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1. Introduction

In this paper, we are eager to investigate the nonlinear fractional boundary value problem (BVP) of
the form 

d
dt

(
0Dα−1

t (c
0Dαt u(t)) − tDα−1

T (c
t DαT u(t))

)
+ λ f (t, u(t)) = 0 a.e. t ∈ [0,T ]

u(0) = u(T ) = 0,
(1.1)

where λ > 0 is a real parameter, α ∈ (1/2, 1], c
0Dαt and c

t DαT are the left and right Caputo fractional
derivatives of order α, respectively, 0Dα−1

t and tDα−1
T are the left and right Riemann-Liouville fractional

integrals of order 1 − α, respectively, and f : [0,T ] × R→ R is a continuous function.
Fractional differential equations (i.e. α ∈ (1/2, 1)) arise in real applications in many fields of

sciences such as conservation laws, minimal surfaces, water waves and ultra-relativistic limits of
quantum mechanics. Due to these applications, non-local fractional problems are extensively
investigated. There has been remarkable progress in fractional differential equations; the interested
reader may see the books [16, 18, 24, 26, 29].
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Critical point theory has been very effective in specifying the existence and multiplicity of solutions
for integer order differential equations provided that the equation has a variational construction on some
appropriate Sobolev spaces, e.g., we refer to [12,20,21,23,27,30] and the references therein for detailed
discussions. But until now, there are little consequences on the existence of solutions to fractional
BVPs which were proved by the variational methods, since it is frequently hard to establish a proper
space and variational functional for fractional differential equations. For instance, in [1–5, 13, 14, 17],
variational methods are applied to study the existence and multiplicity of solutions for fractional BVPs.

An attractive physical case is considered in [17] where Jiao and Zhou, by applying the critical point
theory, proved the existence and multiplicity of solutions for the problem

d
dt

(1
20D−βt (u′(t)) +

1
2 tD

−β
T (u′(t))

)
+ ∇F(t, u(t)) = 0 a.e. t ∈ [0,T ]

u(0) = u(T ) = 0,

where β ∈ [0, 1), F : [0,T ] × RN → R (with N ≥ 1) is a suitable given function and ∇F(t, x) is the
gradient of F at x (see Remark 2.9 below for the relation of this problem with problem (1.1)).

Also, Bai in [5], applying a critical point result for differentiable functionals proved by Bonanno [7],
discussed the existence of at least one non-zero solution for the problem

d
dt

(
0Dα−1

t (c
0Dαt u(t)) − tDα−1

T (c
t DαT u(t))

)
+ λ f (u(t)) = 0 a.e. t ∈ [0,T ]

u(0) = u(T ) = 0.
(1.2)

The authors in [13] obtained, by using three critical point theorems, for the following BVP for
fractional order differential equations

d
dt

(
0Dα−1

t (c
0Dαt u(t)) − tDα−1

T (c
t DαT u(t))

)
+ λ f (t, u(t)) + µg(t, u(t)) = 0 a.e. t ∈ [0,T ]

u(0) = u(T ) = 0,

the existence of at least three solutions, where λ, µ > 0 are two parameters.
More recently, Galewski and Molica Bisci in [14] studied the problem (1.2), in the case λ = 1. With

an asymptotic behaviour of f at zero and using a critical point result [8], they proved the existence of
one non-zero solution for the problem.

In this paper, we will prove the existence of infinitely many solutions for problem (1.1) with rather
various hypotheses on the function f . We need that the potential F of f assures an appropriate
oscillatory behavior either at infinity or at the origin.

Our results are based on the variational principle due to Ricceri [28]. We address the eager reader
to the book [19] as a comprehensive reference on critical point theory adopted here.

Finally, we note that an interesting and careful analysis of fractional BVPs was extended in the nice
and recent works [6, 9–11, 15, 22, 25, 32–34] and the references therein.

