. 

 
3it −  2it −  1it −  it  1it +  2it +  3it +  

( )iQ t  
0 1

120
 

26

120
 

66

120
 

26

120
 

1

120
 

0 

( )iQ t  
0 5

120h
 

50

120h
 

0 50

120h

−
 

5

120h

−
 

0 

( )iQ t  
0 

2

20

120h
 

2

40

120h
 

2

120

120h

−
 

2

40

120h
 

2

20

120h
 

0 

( ) ( )3

iQ t  
0 

3

60

120h
 

3

120

120h

−
 

0 
3

120

120h
 

3

60

120h

−
 

0 

( ) ( )4

iQ t  
0 

4

120

120h
 

4

480

120h

−
 

4

720

120h
 

4

480

120h

−
 

4

120

120h
 

0 

From Eqs (1) and (6), we get 

( ) ( )( ) 0, 0,1, ,i iS t W S t i N + = =      (9) 

with the boundary conditions (2), we have 

( )0 0,S t =           (10) 

and 

( ) 0.NS t =           (11) 

The above Eqs (9)–(11) are providing ( )3N + equations with ( )5N +  unknowns. To find the 

unique solution of these systems of equations. We required two more equations. For finding the two 

more equations, differentiating Eq (1) with respect to t, we have 

( ) ( ) 0.
d

u t W u
dt

 + =         (12) 

At the point 0 and ,Nt t t t= = we obtain 

( ) ( )( )0 0 0.
d

u t W u t
dt

 + =        (13) 

( ) ( )( ) 0.N N

d
u t W u t

dt
 + =        (14) 

Substituting the quintic B-spline solution from Eq (6) in Eqs (13) and (14), we get 



7262 

AIMS Mathematics  Volume 7, Issue 4, 7257–7273. 

( ) ( )( )0 0 0.
d

S t W S t
dt

 + =        (15) 

( ) ( )( ) 0.N N

d
S t W S t

dt
 + =        (16) 

Thus, Eqs (9)–(11), (15) and (16) yield a system of ( )5N + equations with ( )5N +  unknowns. 

We write these equations in the matrix form: 

,AX B=           (17) 

where, A  is the coefficient matrix and  2 1 0 1 2, , , , , ,
T

N N NX      − − + += with the right-hand side 

( ) ( ) ( ) ( ) ( )0 0 10, , , , , , ,0

T

N N

d d
B W S W S W S W S W S

dt dt

 

=  
 

and A  is given below: 

3 3 3 3

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2

1 26 66 26 1
0 0 0 0 0

120 120 120 120 120

1 2 2 1
0 0 0 0 0 0

2 2 2 2

1 2 6 2 1
0 0 0 0 0

6 6 6 6 6

1 2 6 2 1
0 0 0 0 0

6 6 6 6 6

1 2 6 2 1
0 0 0 0 0

6 6 6 6 6

1 2 6 2 1
0 0 0 0 0

6 6 6 6 6

1 2 6 2 1
0 0 0 0

6 6 6 6 6

h h h h

h h h h h

h h h h h

h h h h h

A

h h h h h

h h h h h

− −

−

−

−

=

−

−
2

2 2 2 2 2

3 3 3 3

.

0

1 2 6 2 1
0 0 0 0 0

6 6 6 6 6

1 2 2 1
0 0 0 0 0 0

2 2 2 2

1 26 66 26 1
0 0 0 0 0

120 120 120 120 120

h h h h h

h h h h

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −
 
 

− − 
 
 
 
  

 

Solving the system defined in Eq (17) by using the Newton’s method for the unknowns 

2 1 0 1 2, , , , ,N N N     − − + +   and substituting these values in Eq (6), we get the quintic B-spline 

solution of Eqs (1) and (2). 

3. Error analysis 

Error bound is studied for QBS ( )S t   and its derivatives up to order four at knots 

, 0,1, , .it i N=   From Eq (6) and Table 1, we establish the following consistency relations [48]: 

( ) ( ) ( ) ( )( )2 1 1 2

5
10 10 ,i i i i iS S t S t S t S t

h
 − − + +

 = − − + +  2,3, , 2,i N= −    (18) 
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( ) ( ) ( ) ( ) ( )( )2 1 1 22

20
2 6 2 ,i i i i i iS S t S t S t S t S t

h
 − − + +

= + − + +  2,3, , 2,i N= −   (19) 

