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1. Introduction

Let m and n be two positive integers with m ≥ 2 and n ≥ 2, [n] = {1, 2, . . . , n}, R be the set of
all real numbers, Rn be the set of all n-dimensional real vectors. Let x = (x1, x2, . . . , xm) ∈ Rm and
y = (y1, y2, . . . , yn) ∈ Rn. If a fourth-order tensorA = (ai jkl) ∈ R[m]×[n]×[m]×[n] satisfies the properties

ai jkl = ak jil = ailk j = akli j, i, k ∈ [m], j, l ∈ [n],

then we callA a partially symmetric tensor.
It is well know that the tensor of the elastic modulus of elastic materials is just partially

symmetrical [11]. And the components of a fourth-order partially symmetric tensorA can be regarded
as the coefficients of the following biquadratic homogeneous polynomial optimization problem [6,19]:

max f (x, y) ≡ Axyxy ≡
∑

i,k∈[m]

∑
j,l∈[n]

ai jklxiy jxkyl, (1.1)

s.t. x>x = 1, y>y = 1.

The optimization problem plays a great role in the analysis of nonlinear elastic materials and the
entanglement problem in quantum physics [5, 6, 8, 9, 26]. To solve the problem, we would establish a
new version based on the following definition:
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Definition 1.1. [11, 20, 21] Let A = (ai jkl) ∈ R[m]×[n]×[m]×[n] be a partially symmetric tensor. If there
are λ ∈ R, x ∈ Rm \ {0} and y ∈ Rn \ {0} such that

A·yxy = λx, Axyx· = λy, x>x = 1, y>y = 1, (1.2)

where

(A · yxy)i =
∑
k∈[m]

∑
j,l∈[n]

ai jkly jxkyl, (Axyx·)l =
∑

i,k∈[m]

∑
j∈[n]

ai jklxiy jxk,

then we call λ an M-eigenvalue of A, x and y the left and right M-eigenvectors associated with λ,
respectively. Let σ(A) be the set of all M-eigenvalues of A and λmax(A) be the largest M-eigenvalue
ofA, i.e.,

λmax(A) = max{|λ| : λ ∈ σ(A)}.

In 2009, Wang, Qi and Zhang [24] pointed out that Problem (1.1) is equivalently transformed into
calculating the largest M-eigenvalue of a fourth-order partially symmetric tensor. Based on this, Wang
et al. [24] presented an algorithm (WQZ-algorithm) to find the largest M-eigenvalue of a fourth-order
partially symmetric tensor.

WQZ-algorithm [24, Algorithm 4.1]:
Initial step: Input A = (ai jkl) ∈ R[m]×[n]×[m]×[n] and unfold it into a matrix A = (Ast) ∈ R[mn]×[mn] by

mapping Ast = ai jkl with s = n(i − 1) + j, t = n(k − 1) + l.
Substep 1: Take

τ =
∑

1≤s≤t≤mn

|Ast|, (1.3)

and set

A = τI +A, (1.4)

where I = (δi jkl) ∈ R[m]×[n]×[m]×[n] with δi jkl = 1 if i = k and j = l, otherwise, δi jkl = 0. Then unfold
A = (ai jkl) ∈ R[m]×[n]×[m]×[n] into a matrix A = (Ast) ∈ R[mn]×[mn].

Substep 2: Compute the unit eigenvector w = (wi)mn
i=1 ∈ R

mn of matrix A associated with its largest
eigenvalue, and fold vector w into the matrix W = (Wi j) ∈ R[m]×[n] in the following way:

Wi j = wk,

set i = dk/ne, j = (k − 1)modn + 1, ∀ k = 1, 2, · · · ,mn.
Substep 3: Compute the singular vectors u1 and v1 corresponding to the largest singular value σ1 of

the matrix W. Specifically, the singular value decomposition of W is

W = UT ΣV =

r∑
i=1

σiuivT
i ,

where σ1 ≥ σ2 ≥ · · · ≥ σr and r is the rank of W.
Substep 4: Take x0 = u1, y0 = v1, and let k = 0.
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Iterative step: Execute the following procedures alternatively until certain convergence criterion is
satisfied and output x∗, y∗ :

xk+1 = A · ykxkyk, xk+1 =
xk+1

||xk+1||
,

yk+1 = Axk+1ykxk+1·, yk+1 =
yk+1

||yk+1||
,

k = k + 1.

