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Abstract: Let G be a simple connected graph with the vertex set V(G) and dg(u, v) be the biharmonic
distance between two vertices u# and v in G. The biharmonic index BH(G) of G is defined as

n

BH(G):% Z Z d%(u,v):nz %,

ueV(G) veV(G) i=2

where A;(G) is the i-th eigenvalue of the Laplacian matrix of G with n vertices. In this paper, we provide
the mathematical relationships between the biharmonic index and some classic topological indices: the
first Zagreb index, the forgotten topological index and the Kirchhoff index. In addition, the extremal
value on the biharmonic index for all graphs with diameter two, trees and firefly graphs are given,
respectively. Finally, some graph operations on the biharmonic index are presented.
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1. Introduction

The Laplacian matrix of a graph G, denoted by L(G), is given by L(G) = D(G)—A(G), where D(G) is
the diagonal matrix of its vertex degrees and A(G) is the adjacency matrix. The Laplacian characteristic
polynomial of G, is equal to det(xl, — L(G)), denoted by ¢(L(G)). We denote A; = A;(G) the i-th
smallest eigenvalue of L(G). In particular, 4,(G) and 4,(G) are called the algebraic connectivity [8]
and the Laplacian spectral radius of G, respectively. The Laplacian spectral ratio of a connected graph
G with n vertices is defined as r;.(G) = j—z Barahona et al. [4] showed that a graph G exhibits better
synchronizability if the ratio r.(G) is small.

The topological indices have fundamental applications in chemical disciplines [5, 7, 31],
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computational linguistics [29], computational biology [28] and etc. Let d(u,v) be the distance
between vertices u and v of G. The Wiener index W(G) of a connected graph G, introduced by
Wiener [35] in 1947, is defined as W(G) = X, ,ev(c) d(u, v), which is used to predict the boiling points
of paraffins by their molecular structure. The Wiener index found numerous applications in pure
mathematics and other sciences [13, 21]. In 1972, Gutman and Trinajsti¢ [18] proposed the first
Zagreb index M,(G) of a graph G, and defined it as the sum of the squares of vertex degrees of G.
There is a wealth of literature relating to the first Zagreb index, the readers are referred to [3, 10, 34]
and the references therein. Recently, Furtula and Gutman [9] defined the forgotten topological index
of a graph G as the sum of the cubes of vertex degrees of G, denoted by F(G). In particular, the
forgotten topological index of several important chemical structures which have high frequency in
drug structures is obtained [1, 17]. The Kirchhoff index of a graph G is defined as the sum of
resistance distances [20] between all pairs of vertices of G, denoted by Kf(G). Gutman and
Mohar [15] gave an important calculation formula on Kirchhoff index, that is Kf(G) = XY\, Al The
Kirchhoff index is often used to measure how well connected a network is [12, 20].

In 2010, Lipman, Rustamov and Funkhouser [25] proposed the biharmonic distance dp(u,v)
between two vertices u and v in a graph G as follows:

dy(u,v) = Lyt + Lyt — 2027,

where Lﬁ: is the (u, v)-entry of the matrix obtained from the square of Moore Penrose inverse of L(G).
They showed that the biharmonic distance has some advantages over resistance distance and geodesic
distance in computer graphics, geometric processing, shape analysis and etc. Meanwhile, They used
biharmonic distance to measure the distances between pairs of points on a 3D surface, which is a
fundamental problem in computer graphics and geometric processing. Moreover, the biharmonic
distance as a tool is used to analyze second-order consensus dynamics with external perturbations
in [37,38]. Inspired by Wiener index, Yi et al. [37] and Wei et al. [36] proposed the concept of
biharmonic index of a graph G as follows:

n

BH(G) = % > duvy=n) /1.2(1G)'

ueV(G) veV(G) i=2

Wei et al. [36] obtained a relationship between biharmonic index and Kirchhoff index and determined
the unique graph having the minimum biharmonic index among the connected graphs with n vertices.