This paper is organized as follows. In Section 2, we state some preliminary definitions and
properties of the fractional calculus that will be required in the paper. In Section 3, our principal
result, Theorem 3.1, and some significant conclusions (see Corollaries 3.3, 3.4 and 3.6) are presented.
Then Example 3.8 is given as an application of Corollary 3.3.
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2. Preliminaries

In the present section, first we present several needful definitions and properties of the fractional
calculus which are required further in this paper. Let AC([a, b],R) = AC1([a, b],R) be the space
of absolutely continuous functions on the interval [a, b], where a < b are real numbers (see [18]).
Set ACn([a, b],R) the space of functions u : [a, b] → R such that u ∈ Cn−1([a, b],R) and u(n−1) ∈

AC([a, b],R). Here, Cn−1([a, b],R) signifies the set of mappings that are (n − 1) times continuously
differentiable on [a, b].

Definition 2.1 ( [18, 26]). Let u ∈ L1([a, b],R). We denote by aD−γt u(t) and tD
−γ
b u(t) the left and right

Riemann-Liouville fractional integrals of order γ > 0 for function u, respectively, that are defined by

aD−γt u(t) =
1
Γ(γ)

∫ t

a
(t − s)γ−1u(s)ds,

and

tD
−γ
b u(t) =

1
Γ(γ)

∫ b

t
(s − t)γ−1u(s)ds,

for every t ∈ [a, b], while the right-hand sides are pointwise defined on [a, b], where Γ > 0 is the
standard gamma function given by

Γ(γ) =
∫ +∞

0
zγ−1e−zdz.

We note that aD−γt and tD
−γ
b are linear and bounded operators from L1([a, b],R) into L1([a, b],R);

see also Lemma 2.6 below.

Definition 2.2 ( [18, 26]). Let u ∈ ACn([a, b],R). We denote by aDγt u(t) and tD
γ
bu(t) the left and

right Riemann-Liouville fractional derivatives of order γ (n − 1 ≤ γ < n and n ∈ N) for function u,
respectively, that are defined by

aDγt u(t) =
dn

dtn aDγ−n
t u(t) =

1
Γ(n − γ)

dn

dtn

(∫ t

a
(t − s)n−γ−1u(s)ds

)
,

and

tD
γ
bu(t) = (−1)n dn

dtn tD
γ−n
b u(t) =

1
Γ(n − γ)

(−1)n dn

dtn

(∫ b

t
(s − t)n−γ−1u(s)ds

)
,

where t ∈ [a, b]. Specially, if 0 ≤ γ < 1, then

aDγt u(t) =
d
dt aDγ−1

t u(t) =
1

Γ(1 − γ)
d
dt

(∫ t

a
(t − s)−γu(s)ds

)
, t ∈ [a, b],

and

tD
γ
bu(t) = −

d
dt tD

γ−1
b u(t) = −

1
Γ(1 − γ)

d
dt

(∫ b

t
(s − t)−γu(s)ds

)
, t ∈ [a, b].

Definition 2.3 ( [18]). Suppose that γ ≥ 0 and n ∈ N.

AIMS Mathematics Volume 7, Issue 4, 6034–6049.
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(i) Let γ ∈ (n − 1, n) and u ∈ ACn([a, b],R). We denote by c
aDγt u(t) and c

t Dγbu(t) the left and right
Caputo fractional derivatives of order γ for function u, respectively. These derivatives exist almost
everywhere on [a, b]. c

aDγt u(t) and c
t Dγbu(t) are illustrated by

c
aDγt u(t) = aDγ−n

t u(n)(t) =
1

Γ(n − γ)

∫ t

a
(t − s)n−γ−1u(n)(s)ds,

and
c
t Dγbu(t) = (−1)n

tD
γ−n
b u(n)(t) =

(−1)n

Γ(n − γ)

∫ b

t
(s − t)n−γ−1u(n)(s)ds,

for every t ∈ [a, b], respectively. Specially, if 0 < γ < 1, then

c
aDγt u(t) = aDγ−1

t u′(t) =
1

Γ(1 − γ)

∫ t

a
(t − s)−γu′(s)ds, t ∈ [a, b],

and
c
t Dγbu(t) = −tD

γ−1
b u′(t) = −

1
Γ(1 − γ)

∫ b

t
(s − t)−γu′(s)ds, t ∈ [a, b].