Final step: Output the largest M-eigenvalue of the tensorA:

λmax(A) = f (x∗, y∗) − τ,

where
f (x∗, y∗) =

∑
i,k∈[m]

∑
j,l∈[n]

ai jklx∗i y∗j x
∗
ky∗l ,

and the associated M-eigenvectors: x∗, y∗.
The M-eigenvalues of tensors have a close relationship with the strong ellipticity condition in

elasticity theory, which guarantees the existence of the solution to the fundamental boundary value
problems of elastostatics [3, 5, 16]. However, when the dimensions m and n of tensors are large,
it is not easy to calculate all M-eigenvalues. Thus, the problem of M-eigenvalue localization
have attracted the attention of many researchers and many M-eigenvalue localization sets are given;
see [2, 4, 13–15, 17, 18, 23, 27].

For this, Wang, Li and Che [23] presented the following M-eigenvalue localization set for a partially
symmetric tensor:

Theorem 1.1. [23, Theorem 2.2] LetA = (ai jkl) ∈ R[m]×[n]×[m]×[n] be a partially symmetric tensor. Then

σ(A) ⊆ H(A) =
⋃
i∈[m]

⋂
k∈[m],k,i

Hi,k(A),

where

Hi,k(A) =
[
Ĥi,k(A) ∪ (H i,k(A) ∩ Γi(A))

]
,

Ĥi,k(A) = {z ∈ C : |z| ≤ Ri(A) − Rk
i (A), |z| ≤ Rk

k(A)},

H i,k(A) = {z ∈ C : (|z| − (Ri(A) − Rk
i (A)))(|z| − Rk

k(A)) ≤ Rk
i (A)(Rk(A) − Rk

k(A))},
Ri(A) =

∑
k∈[m]

∑
j,l∈[n]
|ai jkl|, Rk

i (A) =
∑

j,l∈[n]
|ai jkl|.

From the set H(A) in Theorem 1.1, we can obtain an upper bound of the largest M-
eigenvalue λmax(A), which can be taken as an parameter τ in WQZ-algorithm. From Example 2 in [15],
it can be seen that the smaller the upper bound of λmax(A), the faster WQZ-algorithm converges. In
view of this, this paper intends to provide a smaller upper bound based on a new inclusion set and take
this new upper bound as a parameter τ to make WQZ-algorithm converges to λmax(A) faster.

The remainder of this paper is organized as follows. In Section 2, we provide an M-eigenvalue
localization set for a partially symmetric tensor A and prove that the new set is tighter than some
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existing M-eigenvalue localization sets. In Section 3, based on the new set, we provide an upper
bound for the largest M-eigenvalue of A. As an application, in order to make the sequence generated
by WQZ-algorithm converge to the largest M-eigenvalue of A faster, we replace the parameter τ in
WQZ-algorithm with the upper bound. In Section 4, we conclude this article.

2. A shaper M-eigenvalue localization set of a fourth-order partially symmetric tensor

In this section, we provide a new M-eigenvalue localization set of a fourth-order partially symmetric
tensor and prove that the new M-eigenvalue localization set is tighter than that in Theorem 1.1, i.e.,
Theorem 2.2 in [23]. Before that, the following conclusion in [1, 25] is needed.

Lemma 2.1. Let x = (x1, x2, . . . , xn)> ∈ Rn and y = (y1, y2, . . . , yn)> ∈ Rn. Then
a) If ‖ x ‖2= 1, then |xi||x j| ≤

1
2 for i, j ∈ [n], i , j;

b)
( ∑

i∈[n]
xiyi

)2
≤

∑
i∈[n]

x2
i

∑
i∈[n]

y2
i .

Theorem 2.1. LetA = (ai jkl) ∈ R[m]×[n]×[m]×[n] be a partially symmetric tensor. Then

σ(A) ⊆ Υ(A) =
⋃
i∈[m]

⋂
s∈[m],s,i

Υi,s(A),

where

Υi,s(A) =
[
Υ̂i,s(A) ∪ (Υ̃i,s(A) ∩ Υi,s(A))

]
,

Υ̂i,s(A) = {z ∈ R : |z| < r̃s
i (A), |z| < rs

s(A)},

Υ̃i,s(A) = {z ∈ R : (|z| − r̃s
i (A))(|z| − rs

s(A)) ≤ rs
i (A)̃rs

s(A)},

Υi,s(A) = {z ∈ R : |z| < r̃s
i (A) + rs

i (A)},

and

r̃s
t (A) =

1
2

∑
k∈[m],k,s

∑
j,l∈[n], j,l

|at jkl| +
∑

k∈[m],k,s

√∑
l∈[n]

a2
tlkl,

rs
t (A) =

1
2

∑
j,l∈[n], j,l

|at jsl| +

√∑
l∈[n]

a2
tlsl, t ∈ [m].