In this paper, we study the biharmonic index of connected graphs from the perspective of
Mathematics. Firstly, we establish the mathematical relationships between the biharmonic index and
some classic topological indices: the first Zagreb index, the forgotten topological index and the
Kirchhoff index. Secondly, we study the extremal value on the biharmonic index for all graphs with
diameter two, trees and firefly graphs of fixed order, around Problem 6.3 in [36]. Finally, some graph
operations on the biharmonic index are presented.

2. Preliminaries

Let K, ,-1, P, and K,, denote the star, the path and the complete graph with n vertices, respectively.
Let 7(G) be the number of spanning trees of a connected graph. The double star S (a, b) is the tree
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obtained from K, by attaching a pendant edges to a vertex and b pendant edges to the other. A firefly
graph F ;2521 (s 20, 1>0, n—2s—2¢t—1 > 0) is a graph of order n that consists of s triangles, ¢
pendent paths of length 2 and n — 25 — 2¢ — 1 pendent edges, sharing a common vertex. For v € V(G),
let L,(G) be the principal submatrix of L(G) formed by deleting the row and column corresponding to
vertex v.

Lemma 2.1. ([32]) Let X = (ay,...,a,) and Y = (by,...,b,) be two positive n-tuples. Then

)(Zl ") B (a+A)?
n - 4CZA
(z )

where a = min{ﬂ} and A = max Zﬁ for1<i<n

A
Ita-

b

Lemma 2.2. ([32]) Let X = (ay,...,a,) and Y = (by,...,b,) be two positive n-tuples. Then

(E) &) (Eor) < “GE(E )

where a —mln{ }andA max{b }for1 <i<n

Lemma 2.3. ([33]) Ifa; >0,b;>0, p>0,i=1,2,...,n, then the following inequality holds:

—_

n p+1
n_p+l 2. a;
Cll- S i=
22

—l . n\P
2 )
i=1
with equality if and only zf”‘ =2=..=2&
Lemma 2.4. ([30]) Letn > 1 be anintegerand a, > a > - -+ > a, be some non-negative real numbers.
Then
(a1 + a,)(ay +az+'-~+an)Za%+a%+--~+ai+na1an

Moreover, the equality holds if and only if for some r € {1,2,...,n},a, =---=a,and a,;1 = -+ = a,.

Lemma 2.5. ([22]) Let ay,...,a, > 0. Then

1
1 n n n
1 35-(114

2
where ® =n Y a; — (Zl'.‘zl \/cT,) :

Lemma 2.6. ( [23]) Let ay,a,...,a, and by, bs, ..., b, be real numbers such that a < a; < A and

b<b;<Bfori=1,2,...,n. Then there holds
1|n 1|n
<—|=[1=-=|={1(A-a)B->b),
n {ZJ( n {ZJ)( ) )

n n

oo ()5

i=1 i=1 i=1

where | x| denotes the integer part of x.
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Lemma 2.7. ([16]) If T is a tree with diameter d(T), then A,(T) < 2 (1 — CcoSs (#))

Lemma 2.8. ([19]) The number of Laplacian eigenvalues less than the average degree 2 — % of a tree
with n vertices is at least [5].

Lemma 2.9. ([6]) Let G be a connected graph of diameter 2. Then 1,(G) > 1.

Lemma 2.10. ([11]) Let uv be a cut edge of a graph G. Let G — uv = G| + G,, where G| and G, are
the components of G — uv, Gy + G, is the sum of G| and G,, u € V(Gy) and v € V(G,). Then

P(LAG)) = H(L(G1)P(L(G2)) — ¢(L(G1)P(Li(G2)) — ¢(L(G1))P(L(G2)).
3. The biharmonic index, the first Zagreb index and the forgotten topological index

In the following theorems, mathematical relations between the biharmonic index and other classic
topological indices are established.

