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Abstract: In this work, we study the fixed-time stability of fractional-order systems. By virtue of
the properties of Riemann-Liouville fractional derivative and the comparison principle, we derive a
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1. Introduction

Stability analysis is one of the fundamental issues in control theory. There are several important
concepts to describe the dynamic behaviors of the control system, such as asymptotic stability, finite-
time stability, fixed-time stability, and so on. From the practical perspective, convergence time of
system trajectories is an important performance specification. We usually require that the designed
controller ensures finite-time convergence of the closed-loop system trajectories. However, asymptotic
stability of a control system implies that the closed-loop system trajectories converge to an equilibrium
state over the infinite time, which restricts its application in engineering. Finite-time stability can
guarantee the finite-time convergence, but the settling time strongly depends on the initial conditions.
To overcome this drawback, fixed-time stability was introduced in [1] where the settling time does not
depend on the initial conditions. In recent years, fixed-time stability, stabilization and synchronization
of control systems have been the subjects of in-depth research, e.g., see [2–8].

Since the geometric and physical interpretations of fractional-order derivatives were given in [9],
researchers found that fractional-order systems can more accurately model large amounts of practical
systems. At present, some of traditional integer-order systems describing physical, biological and
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chemical phenomena have been successfully extended to fractional-order ones and many meaningful
results are established, see for example [10–14] and the references therein. Over the last decade,
the problems of finite-time stability of fractional-order systems, especially for fractional-order neural
networks, have attracted considerable attention of scholars [15–20]. Due to a lack of theoretical
framework related to fixed-time stability of fractional-order systems, researchers usually adopt the
method of fixed-time stability of integer-order systems to deal with that of fractional-order systems
[21–27]. It should be pointed out that the above method requires us to construct a special Lyapunov
function including fractional-order derivative and integral terms. On the other hand, for the integer-
order control systems, the setting time of fixed-time stability only depends on the parameters of
controller. However, intuitively, setting time of fractional-order control systems should be related
to the order of the fractional-order derivative. Motivated by the above arguments, we will establish a
new fixed-time stability theorem. The advantage of this result is that, when discussing the fixed-time
stability of fractional-order systems, we can construct a more general Lyapunov functions instead of a
special one. Also, the setting time depends on the order of the fractional-order derivative.

2. Problem statement and preliminaries

Consider the following fractional-order system:

t0 Dα
t x(t) = f (t, x(t)) (2.1)

where t0 Dα
t denotes Riemann-Liouville fractional derivative of order α, 0 < α < 1, x(t) ∈ Rn is state

vector, and f (t, x(t)) : R+ × R
n → Rn is a smooth enough function. The initial condition to (2.1) is

defined as aI1−α
t x(t)|t=0 , x0. We assume that the solutions x(t) of system (2.1) exist on [0,+∞) and the

origin is an equilibrium of system (2.1).
The aim of this work is to develop a fixed-time stability theorem for the fractional-order

system (2.1). To achieve this goal, we first introduce the following definition, lemma and property
which will be useful in the sequel.

Definition 1. (Modified Riemann-Liouville derivative [28]) Let f (t) denote a continuous function.
Then, its fractional derivative of order α can be defined by the expression

0Dα
t f (t) =

1
Γ(1 − α)

d
dt

∫ t

0

f (τ) − f (0)
(t − τ)α

dτ, 0 < α < 1.

Proposition 1. [29] Assume that x(t) is both differentiable and α-differentiable, then 0Dα
t f (x(t)) =

(1 − α)!xα−1Dα
x f (x)Dα

t x(t).

Lemma 1. [30] Let f : [a, b]→ R be a continuous function and set α > 0. Then

D−αt Dα
t f (t) =

 f (t), if α > 1
f (t) − f (a), if 0 < α < 1

for f ∈ C([a, b]).