Proof. Let λ be an M-eigenvalue ofA, x ∈ Rm\{0} and y ∈ Rn\{0} be its left and right M-eigenvectors,
respectively. Then x>x = 1. Let |xt| = max

i∈[m]
|xi|. Then 0 < |xt| ≤ 1. For any given s ∈ [m] and s , t, by

the t-th equation of (1.2), we have

λxt =
∑
k∈[m]

∑
j,l∈[n]

at jkly jxkyl

=
∑
k∈[m],

k,s

∑
j,l∈[n],

j,l

at jkly jxkyl +
∑
k∈[m],

k,s

∑
l∈[n]

atlklylxkyl +
∑
j,l∈[n],

j,l

at jsly jxsyl +
∑
l∈[n]

atlslylxsyl.
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Taking the modulus of the above equation and using the triangle inequality and Lemma 2.1, one has

|λ||xt| ≤
∑
k∈[m],

k,s

∑
j,l∈[n],

j,l

|at jkl||y j||xk||yl| +
∑
k∈[m],

k,s

∑
l∈[n]

|atlkl||yl||xk||yl| +
∑
j,l∈[n],

j,l

|at jsl||y j||xs||yl| +
∑
l∈[n]

|atlsl||yl||xs||yl|

≤
1
2

∑
k∈[m],

k,s

∑
j,l∈[n],

j,l

|at jkl||xt| +
∑
k∈[m],

k,s

∑
l∈[n]

|atlkl||yl||xt| +
1
2

∑
j,l∈[n],

j,l

|at jsl||xs| +
∑
l∈[n]

|atlsl||yl||xs|

=
1
2

∑
k∈[m],

k,s

∑
j,l∈[n],

j,l

|at jkl||xt| + |xt|
∑
k∈[m],

k,s

(∑
l∈[n]

|atlkl||yl|
)

+
1
2

∑
j,l∈[n],

j,l

|at jsl||xs| + |xs|
∑
l∈[n]

|atlsl||yl|

≤
1
2

∑
k∈[m],

k,s

∑
j,l∈[n],

j,l

|at jkl||xt| + |xt|
∑
k∈[m],

k,s

(√∑
l∈[n]

|atlkl|
2

√∑
l∈[n]

|yl|
2

)

+
1
2

∑
j,l∈[n],

j,l

|at jsl||xs| + |xs|

√∑
l∈[n]

|atlsl|
2

√∑
l∈[n]

|yl|
2

=
1
2

∑
k∈[m],

k,s

∑
j,l∈[n],

j,l

|at jkl||xt| + |xt|
∑
k∈[m],

k,s

√∑
l∈[n]

a2
tlkl +

1
2

∑
j,l∈[n],

j,l

|at jsl||xs| + |xs|

√∑
l∈[n]

a2
tlsl

=

(
1
2

∑
k∈[m],

k,s

∑
j,l∈[n],

j,l

|at jkl| +
∑
k∈[m],

k,s

√∑
l∈[n]

a2
tlkl

)
|xt| +

(
1
2

∑
j,l∈[n],

j,l

|at jsl| +

√∑
l∈[n]

a2
tlsl

)
|xs|

=̃rs
t (A)|xt| + rs

t (A)|xs|,

i.e.,

(|λ| − r̃s
t (A))|xt| ≤ rs

t (A)|xs|. (2.1)

By (2.1), we have (|λ| − r̃s
t (A))|xt| ≤ rs

t (A)|xt|, which leads to that |λ| ≤ r̃s
t (A) + rs

t (A), i.e., λ ∈ Υt,s(A).
If |xs| > 0, then by the s-th equation of (1.2), we have

λxs =
∑
k∈[m]

∑
j,l∈[n]

as jkly jxkyl

=
∑
k∈[m],

k,s

∑
j,l∈[n],

j,l

as jkly jxkyl +
∑
k∈[m],

k,s

∑
l∈[n]

aslklylxkyl +
∑
j,l∈[n],

j,l

as jsly jxsyl +
∑
l∈[n]

aslslylxsyl.