Theorem 3.1. Let G be a connected graph with n vertices and m edges. Then

n(n—1)>*
BH(G) < 42m + M(G))

2
rL(G)) '

Proof. In this proof we use Lemma 2.1 with @; = A; and b; = + for2 < i < n. Thena = A3 and A = A2,

Thus
noo\ (o 1
£e)(E ) By
n—1¢  ~ 4in

(I”L(G) +

Since Y, A2 = 2m + M;(G), we have

(2m + M\(G)BH(G) _ (A3 + 22)?

n(n —1)> T4
that is,
nn-1% (4 4\
BH(G) < —+—].
©) 42m + M(G)) (/l,, A
This completes the proof. O

Theorem 3.2. Let G be a connected graph with n vertices and m edges. Then

—_1)2 2
BHG) < =D (4+(rL(G)— ! ))

42m + M(G)) r(G)
Proof. In this proof we use Lemma 2.2 with a; = A; and b; = Ai for2 <i<n. Thena=A3and A = A%
Thus ) ros
2 2 n 2 2
(Z; a][z; ﬂ_?) —(n =17 < == 1)
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Since Y, A7 = 2m + M;(G), we have

2m + M,(G) ) A — ) s
—  BHG)-(n—-1 -1,
" G)-(n-1)" < PYERE — 0, (-1
that is,
~1)? LAY
BHG) < =D [y (A A2}
42m + M,(G)) A A

This completes the proof. O

Theorem 3.3. Let p be a positive real number and G be a connected graph with n vertices and m
edges. Then

1

(zm)p+l

BH(G) 2 n|~
pilas
igz !

with equality if and only if G = K,,.

Proof. In this proof we use Lemma 2.3 with a; = A; and b; = % for 2 <i < n. Then we have

n p+1
n (Z /11)
Z/I?IH—] > i=2

= (

- \p -
L
2
i=2 4

1

(2m)p+l

n

3p+1
5 A7
i=2

M=

Since )/, A; = 2m, we have

BH(G)>n

with equality if and only if /13 = ... = A}, thatis G = K,. This completes the proof. O
Corollary 3.4. Let G be a connected graph with n vertices and m edges. Then

16nm*

BHG) 2 5 i GF

with equality if and only if G = K,,.
Proof. Let p = % Since )}, /11.2 = 2m + M,(G), by Theorem 3.3, we have

3

2 4/3 16 4
BH(G) = n| 2| - CL—
S| Rm+M@G)
i= '
with equality if and only if G = K,,. This completes the proof. O
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Corollary 3.5. Let G be a connected graph with n vertices, m edges and t(G) triangles. Then

32nm’
BH(G) = \/[3M1 (G) + F(G) + 6:1(G)]?

with equality if and only if G = K,,.
Proof. Let p = % Since .}, /1? =3M,(G) + F(G) + 6¢(G), by Theorem 3.3, we have

3/2
2m)>/3 32n°m?
BHG) = n| E | - AL
Z”: PE [3M,(G) + F(G) + 6t(G)]?
i !
with equality if and only if G = K,,. This completes the proof. O

4. The biharmonic index and Kirchhoff index

In this section, we establish relationship between biharmonic index and Kirchhoff index based on
the algebraic connectivity, the Laplacian spectral radius and the number of spanning trees.

Theorem 4.1. Let G be a connected graph with n vertices. Then

1 1
BHG) <|— + —|Kf(G) - -1
( )_(/12+/1n) f(G) —n(n )/12/1’1
with equality if and only if for some r € {2,...,n}, L, =---=A, and A,y = -+ = A,

Proof. By Lemma 2.4, we have

1 1 1 1 1 1 1
—+—|l—t =25+ttt 1),
/12 /ln /12 /1n /l% /1% ﬂz/ln
that is,
1 1 1 1 1 1 1
nl—+—||l—++—|2n|l5+ - +=|+nn-1)—,
/12 /1,1 /12 /ln /l% /l% /12/111
that 1s,
! + ! Kf(G) > nBH(G)+n(n—-1) !
—+ — n nn-1)—-,
/12 /ln B /12/111
that is,
1 1
BHG)<|—+ —|Kf(G) - -1
G) (/12 /ln) f(G) —n(n )ﬂzﬂn
with equality if and only if for some r € {2,...,n}, 1, =--- = A, and 4,1 = --- = A,. This completes
the proof. O