(ii) If γ = n − 1 and u ∈ ACn−1([a, b],R), then c
aDn−1

t u(t) and c
t Dn−1

b u(t) are illustrated by

c
aDn−1

t u(t) = u(n−1)(t), and c
t Dn−1

b u(t) = (−1)(n−1)u(n−1)(t),

for every t ∈ [a, b]. Specially, c
aD0

t u(t) = c
t D0

bu(t) = u(t), t ∈ [a, b].

If u ∈ ACn([a, b],R), then the relation between the Riemann-Liouville fractional derivative and the
Caputo fractional derivative is expressed by the following

aDγt u(t) = c
aDγt u(t) +

n−1∑
j=0

u( j)(a)
Γ( j − γ + 1)

(t − a) j−γ, t ∈ [a, b].

Proposition 2.4 ( [18]). The left and right Riemann-Liouville fractional integral operators have the
feature of a semigroup, that is

aD−γ1
t (aD−γ2

t u(t)) = aD−γ1−γ2
t u(t) and tD

−γ1
b (tD

−γ2
b u(t)) = tD

−γ1−γ2
b u(t), ∀γ1, γ2 > 0

at every point t ∈ [a, b] for a continuous function u, and for a.e. point in [a, b] if u ∈ L1([a, b],R).

Proposition 2.5 ( [29]). We have∫ b

a
[aD−γt u(t)]v(t)dt =

∫ b

a
[tD
−γ
b v(t)]u(t)dt, γ > 0,

with the condition that u ∈ Lp([a, b],R), v ∈ Lq([a, b],R) and p ≥ 1, q ≥ 1 and 1/p + 1/q ≤ 1 + γ, or
p , 1, q , 1 and 1/p + 1/q = 1 + γ.

For any u ∈ L2([0,T ],R) and for every fixed t ∈ [0,T ], set

∥u∥L2([0,t]) :=
(∫ t

0
|u(ξ)|2dξ

)1/2

, ∥u∥L2 :=
(∫ T

0
|u(t)|2dt

)1/2

, ∥u∥∞ := max
t∈[0,T ]

|u(t)|.
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Lemma 2.6 ( [17, Lemma 3.1]). Let α ∈ (0, 1]. For any u ∈ L2([0,T ],R), we have

∥0D−αξ u∥L2([0,t]) ≤
tα

Γ(α + 1)
∥u∥L2([0,t]), for ξ ∈ [0, t], t ∈ [0,T ].

Let C∞0 ([0,T ],R) be the collection of all functions g ∈ C∞([0,T ],R) with compact support
contained in (0,T ). Then any function g ∈ C∞0 ([0,T ],R) satisfies g(0) = g(T ) = 0.

Definition 2.7. Suppose that 0 < α ≤ 1. We define the fractional derivative space Eα0 by the closure of
C∞0 ([0,T ],R) with respect to the norm

∥u∥ :=
(∫ T

0
|c0Dαt u(t)|2dt +

∫ T

0
|u(t)|2dt

)1/2

,

for every u ∈ Eα0 .

Remark 2.8. (i) For any u ∈ Eα0 , with the fact that u(0) = 0, one has c
0Dαt u(t) = 0Dαt u(t), t ∈ [0,T ]

according to the equality (10) of [17].
(ii) According to Lemma 2.6, for every u ∈ C∞0 ([0,T ],R), one has u ∈ L2([0,T ],R) and c

0Dαt u ∈
L2([0,T ],R). Thus, it is obvious that Eα0 is the space of functions u ∈ L2([0,T ],R) having an
α-order Caputo fractional derivative c

0Dαt u ∈ L2([0,T ],R) and u(0) = u(T ) = 0.