Taking the modulus of the above equation and using the triangle inequality and Lemma 2.1 yield

|λ||xs| ≤
∑
k∈[m],

k,s

∑
j,l∈[n],

j,l

|as jkl||y j||xk||yl| +
∑
k∈[m],

k,s

∑
l∈[n]

|aslkl||yl||xk||yl| +
∑
j,l∈[n],

j,l

|as jsl||y j||xs||yl| +
∑
l∈[n]

|aslsl||yl||xs||yl|

≤
1
2

∑
k∈[m],

k,s

∑
j,l∈[n],

j,l

|as jkl||xt| +
∑
k∈[m],

k,s

∑
l∈[n]

|aslkl||yl||xt| +
1
2

∑
j,l∈[n],

j,l

|as jsl||xs| +
∑
l∈[n]

|aslsl||yl||xs|

=
1
2

∑
k∈[m],

k,s

∑
j,l∈[n],

j,l

|as jkl||xt| + |xt|
∑
k∈[m],

k,s

(∑
l∈[n]

|aslkl||yl|

)
+

1
2

∑
j,l∈[n],

j,l

|as jsl||xs| + |xs|
∑
l∈[n]

|aslsl||yl|

AIMS Mathematics Volume 7, Issue 4, 6084–6098.



6089

≤
1
2

∑
k∈[m],

k,s

∑
j,l∈[n],

j,l

|as jkl||xt| + |xt|
∑
k∈[m],

k,s

(√∑
l∈[n]

|aslkl|
2

√∑
l∈[n]

|yl|
2

)

+
1
2

∑
j,l∈[n],

j,l

|as jsl||xs| + |xs|

√∑
l∈[n]

|aslsl|
2

√∑
l∈[n]

|yl|
2

=
1
2

∑
k∈[m],

k,s

∑
j,l∈[n],

j,l

|as jkl||xt| + |xt|
∑
k∈[m],

k,s

√∑
l∈[n]

a2
slkl +

1
2

∑
j,l∈[n],

j,l

|as jsl||xs| + |xs|

√∑
l∈[n]

a2
slsl

=

(
1
2

∑
k∈[m],

k,s

∑
j,l∈[n],

j,l

|as jkl| +
∑
k∈[m],

k,s

√∑
l∈[n]

a2
slkl

)
|xt| +

(
1
2

∑
j,l∈[n],

j,l

|as jsl| +

√∑
l∈[n]

a2
slsl

)
|xs|

=̃rs
s(A)|xt| + rs

s(A)|xs|,

i.e.,

(|λ| − rs
s(A))|xs| ≤ r̃s

s(A)|xt|. (2.2)

When |λ| ≥ r̃s
t (A) or |λ| ≥ rs

s(A), multiplying (2.1) and (2.2) and eliminating |xt||xs| > 0, we have

(|λ| − r̃s
t (A))(|λ| − rs

s(A)) ≤ rs
t (A)̃rs

s(A), (2.3)

which implies that

λ ∈ (Υ̃t,s(A) ∩ Υt,s(A)). (2.4)

When |λ| < r̃s
t (A) and |λ| < rs

s(A), it holds that

λ ∈ Υ̂t,s(A). (2.5)

It follows from (2.4) and (2.5) that

λ ∈
[
Υ̂t,s(A) ∪ (Υ̃t,s(A) ∩ Υt,s(A))

]
= Υt,s(A). (2.6)

If |xs| = 0 in (2.1), then |λ| ≤ r̃s
t (A). When |λ| = r̃s

t (A), then (2.3) holds and consequently, (2.4)
holds. When |λ| < r̃s

t (A), if |λ| ≥ rs
s(A), then (2.3) and (2.4) hold. If |λ| < rs

s(A), then (2.5) holds.
Hence, (2.6) holds. By the arbitrariness of s ∈ [m], and s , t, we have

λ ∈
⋂
t,s

Υt,s(A) ⊆
⋃
t∈[m]

⋂
t,s

Υt,s(A),

therefore, the assertion is proved. �

Next, we give the relationship between the localization set H(A) given in Theorem 1.1 and the
set Υ(A) given in Theorem 2.1.