Theorem 4.2. Let G be a connected graph with n > 3 vertices. Then

Kfz(G) n(n - 1) 1 = Kfz(G) 1 %
nn-2) n-2 (HT(G)) <BH(G) < " —n(n—l)(n—Z)(m) .
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Proof. In this proof we use Lemma 2.5 with g; = % for 2 <i < n.Then we have

SE (o \E
S®S(n—1)(n—2) - 1—[1_[?] ;
i=2 4

S

2
where ® = (n — 1) XL, & - (2?_2 L) = =LBH(G) - LKfX(G). Since [T, ; = n7(G), we have

= /l[_Z
lBH(G) ( —1)( ! )21<<D<n_zBH(G) (n — 1)( —2)( )2'
" (G) T o 7(G))
where @ = =L BH(G) — 5K f*(G). Thus we have
KfAG) n(n-1( 1 |7 Kf%G) &
nn—2) n-2 (nT(G)) < BHG) = === —nln = Lin _2)( (G))
This completes the proof. m|

Theorem 4.3. Let G be a connected graph with n vertices. Then

R nn—-1D*( 1+ (=1 1\
[n(n = DBH(G) - Kf(G)| < —— (1 o )(ﬂz Z) .

Proof. In this proof we use Lemma 2.6 with a; = b; = Al for 2 <i <n. Then we have

[

n

1
n—l (n—l)ZZ

that is,

[n(n = DBH(G) - K@) < ntn - 11| | (1 L H) (— - —)2.

Note that [’%J (1 -1 |_§J) -

201 — 1)2 n+l1 2
[nn - VBH(G) - KfG)| < D (1 L+CD )(—-i) |
4 2n?

(1 - ”(2 12)'1“) We have

E

This completes the proof. m|
5. The biharmonic index of trees and firefly graphs

In this section, we study the extremal value on the biharmonic index for trees and firefly graphs
of fixed order. Moreover, we show that the star is the unique graph with maximum biharmonic index

among all graphs on diameter two.
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Theorem 5.1. Let S (a, b) be a double star tree on n vertices and a +b = n — 2. Then

n- 2} {n - 2| . 52552 + 1)2’

4
n*+3n+——-16<BH(S(a,b)) <n*-2n+4
n

2 2 n

the left (right) equality holds if and only if S (1,n — 3) (S([%‘l, I_%J).

Proof. By direct calculation, we have
P(L(S (a,b))) = x(x = 1) *[x’ = (n + 2)x* + @n + ab + D)x — n].
Let x;, x, and x3 be the roots of the following polynomial
fx):=x—(m+2)x*+2n+ab+ 1)x—n.

By the Vieta Theorem, we have
Xi+X+x3=n+2,

1L 1 _ nxabel
X1 X2 X3 n
X1 X2X3 = N.
Thus
2
1 1 1 1 1 1 1 1 1
St+t=5+5 = [—+—+—| -2 + +
X1 X5 X3 X1 X2 X3 X1X2 X2 X3 X1X3

1 1 1

2
= —+ — + — ——(X1+XZ+X3)
X1 X2 X3 n

2 1y 2
+_b+) 242
n n

n+ab+1\V 4
_ m)___z_

n n

Further, we have

n

BH(S (a,b)) = n Z

i=2

1 b+ 1) b+ 1y
P:n(n—4)+2n+4ab+u:nz—zn+4ab+u.
X n n

Sincen -3 <ab < I'%'IL%J, we have

4
n+3n+-—-16<BHS(a,b)) <n*-2n+4
n

2 2 n

n- 2} {n - 2| . 52552 + 1)2’

the left (right) equality holds if and only if S(1,7n —3) (S ([%], L%J). This completes the proof. O
Theorem 5.2. Let T, be a tree on n > 8 vertices. If the diameter d(T,) > ﬂi/% — 1, then
BH(T,) > BH(K ,-1).
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Proof. Since 1 —cosx < x—z, by Lemma 2.7, we have