Remark 2.9. In view of Definition 2.3, for every u ∈ AC([0,T ],R), BVP (1.1) transforms to
d
dt

(
0D−

β
2

t

(
0D−

β
2

t u′(t)
)
+ tD

−
β
2

T

(
tD
−
β
2

T u′(t)
))
+ λ f (t, u(t)) = 0 a.e. t ∈ [0,T ]

u(0) = u(T ) = 0,
(2.1)

where β := 2(1 − α) ∈ [0, 1).
Furthermore by Proposition 2.4, it is clear that u ∈ AC([0,T ],R) is a solution of BVP (2.1) if and

only if u is a solution of the problem
d
dt

(
0D−βt (u′(t)) + tD

−β
T (u′(t))

)
+ λ f (t, u(t)) = 0 a.e. t ∈ [0,T ]

u(0) = u(T ) = 0.
(2.2)

For completeness we recall that a function u ∈ AC([0,T ],R) is named a solution of BVP (2.2) if:

(j) The map
t 7→ 0D−βt (u′(t)) + tD

−β
T (u′(t)),

is differentiable for a.e. t ∈ [0,T ], and
(jj) The function u assures (2.2).

Proposition 2.10 ( [31, Lemma 4.2]). Suppose that α ∈ (0, 1]. The space Eα0 is a separable and
reflexive Banach space.

Lemma 2.11 ( [17, Proposition 3.2]). Suppose that α ∈ (1/2, 1]. For all u ∈ Eα0 , one has

∥u∥L2 ≤
Tα

Γ(α + 1)
∥c0Dαt u∥L2 ,

∥u∥∞ ≤
Tα−1/2

Γ(α)
√

2α − 1
∥c0Dαt u∥L2 .
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Hence, we can consider Eα0 equipped with the equivalent norm

∥u∥α :=
(∫ T

0
|c0Dαt u(t)|2dt

)1/2

= ∥c0Dαt u∥L2 , ∀ u ∈ Eα0 .

Lemma 2.12 ( [17, Proposition 4.1]). Suppose that α ∈ (1/2, 1]. For every u ∈ Eα0 , one has

| cos(πα)|∥u∥2α ≤ −
∫ T

0

c
0Dαt u(t) · c

t DαT u(t)dt ≤
1

| cos(πα)|
∥u∥2α.

We refer our main results for α ∈ (1/2, 1] rather than α ∈ (0, 1/2], since by Lemmas 2.11 and 2.12,

for α ∈ (1/2, 1], the space Eα0 is compactly embedded in C([0,T ],R) and the functional −
∫ T

0

c
0Dαt u(t) ·

c
t DαT u(t) dt is coercive.

We formulate the following version of Ricceri’s variational principle [28, Theorem 2.5], that is our
principal tool for establishing the principal result of this paper.

Theorem 2.13. Suppose that X is a reflexive real Banach space, and let Φ,Ψ : X → R be two Gâteaux
differentiable functionals such thatΦ is sequentially weakly lower semicontinuous, strongly continuous
and coercive, and Ψ is sequentially weakly upper semicontinuous. For any r > infX Φ, let

φ(r) := inf
u∈Φ−1((−∞,r))

(
supv∈Φ−1((−∞,r))Ψ(v)

)
− Ψ(u)

r − Φ(u)
.

Put
γ := lim inf

r→+∞
φ(r), and δ := lim inf

r→(infX Φ)+
φ(r).

Then, the following properties hold:

(a) If γ < +∞, then for each λ ∈ (0, 1/γ), the following alternative holds: Either

(a1) Iλ possesses a global minimum, or
(a2) there is a sequence {un} of critical points (local minima) of Iλ such that

lim
n→+∞

Φ(un) = +∞.

(b) If δ < +∞, then for each λ ∈ (0, 1/δ), the following alternative holds: Either

(b1) there is a global minimum of Φ which is a local minimum of Iλ, or
(b2) there is a sequence {un} of pairwise distinct critical points (local minima) of Iλ that converges

weakly to a global minimum of Φ, with lim
n→+∞

Φ(un) = inf
u∈X
Φ(u).