Theorem 2.2. LetA = (ai jkl) ∈ R[m]×[n]×[m]×[n] be a partially symmetric tensor. Then

Υ(A) ⊆ H(A).

AIMS Mathematics Volume 7, Issue 4, 6084–6098.
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Proof. For any i, s ∈ [m] and i , s, it holds that

r̃s
i (A) =

1
2

∑
k∈[m],

k,s

∑
j,l∈[n],

j,l

|ai jkl| +
∑
k∈[m],

k,s

√∑
l∈[n]

a2
ilkl ≤

∑
k∈[m],

k,s

∑
j,l∈[n]

|ai jkl| = Ri(A) − Rs
i (A); (2.7)

and

rs
i (A) =

1
2

∑
j,l∈[n],

j,l

|ai jsl| +

√∑
l∈[n]

a2
ilsl ≤

∑
j,l∈[n]

|ai jsl| = Rs
i (A). (2.8)

Let z ∈ Υ(A). By Theorem 2.1, there is an index i ∈ [m] such that for any s ∈ [m], i , s, z ∈ Υi,s(A),
which means that z ∈ Υ̂i,s(A), or z ∈ Υ̃i,s(A) and z ∈ Υi,s(A).

Let z ∈ Υ̂i,s(A), i.e., |z| < r̃s
i (A) and |z| < rs

s(A). By (2.7) and (2.8), we have |z| ≤ Ri(A) − Rs
i (A)

and |z| ≤ Rs
s(A), therefore, z ∈ Ĥi,s(A).

Let z ∈ Υ̃i,s(A) and z ∈ Υi,s(A), i.e.,

(|z| − r̃s
i (A))(|z| − rs

s(A)) ≤ rs
i (A)̃rs

s(A), (2.9)

and

|z| < r̃s
i (A) + rs

i (A). (2.10)

By (2.7), (2.8) and (2.10), one has |z| < r̃s
i (A) + rs

i (A) ≤ Ri(A), which means that z ∈ Γi(A). When
|z| ≥ Ri(A) − Rs

i (A) and |z| ≥ Rs
s(A), by (2.7), (2.8) and (2.9), we have

|z| − r̃s
i (A) ≥ |z| − (Ri(A) − Rs

i (A)) ≥ 0, |z| − rs
s(A) ≥ |z| − Rs

s(A) ≥ 0,

then

(|z| − (Ri(A) − Rs
i (A)))(|z| − Rs

s(A)) ≤ (|z| − r̃s
i (A))(|z| − rs

s(A))
≤ rs

i (A)̃rs
s(A) ≤ Rs

i (A)(Rs(A) − Rs
s(A)),

i.e.,

(|z| − (Ri(A) − Rs
i (A)))(|z| − Rs

s(A)) ≤ Rs
i (A)(Rs(A) − Rs

s(A)), (2.11)

which means that z ∈ H i,s(A). Thus, whether Ri(A) − Rs
i (A) ≤ |z| ≤ Rs

s(A) or Rs
s(A) ≤ |z| ≤

Ri(A)−Rs
i (A), (2.11) also holds. When |z| ≤ Ri(A)−Rs

i (A) and |z| ≤ Rs
s(A), it follows that z ∈ Ĥi,s(A).

i.e.,

z ∈
[
Ĥi,s(A) ∪ (H i,s(A) ∩ Γi(A))

]
= Hi,s(A).

From the arbitrariness of s ∈ [m], and s , i, we have

z ∈
⋂

s∈[m],s,i

Hi,s(A) ⊆
⋃
i∈[m]

⋂
s∈[m],s,i

Hi,s(A),

i.e., z ∈ H(A). Therefore, Υ(A) ⊆ H(A). �
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In order to show the validity of the set Υ(A) given in Theorem 2.1, we present a running example.

Example 1. LetA = (ai jkl) ∈ R[2]×[2]×[2]×[2] be a partially symmetric tensor with entries

a1111 = 1, a1112 = 2, a1121 = 2, a1212 = 3,
a1222 = 5, a1211 = 2, a1122 = 4, a1221 = 4,
a2111 = 2, a2112 = 4, a2121 = 3, a2122 = 5,
a2211 = 4, a2212 = 5, a2221 = 5, a2222 = 6.