2
T T
(T, < 2(1 ) Cos(d(m ¥ 1)) ) (d<Tn> + 1) |

By Lemma 2.8, we have

1 1
BH(Tn) = n /l_%++/l_%)

et iy 1

d(T,) + 1)* n 1 2 1
> nT+(§—2)(2_2)2+(;—1) ]

dT)+1D* nP(n-4) (2 1
= - — 1 J—
" e - 8(n —1)2 - n n?
Tn  n*(n-4) 2 1
> n|l—+——+|(--1|=
=" 8 8m-—1)>2 (n )nz)
> n(n—1)
1
> nln-2+ p)
= BH(Ki ,-1)
for n > 8. This completes the proof. O

The following conjecture is concretization of Problem 6.3 in [36].

Conjecture 5.3. Let T, be a tree on n > 5 vertices. Then
BH(K,,,-1) < BH(T,) < BH(P,),
the left (right) equality holds if and only if T, = K, -1 (T, = P,,).
Theorem 5.4. Let G be a connected graph with n vertices and diameter d(G) = 2. Then
BH(G) < BH(Ki,1-1)

with equality if and only if G = K, ;.

Proof. Ttis well known that 4, > A+ 1 and 4,_; > A, (see [14,24]), where A and A, are the maximum
degree and the second largest degree of G, respectively. If 2 < A, < A, by Lemma 2.9, we have

1 1
n(n—3+i+;)
A3 (A+1)?
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1 1
< n(l’l—3+?+m)
1
< n(n—2+—)

2
BH(K| ,-1).

Thus A, = 1, thatis, G = K, ,_;, then BH(G) = BH(K| ,-1).

Combining the above arguments, we have BH(G) < BH(K, ,-;) with equality if and only if G =

K, ,-1. This completes the proof.

O

Theorem 5.5. Let F'; ; _25-2-1 (s> 0,1>0, n=2s-2t—1 > 0) be a firefly graph with n > 7 vertices.

(1)If s =1t =0, then BH(Fy,0,p-1) = n* —2n + 1.

(2)If s=0and t =1, then BH(Fy 1 ,-3) = n* +3n—16 + 2.

(3)If s =0, t > 2 and n is odd, then

25 > 41n 25 1
2
+8n+ — —-32<BH(Fy;p21)<——-——+—+ =,
n n » = (Fo,1,n-21-1) 5 4 an 2

the left (right) equality holds if and only if Fo 1 n-2i-1 = Fo,2,n-5 (Fo,t,n-2i-1 = F, %’0).
If s =0,t>2andnis even, then

25 Tn> 51 16
n2+8l’l+——3ZSBH(FO,n_2,_1)§ i——n+—+4,
n v 2 4 n
the left (right) equality holds if and only if Fo 1 n-2-1 = Fo,2,n-5 (Fo,1,n-2-1 = Fy, 52, 1)
(4)If s > 1, t = 0 and n is odd, then

5> 14n 1 26 1
—— — — + =< BH(Fo, 1) S0 —=n+-,
9 o 1, (Fo,i,n-2-1) <1 ot
the left (right) equality holds if and only if Fs o n-25s-1 = F1,0.n-3 (Fs.0.n-25-1 = F%l’o’o).
If s> 1,t=0andn is even, then

502 10n 1 26 1
— — —— + —<BH(Fy ) Sn*——n+—,
9 o T, S (Fo,t,n-2-1) <1 ot
the left (right) equality holds if and only if Fs o n-25-1 = F1,0.n-3 (Fy.0.n-25-1 = F";—z,o,l)-
(5)If s> 1,t>1andn is odd, then

5n2+13n+4 16 < BH(F )<7n2 581n+121+15
9 3 ' n = Sham2s2ml) =y 36 4n @ 2

the left (right) equality holds if and only if Fs ; y—25-21-1 = F%’ 1o (Fsin-2s21 = Fy, %’0).