3. Main results

In the present section, we state and prove our principal result. Let

κ :=
Tα−

1
2

Γ(α)
√

2α − 1
,

AIMS Mathematics Volume 7, Issue 4, 6034–6049.
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C(T, α) :=
∫ T/4

0
t2−2α dt +

∫ 3T/4

T/4

[
t1−α −

(
t −

T
4

)1−α
]2

dt

+

∫ T

3T/4

[
t1−α −

(
t −

T
4

)1−α
−

(
t −

3T
4

)1−α
]2

dt,

and

B∞ := lim sup
ξ→+∞

∫ 3T/4

T/4
F(t, ξ) dt

ξ2 ,

where F is the potential of f defined by

F(t, ξ) :=
∫ ξ

0
f (t, x) dx, (t, ξ) ∈ [0,T ] × R.

We suppose that the following condition holds:

(f1) F(t, ξ) ≥ 0 for any (t, ξ) ∈ ([0, T
4 ] ∪ [ 3T

4 ,T ]) × R.

Our principal result reads as follows.

Theorem 3.1. Suppose that f : [0,T ] × R→ R is a continuous function whose potential satisfies (f1).
Assume that there exist real sequences {an} and {bn} in (0,+∞), with lim

n→+∞
bn = +∞, such that:

(h1) For some n0 ∈ N we have an <
T | cos(πα)|Γ(2 − α)

4κ
√

C(T, α)
bn for each n ≥ n0;

(h2) A∞ := lim
n→+∞

∫ T

0
max
|ξ|≤bn

F(t, ξ) dt −
∫ 3T/4

T/4
F(t, an) dt

T 2| cos(πα)|2Γ2(2 − α)b2
n − 16κ2a2

nC(T, α)
<

B∞

16κ2C(T, α)
.

Then, for each

λ ∈

]
16C(T, α)

T 2Γ2(2 − α)| cos(πα)|B∞
,

1
κ2T 2Γ2(2 − α)| cos(πα)|A∞

[
,

problem (1.1) admits an unbounded sequence of solutions in Eα0 .

Proof. We want to apply Theorem 2.13 to problem (1.1). For this, we define the functionals Φ,Ψ :
X → R by

Φ(u) := −
∫ T

0

c
0Dαt u(t) · c

t DαT u(t) dt, Ψ(u) :=
∫ T

0
F(t, u(t)) dt,

and put
Iλ(u) := Φ(u) − λΨ(u),

for every u ∈ X := Eα0 .
Obviously, Φ and Ψ are Gâteaux differentiable functionals whose derivatives at u ∈ Eα0 are

Φ′(u)(v) = −
∫ T

0
(c
0Dαt u(t) · c

t DαT v(t) + c
t DαT u(t) · c

0Dαt v(t)) dt,

AIMS Mathematics Volume 7, Issue 4, 6034–6049.
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Ψ′(u)(v) =
∫ T

0
f (t, u(t))v(t) dt = −

∫ T

0

∫ t

0
f (s, u(s)) ds · v′(t) dt,

for every v ∈ Eα0 . By Definition 2.3 and (2.1), we have

Φ′(u)(v) =
∫ T

0
(0Dα−1

t (c
0Dαt u(t)) − tDα−1

T (c
t DαT u(t))) · v′(t) dt.

Hence, Iλ = Φ−λΨ ∈ C1(Eα0 ,R) andΦ andΨ are sequentially weakly lower and upper semicontinuous,
respectively.

Also by applying Lemma 2.12, we deduce that the functional Φ is coercive. Indeed, we have

Φ(u) ≥ | cos(πα)|∥u∥2α → +∞,

as ∥u∥α → +∞.
Further, we prove that a critical point of Iλ is a solution of (1.1). For this, if u∗ ∈ Eα0 is a critical

point of Iλ, then

0 = I′λ(u∗)(v) =
∫ T

0

(
0Dα−1

t (c
0Dαt u∗(t)) − tDα−1

T (c
t DαT u∗(t))

+ λ

∫ t

0
f (s, u∗(s)) ds

)
· v′(t) dt,

(3.1)

for every v ∈ Eα0 . The Du Bois-Reymond Lemma and (3.1) imply

0Dα−1
t (c

0Dαt u∗(t)) − tDα−1
T (c

t DαT u∗(t)) + λ
∫ t

0
f (s, u∗(s)) ds = m (3.2)

a.e. on [0,T ] for some m ∈ R. By (3.2), it is obvious to prove that u∗ ∈ Eα0 is a solution of (1.1).
By Lemma 2.11, when α > 1/2, for each u ∈ Eα0 one has