( ) ( ) ( ) ( )( )2 1 1 23

60
2 2 ,i i i i iS S t S t S t S t

h
 − − + +

= − + − +  2,3, , 2,i N= −     (20) 

( ) ( ) ( ) ( ) ( )( )2 1 1 24

120
4 6 4 ,iv

i i i i i iS S t S t S t S t S t
h

 − − + += − + − +  2,3, , 2,i N= −   (21) 

where   represents the discrete operator which is defined as follows: 

2 1 1 226 66 26 ,i i i i i iy y y y y y − − + −= + + + + 2,3, , 2,i N= −  

We express the following two lemmas for deriving the error bound of quintic spline .S  

Lemma 1. If ( )S t  is the quintic spline (QS) interpolation function of ( )u t  and ( )  8 0, 1 .u t C Then 

we have 

( ) ( ) ( ) ( ) ( ) ( )3 52 4 67
120 30

2
iS u t u t h u t h O h  = + + + ,     (22) 

( ) ( ) ( ) ( ) ( ) ( )4 62 4 611
120 30

3
iS u t u t h u t h O h  = + + + ,     (23) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 5 72 4 6120 30 3iS u t u t h u t h O h = + + + ,    (24) 

( ) ( ) ( ) ( ) ( ) ( )4 4 6 82 4 63
120 20

2
i i iS u t h u h u O h = + + + .     (25) 

Proof. Utilizing the interpolation condition (7) in the RHS Eq (18) and expanding u  by Taylor’s 

series, we can acquire Eq (22). In the similar manner, we can prove the reimaging relations of Lemma 1. 

Lemma 2. Let the coefficient matrix of the system 0, 2,3, , 2iy i N = = − is denoted by P and 

0 1 1 0n ny y y y−= = = =  then prove that 1 1
,

12
P−


  where 

66 26 1 0 0 0 0 0

26 66 26 1 0 0 0 0

1 26 66 26 1 0 0 0

0 1 26 66 26 1 0 0

.

0 0 1 26 66 26 1 0

0 0 0 1 26 66 26 1

0 0 0 0 1 26 66 26

0 0 0 0 0 1 26 66

P

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

 

Proof: From the given matrix P , we can see that, it is strictly diagonally dominant and non-singular 

matrix. Therefore, from the Lemma 4 in Lucas [49], we can obtain 1 1
.

12
P−


  

We estimate the error bound for the QS and its derivative in the following theorem. 
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Theorem 1. Let ( )S t   is the QS interpolation of ( )  8 0, 1u t C   and satisfies the interpolation 

conditions (7) and (8). Then we obtain the following relations for 0,1, 2, , .i N=  

( ) ( ) ( )6

i iS t u t O h = + ,           (26) 

( ) ( ) ( ) ( ) ( )64 61

720
i i iS t u t h u t O h = + + ,        (27) 

( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 74 61

240
i i iS t u t h u t O h= − + ,       (28) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 4 6 82 4 61 1

12 240
i i i iS t u t h u t h u t O h= − + + .     (29) 

Solution: We have 

𝛾𝑦𝑖 ≡ 𝑦𝑖−2 + 26𝑦𝑖−1 + 66𝑦𝑖 + 26𝑦𝑖+1 + 𝑦𝑖−2.       (30) 

Expand the R.H.S. of Eq (30) by using the Taylor’s series in terms of y , we obtain 

( ) ( )42 4 67
120 30

2
i i i iy y h y h y O h = + + + .       (31) 

We consider ( ) ( ) ( )4 6 82 41 1
, 2,3, , 2

12 240
i i i iy u h u h u i N= − + = −  and substituting it in the Eq (30). We get 

( ) ( ) ( ) ( ) ( ) ( )4 6 8 4 6 82 4 2 41 1 3
120 20

12 240 2
i i i i i iu h u h u u h u h u

 
− + = + + 

 
.    (32) 

Subtracting Eq (32) from Eq (25), we have 

( ) ( ) ( ) ( ) ( )4 4 6 82 4 61 1
, 2,3, , 2.

12 240
i i i iS u h u h u O h i N

 
− + − = = − 

 
   (33) 

Define ( ) ( ) ( ) ( )4 4 6 82 41 1
, 0,1, , .