By Theorem 1.1, we have

H(A) =
⋃
i∈[m]

⋂
k∈[m],k,i

Hi,k(A) = {z ∈ C : |z| ≤ 29.4765}.

By Theorem 2.1, we have

Υ(A) =
⋃
i∈[m]

⋂
s∈[m],s,i

Υi,s(A) = {z ∈ C : |z| ≤ 20.0035}.

It is easy to see that Υ(A) ⊆ H(A) and all M-eigenvalues are in [−20.0035, 20.0035]. In fact, all
different M-eigenvalues ofA are −1.2765, 0.0710, 0.1242, 0.2765, 0.3437 and 15.2091.

3. A sharp upper bound for the M-spectral radius of a partially symmetric tensor

In this section, based on the set in Theorem 2.1, we provide an upper bound for the largest M-
eigenvalue of a fourth-order partially symmetric tensor A. As an application, we apply the upper
bound as a parameter τ to the WQZ-algorithm to make the sequence generated by the WQZ-algorithm
converges to the largest M-eigenvalue ofA faster.

Theorem 3.1. LetA = (ai jkl) ∈ R[m]×[n]×[m]×[n] be a partially symmetric tensor. Then

ρ(A) ≤ Ω(A) = max
i∈[m]

min
s∈[m],i,s

Ωi,s(A),

where

Ωi,s(A) = max
{

min{̃rs
i (A), rs

s(A)},min{̃rs
i (A) + rs

i (A), Ω̂i,s(A)}
}
,

and

Ω̂i,s(A) =
1
2

{̃
rs

i (A) + rs
s(A) +

√
(rs

s(A) − r̃s
i (A))2 + 4rs

i (A)̃rs
s(A)

}
.

Proof. By Theorem 2.1 and ρ(A) ∈ σ(A), it follows that there exists an index i ∈ [m] such that for
any s ∈ [m] and s , i, ρ(A) ∈ Υ̂i,s(A), or ρ(A) ∈ (Υ̃i,s(A) ∩ Υi,s(A)). If ρ(A) ∈ Υ̂i,s(A), that is,
ρ(A) < r̃s

i (A) and ρ(A) < rs
s(A), then

ρ(A) < min{̃rs
i (A), rs

s(A)}. (3.1)
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If ρ(A) ∈ (Υ̃i,s(A) ∩ Υi,s(A)), that is,

ρ(A) < r̃s
i (A) + rs

i (A) < min{̃rs
i (A) + rs

i (A)}, (3.2)

and

(ρ(A) − r̃s
i (A))(ρ(A) − rs

s(A)) ≤ rs
i (A)̃rs

s(A). (3.3)

Solving Inequality (3.3), we have

ρ(A) ≤ Ω̂i,s(A) ≤ min{Ω̂i,s(A)}. (3.4)

Combining (3.2) and (3.4), we have

ρ(A) ≤ min{̃rs
i (A) + rs

i (A), Ω̂i,s(A)}. (3.5)

Hence, by (3.1) and (3.5), we have

ρ(A) ≤ max
{

min{̃rs
i (A), rs

s(A)},min{̃rs
i (A) + rs

i (A), Ω̂i,s(A)}
}

= Ωi,s(A).

Furthermore, by the arbitrariness of s, we have

ρ(A) ≤ min
s∈[m],i,s

Ωi,s(A).

Since we do not know which i is appropriate to ρ(A), we can only conclude that

ρ(A) ≤ max
i∈[m]

min
s∈[m],i,s

Ωi,s(A).

This proof is complete. �

Remark 3.1. In Theorem 3.1, we obtain an upper bound Ω(A) for the largest M-eigenvalue of a
fourth order partially symmetric tensor A. Now, we take Ω(A) as the parameter τ in WQZ-algorithm
to obtain a modified WQZ-algorithm. That is, the only difference between WQZ-algorithm and the
modified WQZ-algorithm is the selection of τ, in particular, τ =

∑
1≤s≤t≤mn

|Ast| in WQZ-algorithm and τ =

Ω(A) in the modified WQZ-algorithm.

Next, we take Ω(A) and some existing upper bounds of the largest M-eigenvalue as τ in WQZ-
algorithm to calculate the largest M-eigenvalue of a fourth-order partially symmetric tensorA.