∥u∥∞ ≤ κ
(∫ T

0
|c0Dαt u(t)|2 dt

)1/2

= κ∥u∥α. (3.3)

First we establish that λ < 1/γ, for any fixed λ as in the conclusion. For this, put

rn :=
| cos(πα)|
κ2

b2
n, ∀ n ∈ N. (3.4)

Then, for all u ∈ Eα0 with Φ(u) < rn, by applying Lemma 2.12, we see that

| cos(πα)|∥u∥2α ≤ Φ(u) < rn,

which implies
∥u∥2α <

rn

| cos(πα)|
. (3.5)

Thus, by (3.3)–(3.5) we obtain

∥u∥∞ ≤ bn, (∀ n ∈ N)

AIMS Mathematics Volume 7, Issue 4, 6034–6049.
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for any u ∈ Eα0 with the condition Φ(u) < rn. Then, for every n ∈ N, we get that

φ(rn) ≤ inf
Φ(u)<rn

∫ T

0
max
|ξ|≤bn

F(t, ξ) dt −
∫ T

0
F(t, u(t)) dt

| cos(πα)|
κ2

b2
n +

∫ T

0

c
0Dαt u(t) · c

t DαT u(t) dt
.

Let wn be defined by

wn(t) :=


4an

T
t t ∈ [0,T/4)

an t ∈ [T/4, 3T/4]
4an

T
(T − t) t ∈ (3T/4,T ]

for each n ∈ N.
Clearly, we can investigate that wn(0) = wn(T ) = 0 and wn ∈ L2([0,T ]). Moreover, wn is Lipschitz

continuous on [0,T ], and therefore wn is absolutely continuous on [0,T ]. We have

c
0Dαt wn(t) =



4an

TΓ(2 − α)
t1−α t ∈ [0,T/4)

4an

TΓ(2 − α)

[
t1−α −

(
t −

T
4

)1−α
]

t ∈ [T/4, 3T/4]

4an

TΓ(2 − α)

[
t1−α −

(
t −

T
4

)1−α
−

(
t −

3T
4

)1−α
]

t ∈ (3T/4,T ].

Obviously, the function c
0Dαt wn is continuous in [0,T ], and∫ T

0
|c0Dαt wn(t)|2 dt =

16a2
n

T 2Γ2(2 − α)

{∫ T/4

0
t2−2α dt +

∫ 3T/4

T/4

[
t1−α −

(
t −

T
4

)1−α
]2

dt

+

∫ T

3T/4

[
t1−α −

(
t −

T
4

)1−α
−

(
t −

3T
4

)1−α
]2

dt
}

=
16a2

n

T 2Γ2(2 − α)
C(T, α).

Therefore,

Φ(wn) ≤
1

| cos(πα)|
∥wn∥

2
α =

16a2
n

T 2| cos(πα)|Γ2(2 − α)
C(T, α).

Hence, by (h1), one has Φ(wn) < rn for all n ≥ n0. Moreover, by (f1), we also have

Ψ(wn) ≥
∫ 3T/4

T/4
F(t, an) dt,

for each n ∈ N.
Then, it follows that

φ(rn) ≤

∫ T

0
max
|ξ|≤bn

F(t, ξ) dt −
∫ 3T/4

T/4
F(t, an) dt

| cos(πα)|
κ2

b2
n −

16C(T, α)a2
n

T 2| cos(πα)|Γ2(2 − α)

,
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for every n ≥ n0.
Hence, by the hypothesis (h2), we get that

0 ≤ γ ≤ lim
n→+∞

φ(rn) ≤ κ2T 2Γ2(2 − α)| cos(πα)|A∞ < +∞.