12 240
i i i i id S u h u h u i N − + − =  From Eqs (7) and (33), we get 

( )6

0 1 1 1

, 2,3, , 2,

0.

i

N N

d O h i N

d d d d



− −

= = −

= = = =
        (34) 

The inverse of the coefficient matrix P  of the Eq (34) has a bounded norm and using Lemma 2, we 

obtain 

( )6 , 0,1, , .id O h i N= =          (35) 

Hence, the Eq (29) is proved. Next, we have to prove Eq (28). From the consistency relation of quintic 

spline, we get 
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( ) ( ) ( ) ( ) ( ) ( )( )3 4 4 4 4

1 1 2 1 1 23

1
3 3 33 27 , 1, , 2.

120
i i i i i i i i i

h
S S S S S S S S S i N

h
− + + − + += − + − + − − + + + = −   (36) 

Using Eqs (7) and (29) in Eq (36), we obtain 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 4 6 82 4 6

1 1 2 1 1 13

4 6 8 4 6 82 4 6 2 4 6

1 1 1

4 6 82 4 6

2 2 2

1 1 1
3 3

120 12 240

1 1 1 1
33 27

12 240 12 240

1 1
, 1, , 2.

12 240

i i i i i i i i

i i i i i i

i i i

h
S u u u u u h u h u O h

h

u h u h u O h u h u h u O h

u h u h u O h i N

− + + − − −

+ + +

+ + +

  
= − + − + − − − + + 

 

   
+ − + + + − + +   

   


+ − + + = −



   (37) 

Expand the above equation by Taylor’s series expansion, we get 

( ) ( ) ( ) ( )3 3 74 61
, 1, , 2.

240
i i iS u h u O h i N= − + = −       (38) 

Hence Eq (28) is proved for 1,2, , 2.i N= −  We still need to prove Eq (28) for 0, 1, .i N N= −  The 

following quintic B-spline consistency relations are considered: 

( ) ( ) ( ) ( )( )3 3 4 4

1 1 , 0.
2

i i i i

h
S S S S i+ += − + =        (39) 

( ) ( ) ( ) ( )( )3 3 4 4

1 1 , 1, .
2

i i i i

h
S S S S i N N− −= + + = −       (40) 

Using Eqs (7), (29) and (38) in Eqs (39) and (40). After substitution, expand the equations by Taylor’s 

series and we get the Eq (28) for 0, 1, .i N N= −  Similarly, we can prove the Eqs (26) and (27). 

Now, we drive the global error bounds in the following theorem. 

Theorem 2. Consider ( )S t  is the QS solution of ( )u t  and ( )  0, 1u t C  then we have the global 

error bounds ( ) ( ) ( ) ( ) ( )6 ,
m m mu t S t O h −


− =  for 0,1, 2,3, 4.m =  

Proof. The QS interpolation error in defined by ( ) ( ) ( )e t u t S t= −  and first we prove 

( ) ( ) ( ) ( ) ( ).244 hOtStu =−


        (41) 

Since 
( ) ( )4

S t   is piecewise continuous linear function in the interval  0, 1  with respect to the 

partition. For 1, 2,3, , ,i N=  we get 

( ) ( ) ( ) ( )  
( ) ( )4 4 4 4 1

1,1
: | .i i

i i it ti i

t t t t
S t S t S S

h h

−
−−

− −
= = +       (42) 

Let 
( ) ( )4

û t  is piecewise continuous linear interpolating function to
( ) ( )4

.u t  For 1, 2,3, , ,i N=  we 

have 

𝑢̂𝑖
(4)(𝑡): = 𝑢̂(4)(𝑡)|[𝑡𝑖−1,𝑡𝑖] = 𝑢(4)(𝑡𝑖−1)

𝑡𝑖−𝑡

ℎ
+ 𝑢(4)(𝑡𝑖)

𝑡−𝑡𝑖−1

ℎ
.    (43) 

From Eqs (29), (42) and (43), we obtain 
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( ) ( ) ( )4 4 2

1

ˆmax .i i
t t ti i

S u O h
 −

− =         (44) 

Therefore, 

( ) ( ) ( ) ( ) ( )4 4 2ˆ .S t u t O h


− =         (45) 

Using the piecewise linear interpolation theory from [50–52], we get 

( ) ( ) ( ) ( ) ( )4 4 2ˆ .u t u t O h


− =         (46) 

From Eqs (45) and (46), we have 

( ) ( ) ( ) ( ) ( )4 4 2 .u t S t O h


− =         (47) 

Now, we have to prove 

( ) ( ) ( ) ( ) ( )3 3 3 .u t S t O h


− =         (48) 

Let 
( ) ( )3

iS t  represents the restriction of 
( ) ( )  3

1, , , 1, 2,3, , .i iS t t t t i N− = By using the Newton-

Leibniz formula, Eqs (28) and (48) for  1, ,i it t t− we get 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

3 3 4 3 4 3

1 1
1 1

4 4 3 3

1 1
1

3 3 3

t ti i

i i i i
t ti i

ti

i i i i
ti

S t u t S t dt S t u t dt u t

S t u t dt S t u t

O h O h O h

− −
− −

− −
−

− = + − +

= − + −

= + =

 


. 