Lemma 2. [31] Let z1, z2, · · · , zn > 0, 0 < l ≤ 1 and r > 1, then the following two inequalities hold
n∑

i=1

zl
i ≥

( n∑
i=1

zi

)l

,

n∑
i=1

zr
i ≥ n1−r

( n∑
i=1

zi

)r

.
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3. Main results

3.1. Fixed-time stability of fractional-order systems

Theorem 1. Suppose there exists a positive definite function V(t, x(t)) , V(t), such that

0Dα
t V(t) ≤

λ1Γ(1 − γ)
Γ(2 − α)Γ(α − γ + 1)

V1−α+γ(t) −
λ2Γ(1 − β)

Γ(2 − α)Γ(α − β + 1)
V1−α+β(t) (3.1)

with λ1 > 0, λ2 > 0, 1 < γ < α + 1 and α − 1 < β < α. Then the origin of system (2.1) is fixed-time
stable for any initial conditions, and the settling time is estimated by

T =

(
Γ(1 + α)

λ1

) 1
α

+

(
Γ(1 + α)

λ2

) 1
α

. (3.2)

Proof: Due to 1 < γ < α + 1, we have −α < 1 − γ < 0, which leads to Γ(1 − γ) < 0. It follows from
(3.1) that the following two inequalities hold simultaneously

0Dα
t V(t) ≤

λ1Γ(1 − γ)
Γ(2 − α)Γ(α − γ + 1)

V1−α+γ(t), 0Dα
t V(t) ≤ −

λ2Γ(1 − β)
Γ(2 − α)Γ(α − β + 1)

V1−α+β(t). (3.3)

The corresponding comparison systems are respectively defined as

0Dα
t ν(t) =

λ1Γ(1 − γ)
Γ(2 − α)Γ(α − γ + 1)

ν1−α+γ(t), 0Dα
t ν(t) = −

λ2Γ(1 − β)
Γ(2 − α)Γ(α − β + 1)

ν1−α+β(t). (3.4)

By virtue of the Property 1, we get

0Dα
t ν

α−γ(t) =
Γ(2 − α)Γ(α − γ + 1)

Γ(1 − γ)
να−γ−1(t) 0Dα

t ν(t). (3.5)

Thus, the first comparison system in (3.4) can be rewritten as

0Dα
t ν

α−γ(t) = λ1. (3.6)

Taking Riemann-Liouville fractional integration for (3.6) from 0 to t and considering Lemma 1, we
have

να−γ(t) − να−γ(0) =
λ1tα

Γ(1 + α)
. (3.7)

Further, it follows from (3.7) that

ν(t) =

 1
να−γ(0) + λ1tα

Γ(1+α)


1

γ−α

. (3.8)

Note that λ1 > 0, Γ(1 +α) > 0 and γ−α > 0. The right-hand side of Eq (3.8) is a monotone decreasing
function with respect to t. When ν(0) > 1, there exists a moment T ∗1 such that ν(T ∗1) = 1. Next, let us
estimate T ∗1 . Considering (3.8) and the fact

να−γ(0) +
λ1

Γ(1 + α)

 νγ−α(0) − 1
λ1

Γ(1+α)ν
γ−α(0)

 = 1 (3.9)
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we can choose T ∗1 =

(
νγ−α(0)−1
λ1

Γ(1+α) ν
γ−α(0)

) 1
α

. In order to estimate the setting time, we choose T1 =
(

Γ(1+α)
λ1

) 1
α . It

should be pointed out that T1 > T ∗1 due to the fact νγ−α(0)−1
νγ−α(0) < 1.

For the second comparison system in (3.4), following a procedure similar to (3.5) and (3.6) yields

0Dα
t ν

α−β(t) = −λ2. (3.10)

Taking Riemann-Liouville integration for (3.10) from T ∗1 to t, one has

να−β(t) − να−β(T ∗1) = −
λ2(t − T ∗1)α

Γ(1 + α)
, (3.11)

which implies

ν(t) =

(
1 −

λ2(t − T ∗1)α

Γ(1 + α)

) 1
α−β

(3.12)