By the above relation, since

λ <
1

κ2T 2Γ2(2 − α)| cos(πα)|A∞
,

we also have λ < 1/γ.
Now, we claim that Iλ is unbounded from below. By the relation

1
λ
<

T 2| cos(πα)|Γ2(2 − α)B∞

16C(T, α)
,

taking into account the definition of B∞, there exist a sequence {ηn} of positive numbers and τ > 0 with
the conditions lim

n→+∞
ηn = +∞ and

1
λ
< τ <

T 2| cos(πα)|Γ2(2 − α)
16C(T, α)

∫ 3T/4

T/4
F(t, ηn) dt

η2
n

,

for every n ∈ N large enough.
For every n ∈ N, suppose that sn ∈ X is defined by

sn(t) :=


4ηn

T
t t ∈ [0,T/4)

ηn t ∈ [T/4, 3T/4]
4ηn

T
(T − t) t ∈ (3T/4,T ].

Thus, we obtain

Iλ(sn) = Φ(sn) − λΨ(sn)

≤
16C(T, α)

T 2| cos(πα)|Γ2(2 − α)
η2

n − λ

∫ 3T/4

T/4
F(t, ηn) dt

<
16C(T, α)

T 2| cos(πα)|Γ2(2 − α)
η2

n(1 − λτ),

for all n ∈ N large enough. By the relation λτ > 1 and lim
n→+∞

ηn = +∞, we have

lim
n→+∞

Iλ(sn) = −∞.

Therefore, Iλ is unbounded from below, and so, we get that Iλ has no global minimum. Then, by
applying Theorem 2.13, part (b), there exists a sequence {un} of critical points of Iλ with

lim
n→+∞

Φ(un) = +∞.

So by Lemma 2.12, we have
lim

n→+∞
∥un∥α = +∞.

The proof is complete. □
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Put

B0 := lim sup
ξ→0+

∫ 3T/4

T/4
F(t, ξ) dt

ξ2 .

Discussing as in the proof of Theorem 3.1 and exploiting part (c) of Theorem 2.13, we arrive the
following.

Theorem 3.2. Suppose that f : [0,T ] × R→ R is a continuous function whose potential satisfies (f1).
Assume that there exist real sequences {cn} and {dn} in (0,+∞), with lim

n→+∞
dn = 0, such that:

(h3) For some n0 ∈ N we have cn <
T | cos(πα)|Γ(2 − α)

4κ
√

C(T, α)
dn for each n ≥ n0;

(h4) A0 := lim
n→+∞

∫ T

0
max
|ξ|≤dn

F(t, ξ) dt −
∫ 3T/4

T/4
F(t, cn) dt

T 2| cos(πα)|2Γ2(2 − α)d2
n − 16κ2c2

nC(T, α)
<

B0

16κ2C(T, α)
.

Then, for each

λ ∈

]
16C(T, α)

T 2Γ2(2 − α)| cos(πα)|B0 ,
1

κ2T 2Γ2(2 − α)| cos(πα)|A0

[
,

problem (1.1) has a sequence of non-zero solutions which strongly converges to zero in Eα0 .

At the present, we state some remarkable consequences of Theorem 3.1. Let

A∞ := lim inf
ξ→+∞

∫ T

0
max
|x|≤ξ

F(t, x) dt

ξ2 .

Corollary 3.3. Suppose that f : [0,T ]×R→ R is a continuous function whose potential satisfies (f1).
Assume that

(h5) A∞ <
T 2| cos(πα)|2Γ2(2 − α)

16κ2C(T, α)
B∞.

Then, for each

λ ∈

]
16C(T, α)

T 2Γ2(2 − α)| cos(πα)|B∞
,
| cos(πα)|
κ2A∞

[
,

problem (1.1) has an unbounded sequence of solutions in Eα0 .

Proof. Assume that {bn} be a sequence of positive numbers, with limn→+∞ bn = +∞, such that

lim
n→+∞

∫ T

0
max
|ξ|≤bn

F(t, ξ) dt

b2
n

= A∞.