Example 2. Consider the tensorA in Example 4.1 of [24], where

A(:, :, 1, 1) =


−0.9727 0.3169 −0.3437
−0.6332 −0.7866 0.4257
−0.3350 −0.9896 −0.4323

 ,
A(:, :, 2, 1) =


−0.6332 −0.7866 0.4257
0.7387 0.6873 −0.3248
−0.7986 −0.5988 −0.9485

 ,
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A(:, :, 3, 1) =


−0.3350 −0.9896 −0.4323
−0.7986 −0.5988 −0.9485
0.5853 0.5921 0.6301

 ,
A(:, :, 1, 2) =


0.3169 0.6158 −0.0184
−0.7866 0.0160 0.0085
−0.9896 −0.6663 0.2559

 ,
A(:, :, 2, 2) =


−0.7866 0.0160 0.0085
0.6873 0.5160 −0.0216
−0.5988 0.0411 0.9857

 ,
A(:, :, 3, 2) =


−0.9896 −0.6663 0.2559
−0.5988 0.0411 0.9857
0.5921 −0.2907 −0.3881

 ,
A(:, :, 1, 3) =


−0.3437 −0.0184 0.5649
0.4257 0.0085 −0.1439
−0.4323 0.2559 0.6162

 ,
A(:, :, 2, 3) =


0.4257 0.0085 −0.1439
−0.3248 −0.0216 −0.0037
−0.9485 0.9857 −0.7734

 ,
A(:, :, 3, 3) =


−0.4323 0.2559 0.6162
−0.9485 0.9857 −0.7734
0.6301 −0.3881 −0.8526

 .
By (1.3), we have τ =

∑
1≤s≤t≤9

|Ast| = 23.3503. By Corollary 1 of [17], we have

ρ(A) ≤ 16.6014.

By Theorem 3.5 of [23], we have

ρ(A) ≤ 15.4102.

By Corollary 2 of [17], we have

ρ(A) ≤ 14.5910.

By Corollary 1 of [15], where S m = S n = 1, we have

ρ(A) ≤ 13.8844.

By Corollary 2 of [15], where S m = S n = 1, we have

ρ(A) ≤ 11.7253.

By Theorem 3.1, we have

ρ(A) ≤ 8.2342.
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From [24], it can be seen that λmax(A) = 2.3227.
Taking τ = 23.3503, 16.6014, 15.4102, 14.5910, 13.8844, 11.7253 and 8.2342 respectively,

numerical results obtained by the WQZ-algorithm are shown in Figure 1.
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Figure 1. Numerical results for the WQZ-algorithm with different τ.

Numerical results in Figure 1 shows that :
1) When we take τ = 8.2342, the sequence more rapidly converges to the largest M-

eigenvalue λmax(A) than taking τ = 23.3503, τ = 16.6014, τ = 15.4102, τ = 14.5910, τ = 13.8844
and τ = 11.7253, respectively.

2) When we take τ = 23.3503, 16.6014, 15.4102, 14.5910, 13.8844, 11.7253 and 8.2342, the WQZ-
algorithm can get the largest M-eigenvalue λmax(A) after finite iterations. However, under the same
stopping criterion, if we take τ = 23.3503, 16.6014, 15.4102, 14.5910, 13.8844 and 11.7253, it can
be seen that the WQZ-algorithm needs more iterations to obtain the largest M-eigenvalue, and when
τ = 8.2342, WQZ-algorithm can obtain the largest M-eigenvalue λmax(A) faster.

3) The choice of the parameter τ in WQZ-algorithm has a significant impact on the convergence
speed of the WQZ-algorithm. When τ is larger, the convergence speed of WQZ-algorithm is slower.
When τ is smaller and τ is greater than the largest M-eigenvalue, the WQZ-algorithm converges faster.
In other words, the faster the largest M-eigenvalue can be obtained.

4) The numerical result of the upper bound of the M-spectral radius obtained by Theorem 3.1 is of
great help to the WQZ-algorithm. Therefore, it shows that the results we get have a certain effect. �

Now, we consider a real elasticity tensor, which is derived from the study of self-anisotropic
materials [10] for explanation.