Denote T2 =
(

Γ(1+α)
λ2

) 1
α . It follows from (3.12) that ν(t) = 0 when t = T ∗1 + T2. We claim that ν(t) ≡ 0

when t ≥ T ∗1 + T2. Otherwise, with the increasing of t, ν(t) becomes negative, which contradicts
the positive definiteness of ν(t). From the previous discussion, the setting time can be estimated by
T = T1 + T2, which implies ν(t) = 0,∀t ≥ T . By invoking the comparison principle for fractional-order
systems [32], it can be derived that V(t) ≤ ν(t) when V(0) ≤ ν(0). Thus, V(t) = 0,∀t ≥ T . Taking
into account the positive definiteness of V(t), one has x(t) = 0,∀t ≥ T . Therefore, the system (2.1) is
fixed-time stable, and the settling time is estimated by (3.2).

3.2. Application to fixed-time synchronization of fractional-order neural networks

Consider the following neural networks:

0Dα
t xi(t) = −δixi(t) +

n∑
j=1

pi j f j(x j(t)) + Ii, i = 1, 2, · · · , n. (3.13)

0Dα
t yi(t) = −δiyi(t) +

n∑
j=1

pi j f j(y j(t)) + Ii + ui(t), i = 1, 2, · · · , n. (3.14)

where Eq (3.13) is the master system and Eq (3.14) is the corresponding response system; δi > 0 is the
rate of neuron self-inhibition, pi j denotes connection weight, Ii is external input, ui(t) is control input;
f j(·) expresses the activation function which satisfies Lipschitz condition:

∣∣∣ f j(υ)− f j(ς)
∣∣∣ ≤ l j|υ−ς|, l j >

0. We define the synchronization errors as: ei(t) = yi(t) − xi(t). The error systems can be described by:

0Dα
t ei(t) = −δiei(t) +

n∑
j=1

pi j( f j(y j(t)) − f j(x j(t))) + ui(t), i = 1, 2, 3..., n. (3.15)

In this work, we design the following controller:

ui(t) = −k1iei(t) − sign(ei(t))k2i|ei(t)|ξ − sign(ei(t))k3i|ei(t)|ζ , (3.16)

where k1i > 0, k2i > 0 and k3i > 0.
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Theorem 2. If 3 − 2α < ξ < 3, 0 < ζ < 2α − 1 and k1i ≥ −δi +
|pi j |l j+|p ji |li

2 , k2i > 0, k3i > 0, then
the master system (3.13) and the response system (3.14) can achieve fixed-time synchronization under
controller (3.16). Furthermore, the setting time is estimated by

T =

− Γ(1 + α)Γ
(

3−ξ
2 − α

)
%k2Γ(2 − α)Γ

(
3−ξ

2

)
n

1−ξ
2


1
α

+

Γ(1 + α)Γ
(

3−ζ
2 − α

)
%k3Γ(2 − α)Γ

(
3−ζ

2

) 
1
α

(3.17)

where % =
Γ(2−α)Γ(3)

Γ(3−α) > 0, k2 = mini{k2i} and k3 = mini{k3i}.

Proof: Consider the Lyapunov function: V(e(t)) =
∑n

i=1 e2
i (t). Considering the Property 1 and taking

derivative for V(e(t)), we have

0Dα
t V(e(t))

= %

n∑
i=1

ei(t)

−δiei(t) +

n∑
j=1

pi j( f j(y j(t)) − f j(x j(t))) + ui(t)


≤ −%

n∑
i=1

δie2
i (t) + %

n∑
i=1

n∑
j=1

|ei(t)||pi j|l j|e j(t)| − %
n∑

i=1

k1ie2
i (t) − %

n∑
i=1

k2i|ei(t)|ξ+1 − %

n∑
i=1

k3i|ei(t)|ζ+1

≤ −%

n∑
i=1

δie2
i (t) + %

n∑
i=1

n∑
j=1

|pi j|l j

e2
i (t)
2

+
e2

j(t)

2

 − % n∑
i=1

k1ie2
i (t) − %

n∑
i=1

k2i(e2
i (t))

ξ+1
2 − %

n∑
i=1

k3i(e2
i (t))