Hence ( ) ( ) ( ) ( ) ( )3 3 3u t S t O h


− = holds. 

Similarly, we can prove, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 1 14 5,u t S t O h u t S t O h
 

− = − =   and 

( ) ( ) ( )6 .u t S t O h


− =  

4. Numerical results 

In this section, QBSCM is applied on two non-linear BT BVPs to exhibit the accuracy and 

efficiency of the method. The efficiency of the method is assessed by calculating the maximum 

absolute error (MAE) and order of convergence. The MAE is defined by 

( ) ( )
0
max ,N

i i
i N

e u t S t
 

= −          (49) 

where ( )u t  represents the exact solution and ( )S t  denotes the approximate solution. The order of 

convergences is defined as 
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( )2ln
Order of Convergence .

ln 2

N Ne e
=         (50) 

Example 1. Consider the following non-linear BT BVP [12,13]: 

( ) ( )
0,

u t
u t e + =  

with the boundary conditions (BCs): 

( ) ( )0 0, 1 0.u u= =  

The exact solution of the Example 1 is given by  

( )

1
cosh

2 2
2log ,

cosh
4

t

y t





   
−   

   = −
  

  
  

 

where   is the solution of 2 cosh 0.
4


 

 
− = 

 

 

Example 2. Consider the following non-linear BT BVP: 

( ) ( )2 0,
u t

u t e − =  

with the BCs: 

( ) ( )0 0, 1 0.u u= =  

The exact solution of the Example 2 is ( ) ( )( )ln 1 cos 0.5 .u t t  = − − +   

The MAE and order of convergence of Example 1 are presented in Tables 2–4 and compared with 

the existing methods for 1,2,3.51 =   and different values of .N  Tables demonstrate that the 

proposed method gives a good approximate solution. Point wise error and MAE for 2 =  and 

20, 60 and 90N =   are displaying in Tables 5–7 respectively. Obtained results are compared with 

existing methods [12,13] at the same number of mesh points. Table 8 exhibits the MAE and order of 

convergences of Example 2 for different values of .N   Numerical results have been calculated 

through the MATLAB (R2021b) software and execution time (in seconds) is given in Tables 2–4 and 8. 

Figures 1 and 2 depict the comparison between the exact and numerical solutions of Examples 1 and 2 

for 60=N  and 30=N , respectively. 
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Table 2. MAE and order of convergence of Example 1 for λ = 1 and different values of .N  

N  Roul and Thula [13] Present Method Order Time (sec) 

8 7.2374E-07 2.4597E-07 4.0260 0.1653 

16 4.5053E-08 1.5098E-08 4.0071 0.3333 

32 2.8130E-09 9.3900E-10 4.0018 0.8646 

64 1.7573E-10 5.8613E-11 4.0014 2.9914 

128 1.0941E-11 3.6598E-12 4.0281 11.3724 

256 6.4185E-13 2.2432E-13  45.8577 

Table 3. MAE and order of convergence of Example 1 for λ = 2 and different values of .N  

N  Roul and Thula [13] Present Method Order Time (sec) 

8 9.5527E-06 3.3205E-06 4.0561 0.1737 

16 5.9226E-07 1.9962E-07 4.0147 0.3358 

32 3.6943E-08 1.2349E-08 4.0038 0.8601 

64 2.3078E-09 7.6983E-10 4.0007 3.0483 

128 1.4422E-10 4.8091E-11 4.0124 12.2223 

256 9.0137E-12 2.9799E-12  45.0466 

Table 4. MAE and order of convergence of Example 1 for 51.3= and different values of .N  

N  Roul and Thula [13] Present Method Order Time (sec) 

8 2.9000E-03 1.0016E-03 4.0914 0.1776 

16 1.7339E-04 5.8761E-05 4.0242 0.3576 

32 1.0787E-05 3.6115E-06 4.0060 0.8611 

64 6.7361E-07 2.2478E-07 4.0015 3.0370 

128 4.2093E-08 1.4034E-08 4.0024 12.5392 

256 2.6307E-09 8.7565E-10  46.9409 

 

Figure 1. Graphical representation of exact and approximate solutions of Example 1 for .60=N  
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Figure 2. Graphical representation of exact and approximate solution of Example 2 for .30=N  

Table 5. Point wise error and MAE of Example 1 for 2 =  and 20.N =  

t  Present 

Method 

Roul and 

Thula [13] 

Caglar et al. 