If s>1,t>1andnis even, then

5n2+43n+4 16 < BH(F )<7n2 671n+49
9 9 n = s, t,n=2s=-2t—-1) = 2 36 n

+ 11,

the left (right) equality holds if and only if F's ; n-25-21-1 = F%,l,l (Fy.tn-25-20-1 = Fl,%,l)-
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P}’OOf (1) If s =1 =0, then FO,O,n—l = Kl,n—l- Thus BH(FO,O,n—l) =n’-2n+ rlz
2)If s=0and ¢ =1, by Lemma 2.10, we have

G(L(K),1-3))B(L(P)) — (x = 1) $(L(P)) — (x = DP(L(K},1-3))
Pax=2)x—n+2)(x-1)"*—x(x=2)(x- 1)

—x(x —n+2)(x- 13

x(x = D)X = (n+2)x* + Bn—2)x — nl.

d(L(Fo,1,0-3))

By a similar reasoning as the proof of Theorem 5.1, we have
) 4
BH(FO,I,n—3) =n“+3n-16 + —.
n
3)If s =0and t > 2, then we have
G(L(Fo g p-2-1) = x(x = 1272 = 3x+ 1) [x* = (n =t + 3)x* + Bn - 3t + 1)x — n].

By a similar reasoning as the proof of Theorem 5.1, we have

3n—3t+1)?
BH(Fo,t,n-2-1) = n2+5tn—11n+2z+u_6
n
9 + (5n* — 16n — 6)t + 1

= nP-2n+
n

If 2 <t < %! for odd n, we have

2 — =32<BH(Fy ;p2-1)S——-——+—+=
n-+8n+ P 32 < ( 0,t,n-2t 1)< D) 4 +4n+2’

the left (right) equality holds if and only if Fo ; n-2-1 = Fo,2,n-5 (Fo,;,n-2-1 = F et o) If2<r< ”;22

for even n, we have

25 n> 51 16
n*+8n+ = —32<BH(Fy,po-1) < o2 2y,
n o 2 4 n
the left (right) equality holds if and only if Fo ; ,-2-1 = Fo,2,n-5 (Fo,1,n-20-1 = Fy, =3 -
4)If s>1and =0, by Lemma 2.10, we have

G(L(F0.5-25-1)) = X(x = n)(x = 3)°(x = 1)"*72,

Thus g |
BH(Fy 0 p_25-1) = 0* — —sn —2n + —.
9 n

If 1 <s < %! for odd n, we have

5n* 14 1 26 1
S <BH(Foypa) <= Zn+ -,
9 9 n ” 9 n
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the left (right) equality holds if and only if F ¢ y-25-1 = F1.0.n-3 (Fs.0.n-25-1 = F %’0’0). Ifl<s< ”;22

for even n, we have

50 10 1 26 1
i__n'i'_SBH(FOIn—Zt—l)Snz__n'i'_a
9 9 n ” 9 n

the left (rlght) equality holds if and Ol’lly if Fs’ 0,n-2s—1 = FI,O, n—3 (Fs’ 0,n-2s-1 = F%,O, 1).
5)If s>1andt > 1, by Lemma 2.10, we have
GL(Fs 1 n25-2-1)) = x(x—=3)'(x= 1" 20% = 3x+ 1)
X —(n—t+3)x>+(GBn-3t+ Dx—nl.

By a similar reasoning as the proof of Theorem 5.1, we have

912 + (5n* — 16n — 6)t + 1
- .

8
BH(L(Fy ;p252i-1)) = 0 — gsn—2n+

Ifs=1andt= % for odd »n, we have

7n*>  581n 121 15
—_—— +—+ —,
2 36 4n 2

the equality holds if and only if F ; , 2521 = Fy, =

BH(FS, t, n—2s—2t—l)max =

If s =1 and t = %* for even n, we have

Tn? _671n 49

BH(F 1 n-25-21-1)max = > 36 + p + 11,
the equality holds if and only if F ; , o5 21 = F, nd |
If s = % and ¢t = 1 for odd n, we have
2
BH(F's, , n-25-20-Dmin = 5% + % + % - 16,
the equality holds if and only if F ;2521 = F 13 1,0-
Ifs = % and ¢ = 1 for even n, we have
2
BH(F's 1, n-25-21-1)min = 5% + ? + ;—Ll - 16,
the equality holds if and only if F ; ,_25-2-1 = F n=
Combining the above arguments, we have the proof. O