ζ+1
2

= −%

n∑
i=1

δie2
i (t) + %

n∑
i=1

n∑
j=1

(
|pi j|l j + |p ji|li

2

)
e2

i (t) − %
n∑

i=1

k1ie2
i (t) − %

n∑
i=1

k2i(e2
i (t))

ξ+1
2 − %

n∑
i=1

k3i(e2
i (t))

ζ+1
2

≤ %

n∑
i=1

−δi +

n∑
j=1

|pi j|l j + |p ji|li

2
− k1i

 e2
i (t) − %k2

n∑
i=1

(e2
i (t))

ξ+1
2 − %k3

n∑
i=1

(e2
i (t))

ζ+1
2 (3.18)

Recalling that 3 − 2α < ξ < 3, 0 < ζ < 2α − 1 and 0 < α < 1, we have 1 < ξ+1
2 and 0 < ζ+1

2 < α < 1. It
follows from Lemma 2 that

n∑
i=1

(e2
i (t))

ξ+1
2 ≥ n1− ξ+1

2

 n∑
i=1

e2
i (t)


ξ+1

2

,

n∑
i=1

(e2
i (t))

ζ+1
2 ≥

 n∑
i=1

e2
i (t)


ζ+1

2

. (3.19)

Note that k1i ≥ −δi +
|pi j |l j+|p ji |li

2 . Substituting (3.19) into (3.18) yields

0Dα
t V(e(t)) ≤ −%k2n1− ξ+1

2

 n∑
i=1

e2
i (t)


ξ+1

2

− %k3

 n∑
i=1

e2
i (t)


ζ+1

2

= −%k2n1− ξ+1
2 V

ξ+1
2 (e(t)) − %k3V

ζ+1
2 (e(t)) (3.20)

Comparing (3.20) with (3.1), we have λ1 = −
%k2Γ(2−α)Γ

( 3−ξ
2

)
n

1−ξ
2

Γ
( 3−ξ

2 −α
) and λ2 =

%k3Γ(2−α)Γ
( 3−ζ

2

)
Γ
( 3−ζ

2 −α
) by letting ξ+1

2 =

1−α+γ and ζ+1
2 = 1−α+β, respectively. According to Theorem 1, we conclude that the error systems

(3.15) is fixed-time stable within the setting time (3.17), i.e., the master system (3.13) and the response
system (3.14) can achieve fixed-time synchronization under the controller (3.16).
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4. Numerical simulation

Example 1. Consider the master system (3.13) and the response system (3.14). We choose α = 0.9,
δ1 = 0.9, δ2 = 1.1, p11 = 2, p12 = −0.1, p21 = −5, p22 = 4.5, I1 = 5sin(πt) and I2 = 5cos(πt). The
activation functions are assumed to be f j(x j(t)) = 1

2 (|x j(t)+1| − |x j(t)−1|), j = 1, 2. From the activation
functions, we can choose l1 = l2 = 1. The parameters in (3.16) are selected as k11 = 5, k12 = 7.5,
k21 = k22 = 1, k31 = k32 = 1, ξ = 2 and ζ = 0.5. It can be verified that the previous parameters satisfy
the given conditions in theorem 2. By using these parameters, the setting time is T = 1.9438. When
we take α = 0.75, the setting time is T = 3.4590. For the purpose of the simulation, we assume the
initial conditions x(0) = [5 − 6]T , y(0) = [0 0]T . The error systems trajectories of systems (3.15) are
shown in Figures 1 and 2, which indicate that synchronization can be reached within fixed time. On
the other hand, Figures 1 and 2 show the order α of systems will effect the setting time, and the setting
time will increase as the decrease of order α.

Figure 1. The error system trajectories e1(t) and e2(t) with α = 0.9.

Figure 2. The error system trajectories e1(t) and e2(t) with α = 0.75.
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5. Conclusions

The fixed-time stability of fractional-order systems has been discussed in this paper. A new fixed-
time stability theorem for fractional-order systems has been established. Based on the developed
theorem, we discussed the problem of fixed-time synchronization of fractional-order neural networks.
Numerical simulation verifies the correctness of our results.
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