Taking an = 0 for all n ≥ n0, by applying Theorem 3.1, we have the outcome. □

A specific case of Corollary 3.3 is the following.
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Corollary 3.4. Assume that f : [0,T ]×R→ R be a continuous function whose potential satisfies (f1).
Assume that

(h6) A∞ <
| cos(πα)|
κ2

and B∞ >
16C(T, α)

T 2Γ2(2 − α)| cos(πα)|
.

Then, the problem
d
dt

(
0Dα−1

t (c
0Dαt u(t)) − tDα−1

T (c
t DαT u(t))

)
+ f (t, u(t)) = 0 a.e. t ∈ [0,T ]

u(0) = u(T ) = 0,

has an unbounded sequence of solutions in Eα0 .

Remark 3.5. We point out that when f is a nonnegative function, hypothesis (f1) preserves and
assumption (h5) becomes

(h′5) A′∞ := lim inf
ξ→+∞

∫ T

0
F(t, ξ) dt

ξ2 <
T 2| cos(πα)|2Γ2(2 − α)

16κ2C(T, α)
B∞.

In this occasion, (h′5) ensures that for all

λ ∈

]
16C(T, α)

T 2Γ2(2 − α)| cos(πα)|B∞
,
| cos(πα)|
κ2A′∞

[
,

problem (1.1) has an unbounded sequence of solutions in Eα0 .

Corollary 3.6. Assume that f : [0,T ] × R → R be a continuous function whose potential satisfies
(f1). Assume that there exist real sequences {an} and {bn} in (0,+∞), with lim

n→+∞
bn = +∞, such that (h1)

holds and

(h7)
∫ 3T/4

T/4
F(t, an) dt =

∫ T

0
max
|ξ|≤bn

F(t, ξ) dt for all n ∈ N.

If B∞ > 0, then, for all

λ >
16C(T, α)

T 2Γ2(2 − α)| cos(πα)|B∞
,

problem (1.1) has an unbounded sequence of solutions in Eα0 .

Proof. By (h7) we get A∞ = 0. Therefore, since B∞ > 0, condition (h2) of Theorem 3.1 holds and the
result is obtained. □

Remark 3.7. By Theorem 3.2 we get the identical conclusions of Theorem 3.1. Namely, substituting
ξ → +∞ with ξ → 0+, assertions such as Corollaries 3.3, 3.4 and 3.6 can be established. We omit the
details.

To conclude, we give an example of application of the main results.
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Example 3.8. Consider the problem
d
dt

(
0D−0.3

t (c
0D0.7

t u(t)) − tD−0.3
1 (c

t D0.7
1 u(t))

)
+ λ f (u(t)) = 0 a.e. t ∈ [0, 1]

u(0) = u(1) = 0,
(3.6)

where f : R→ R is the continuous function defined by

f (x) :=

x (2 − cos(ln |x|) − 2 sin(ln |x|)) x ∈ R \ {0}
0 x = 0.

A direct calculation shows

F(x) =

x2 (1 − sin(ln |x|)) x ∈ R \ {0}
0 x = 0.

So, F satisfies (f1) and we have

A∞ = lim inf
ξ→+∞

(1 − sin(ln |ξ|)) = 0, B∞ = lim sup
ξ→+∞

1
2

(1 − sin(ln |ξ|)) = 1,

| cos(0.7π)| ≈ 0.58779, C(1, 0.7) ≈ 0.13429, Γ2(1.3) ≈ 0.805454,

16 ∗ 0.13429
0.805454 ∗ 0.58779

= 4.5384.

The above calculations are done using MAPLE. Hence, using Corollary 3.3, for each λ ∈]4.5384,+∞[,
problem (3.6) has an unbounded sequence of solutions in E0.7

0 .

4. Conclusions

Taking advantage of a critical point theorem obtained by Ricceri [28], the existence of infinitely
many solutions for a nonlinear fractional BVP with a parameter is established. More precisely, a
concrete interval of positive parameters, for which the treated problem admits infinitely many solutions,
is determined without any symmetry or monotonicity assumptions on the nonlinear data. Our goal was
achieved by requiring an appropriate oscillatory behavior of the nonlinear term either at infinity or at
zero, without any additional conditions.
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