6. The biharmonic index and graph operations

Lemma 6.1. ( [26]) Let G be a connected graph with n vertices. Then L(G) = n = Ay i(G) for
i=2,...,n

Theorem 6.2. Let G be a connected graph with n vertices. If G is a connected graph, then

BH(G) =n ; (n = Ap2-i(G))*

AIMS Mathematics Volume 7, Issue 4, 6050-6065.



6062

Proof. By Lemma 6.1, we have the proof. O

The union of two graphs G| and G, is the graph G, U G, with vertex set V;(G) U V,(G) and edge set
E(Gy) U E(G»). The join G| V G, is obtained from G; U G, by adding to it all edges between vertices
from V(G)) and V(G>).

Lemma 6.3. ( [27]) Let G| and G, be graphs on n; and n, vertices, respectively. Then the Laplacian
eigenvalues of G1 V Gy are ny +ny, i(Gy) +ny (2<i<n)and 1j(Gy) +n; (2L j<n).

Theorem 6.4. Let G be a connected graph with n vertices. Then

1

1 1
BH(G V Gy) = (n; + ny) m’“;er;m '

Proof. By Lemma 6.3, we have the proof. O

The Cartesian product of G| and G, is the graph G,0G,, whose vertex setis V = V| X V, and where
two vertices (u;, vy) and (u;, v,) are adjacent if and only if either u; = u; and v,v, € E(G,) or vy = v, and
uiu; € E(Gl)

Lemma 6.5. ([8,26]) Let G| and G, be graphs on n, and n, vertices, respectively. Then the Laplacian
eigenvalues of G10G; are all possible sums 1,(G) + 1j(Gy), 1 Li<nyand1 < j<n,.

Theorem 6.6. Let G| and G, be two connected graphs. Then

ni 1 n 1 n n 1
BH(G,0G;) = nn + + )
A 22 L(G) ; Gy L 4G +A(G))

Proof. By Lemma 6.5, we have the proof. O

The lexicographic product G[G»], in which vertices (u;, v,) and (u;, v,) are adjacent if either u;u; €
E(Gy) oru; = uj and vyv, € E(Gy) (see [2]).

Lemma 6.7. ( [2]) Let G, and G, be graphs on ny and n, vertices, respectively. Then the Laplacian
eigenvalues of G[G] are n,A,(Gy) and A;(G,) + d(u;)ns, where d(u;) is vertex degree of Gy, 1 <i < ny
and 2 < j < ny.

Theorem 6.8. Let G| and G, be connected graphs on ny and n, vertices, respectively.

ni n o n

BH(G1[G3]) = niny Z 2/12((;1) Z;;u (G2)+d(;1(u )% )

Proof. By Lemma 6.7, we have the proof. O
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7. Conclusions

We study the biharmonic index from three aspects: the mathematical relationships between the
biharmonic index and some classic topological indices, the extremal value on the biharmonic index for
some special graph classes, and some graph operations on the biharmonic index. On the basis of the
biharmonic distance, the biharmonic eccentricity &,(u) of vertex u in a connected graph G is defined as
ep(u) = max{dp(u,v) | v € V(G)}. Let d(u) be the degree of the corresponding vertex u. The following
four topological indices will be the problems that need further exploration.

(1) The Schultz biharmonic index:

1
SBIG) =5 >, D (@) +dw)dyu.v).
ueV(G) veV(G)
(2) The Gutman biharmonic index:
1
GBIG) =5 ), ) (du)d()dy(w.v).
ueV(G) veV(G)
(3) The eccentric biharmonic distance sum:
1
&G =5 ), D (& + ey
ueV(G) veV(G)
(4) The multiplicative eccentricity biharmonic distance:

§G =5 Y Y (WD dw .

ueV(G) veV(G)
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