[12] 

MAE by 

Present 

Method 

MAE by 

Roul and 

Thula [13] 

MAE by 

Caglar et al. 

[12] 

0.1 2.1574E-08 6.4400E-08 6.8661E-05    

0.2 4.3652E-08 1.3018E-07 1.3028E-04    

0.3 6.3101E-08 1.8806E-07 1.7944E-04    

0.4 7.6550E-08 2.2805E-07 2.1123E-04    

0.5 8.1366E-08 2.4236E-07 2.2224E-04 8.1366E-08 2.4236E-07 2.2224E-04 

0.6 7.6550E-08 2.2805E-07 2.1123E-04    

0.7 6.3101E-08 1.8806E-07 1.7944E-04    

0.8 4.3652E-08 1.3018E-07 1.3028E-04    

0.9 2.1574E-08 6.4400E-08 6.8661E-05    

Table 6. Point wise error and MAE of Example 1 for 2 = and 60.N =  

t  Present 

Method 

Roul and 

Thula [13] 

Caglar et al. 

[12] 

MAE by 

Present 

Method 

MAE by 

Roul and 

Thula [13] 

MAE by 

Caglar et al. 

[12] 

0.1 2.6488E-10 7.9416E-10 1.7179E-05    

0.2 5.3542E-10 1.6052E-09 3.2596E-05    

0.3 7.7342E-10 2.3185E-09 4.4899E-05    

0.4 9.3784E-10 2.8113E-09 5.2858E-05    

0.5 9.9669E-10 2.9876E-09 5.5614E-05 9.9669E-10 2.9876E-09 5.5614E-05 

0.6 9.3784E-10 2.8113E-09 5.2858E-05    

0.7 7.7342E-10 2.3185E-09 4.4899E-05    

0.8 5.3542E-10 1.6052E-09 3.2596E-05    

0.9 2.6488E-10 7.9417E-10 1.7179E-05    
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Table 7. Point wise error and MAE of Example 1 for 2 = and 90.N =  

t  Present 

Method 

Roul and 

Thula [13] 

Caglar et al. 

[12] 

MAE by 

Present 

Method 

MAE by 

Roul and 

Thula [13] 

MAE by 

Caglar et al. 

[12] 

0.1 8.3783E-11 1.5686E-10 3.3950E-06    

0.2 1.6935E-10 3.1704E-10 6.4404E-06    

0.3 2.4461E-10 4.5793E-10 8.8720E-06    

0.4 2.9661E-10 5.5525E-10 1.0445E-05    

0.5 3.1522E-10 5.9009E-10 1.0990E-05 3.1522E-10 5.9009E-10 1.0990E-05 

0.6 2.9661E-10 5.5525E-10 1.0445E-05    

0.7 2.4461E-10 4.5793E-10 8.8720E-06    

0.8 1.6935E-10 3.1704E-10 6.4404E-06    

0.9 8.3782E-11 1.5686E-10 3.3950E-06    

Table 8. MAE and order of convergence of Example 2 for different values of .N  

N  Present Method Order Time (sec) 

8 2.9773E-05 3.8482 0.1888 

16 2.0672E-06 3.9440 0.3417 

32 1.3432E-07 3.9834 0.8517 

64 8.4920E-09 3.9955 2.9580 

128 5.3242E-10 3.9989 12.2758 

256 3.3302E-11  47.1190 

5. Conclusions 

This work presents QBSCM to obtain the numerical solution of non-linear BT problems. The 

quintic B-spline interpolation error analysis has been studied, and it gives fourth-order convergence 

results. The applicability and efficiency of the proposed method have been estimated through 

numerical examples and obtained numerical results have been compared with the exact solution and 

other existing methods at the same number of mesh points. The proposed method provides better 

numerical results than the methods [12,13]. 
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