In anisotropy materials, the components of the tensor of elastic moduli C = (ci jkl) ∈ R[3]×[3]×[3]×[3]

satisfy the following symmetry:

ci jkl = c jikl = ci jlk = c jilk, ci jkl = ckli j, ∀ 1 ≤ i, j, k, l ≤ 3,
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which is also called an elasticity tensor. After a lot of research, we know that there are many anisotropic
materials, of which crystal is one of its typical examples. We classify from the crystal homologues [22],
the elasticity tensor C = (ci jkl) ∈ R[3]×[3]×[3]×[3] of some crystals for trigonal system, such as CaCO3 and
HgS also satisfy

c1112 = c2212 = c3323 = c3331 = c3312 = c2331 = 0,
c2222 = c1111, c3131 = c2323, c2233 = c1133, c2223 = −c1123,

c2231 = −c1131, c3112 =
√

2c1123, c2312 = −
√

2c1131, c1212 = c1111 − c1122.

This shows that the triangular system of anisotropic materials has only 7 elasticities. In fact,
CaMg(CO3)2-dolomite and CaCO3-calcite have similar crystal structures, in which the atoms along
any triplet are alternated with magnesium and calcium. In [22], we can know that the elasticity tensor
of CaMg(CO3)2-dolomite is as follows.

c2222 = c1111 = 196.6, c3131 = c2323 = 83.2, c2233 = c1133 = 54.7, c2223 = −c1123 = 31.7,
c2231 = −c1131 = −25.3, c3112 = 44.8, c2312 = −35.84, c1212 = 132.2, c3333 = 110,
c1122 = 64.4.

Next, we transform the elastic tensor C into a partially symmetric tensor A through the following
double mapping, and the M-eigenvalue of A after transformation is the same as the M-eigenvalue
of C [7, 12]:

ai jkl = aik jl, 1 ≤ i, j, k, l ≤ 3.

In order to illustrate the validity of the results we obtained, we take the above-mentioned partial
symmetry tensor of the CaMg(CO3)2-dolomite elasticity tensor transformation as an example.

Example 3. Consider the tensorA2 = (ai jkl) ∈ R[3]×[3]×[3]×[3] in Example 3 of [17], where

a2222 = a1111 = 196.6, a3311 = a2233 = 83.2, a2323 = a3232 = a1313 = a3131 = 54.7,
a2223 = a2232 = −a1213 = −a2131 = −31.7, a3333 = 110, a1212 = a2121 = 64.4,
a1122 = 132.2, a2321 = a1232 = −a1311 = −a1131 = −25.3, a3112 = a1321 = 44.8,
a2132 = a1223 = −35.84,

and other ai jkl = 0.
The data results of Example 2 show that the upper bound of the largest M-eigenvalue in Theorem 3.1

is sharper than the existing results. Here, we only calculate the upper bound of the largest M-eigenvalue
of A2 by Theorem 3.1, and use it as the parameter τ in the WQZ-algorithm to calculate the largest
M-eigenvalue of A2. Here, in order to distinguish different values of τ, we calculate the result by
Theorem 3.1 and record it as τ2, that is, WQZ-algorithm τ = τ2.

By Theorem 3.1, we can get τ2 = 647.6100.
By Eq (1.3), we can get

τ =
∑

1≤s≤t≤9

|Ast| = 1998.6000.
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In the WQZ-algorithm, when we take τ = 1998.6000 and 647.6100 respectively, the numerical
results we get are shown in Figure 2.
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Figure 2. Numerical results for the WQZ-algorithm with different τ.

As we can see in Figure 2, in the WQZ-algorithm, when we regard τ2 as τ, it makes the convergence
sequence in the WQZ-algorithm converges faster than τ =

∑
1≤s≤t≤9

|Ast|, so that the largest M-eigenvalue

can be calculated faster. That is to say, in this article, the result we provide as the parameter τ in the
WQZ-algorithm can speed up the convergence speed, so that the largest M-eigenvalue can be calculated
quickly. �

4. Conclusions

In this paper, we first in Theorem 2.1 provided an M-eigenvalue localization set Υ(A) for a fourth-
order partially symmetric tensor A, and then proven that the set Υ(A) is tighter than the set H(A) in
Theorem 2.2 of [23]. Secondly, based on the set Υ(A), we derived an upper bound for the M-spectral
radius of A. As an application, we took the upper bound of the M-spectral radius as a parameter τ
in the WQZ-algorithm to make the sequence generated by this algorithm converge to the largest M-
eigenvalue of A faster. Finally, two numerical examples are given to show the effectiveness of the
set Υ(A) and the upper bound Ω(A).
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