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Abstract: In this paper, we develop a method for numerical differentiation of two-dimensional
scattered input data on arbitrary domain. A Hermite extension approach is used to realize the
approximation and a modified implicit iteration method is proposed to stabilize the approximation
process. For functions with various smooth conditions, the numerical solution process of the method is
uniform. The error estimates are obtained and numerical results show that the new method is effective.
The advantage of the method is that it can solve the problem in any domain.
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1. Introduction

In the application of many mathematical physics problems, we need to estimate derivatives of an
unknown function from given noisy data. It turns out to be an ill-posed problem, which means, the
small errors in the measurement data can induce huge errors in its computed derivatives. Many
methods and techniques have been proposed regarding this topic [1–17]. According to type of
regularization techniques, these methods can be classified into finite difference methods, mollification
methods, differentiation by integration method and Tikhonov methods. Most of these methods are for
one-dimensional case, but only a few are for high-dimensional cases [18–20]. These methods of
dealing with two-dimensional problems are basically aimed at the regular region, and there are few
methods that can deal with the numerical differentiation problem on the irregular domain. For
example, if the data are given at scatter points of the domain in Figure 1, numerical implementation of
most existing methods is difficult.
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Figure 1. Irregular region.

By the extension theorem [21], any function on sub-domain of R2 can be extended to R2 without
losing its smoothness. There are many work of extension problem has been developed since Whitney’s
seminal work [22–25]. And it is well known that functions with high smoothness can be approximated
very precisely by their Hermite expansion. So in this paper, we consider a Hermite extension method
to deal with the numerical differentiation problem on the irregular domain. That is to say, we take
a function defined on any domain as part of a function on R2. For the one-dimensional case, the
numerical differentiation method along the line of this method has been given in [26]. The numerical
process of extension is usually unstable, so regularization technology is needed. As an alternative
regularization method, we use a modified implicit iteration method in this paper. Compared with
Tikhonov method which is used in [17], the implicit iteration method can select larger regularization
parameters in each iteration, which makes the calculation process more stable. In [27], Jin has given
the detailed theory and numerical implementation of implicit iteration method in Hilbert scales. But the
application of the method to our problem still needs some improvement. The existing implicit iterative
method can only deal with the problem of finite smoothness, and the numerical implementation of the
algorithm is inconsistent for different smoothness. In this paper, we will present a modified form of
implicit iteration method. It can deal with numerical differentiation of functions with any smoothness
and the solution process is uniform.

This paper is organized as follows: In the next section, we introduce some preliminary materials. In
Section 3, we describe the modified implicit iteration method for numerical differentiation problem and
give some auxiliary results. The convergence estimate of the approximation solution can be founded
in Section 4. In Section 5, some numerical examples are given. Conclusion is then given in the final
Section 6.

2. Preliminaries

In this section, we introduce some notations and preliminaries that will be used throughout the paper.
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2.1. Hermite functions in R2

Let x = (x1, x2), |x| =
√

x2
1 + x2

2. Let

f̂ (ω) = F [ f (x)] =
1

2π

∫
R2

f (x)e−iω·xdx

be the 2-dimensional Fourier transform of the function f (x) ∈ L2(R2). The corresponding inverse
Fourier transform of the function f̂ (ω) is

f (x) =
1

2π

∫
R2

f̂ (ω)eiω·xdω.

And ‖ · ‖p denotes the norm of the Sobolev space Hp(R2) with p ≥ 0 defined by

‖ f ‖p =

(∫
R2

(1 + |ω|2)p| f̂ (ω)|2dω
) 1

2

. (2.1)

Particularly, for p = 0 we can recover the L2(R2) norm, i.e.,

‖ f ‖ =

(∫
R2
| f̂ (ω)|2dω

) 1
2

.

Let ` = (`1, `2), `i(i = 1, 2) being non-negative integers. Set |`|1 = `1 + `2 and ` · x = `1x1 + `2x2.
The normalized 2-dimensional Hermite function is defined by

H`(x) = H`1(x1)H`2(x2), (2.2)

where
H0(xi) ≡ π−1/4 exp(−(1/2)x2

i ),
H1(xi) ≡ π−1/4

√
2xi exp(−(1/2)x2

i ),

H`i+1(xi) =
√

2
`i+1 xiH`i(xi) −

√
`i
`i+1 H`i−1(xi), `i ≥ 1.

(2.3)

We know that the Fourier transform of the Hermite functions can be given as [28]:

Ĥ`(ω) = (−i)|`|1 H`(ω). (2.4)

The set of Hermite functions satisfy the orthogonality relations∫
R2

H`(x)Hm(x)dx = δ`,m. (2.5)

The Hermite expansion of a function f ∈ L2(R2) is as

f (x) =

∞∑
|`|1=0

f`H`(x), (2.6)

with the Fourier-Hermite coefficients

f` =

∫
R2

f (x)H`(x)dx, |`|1 = 0, 1, . . . . (2.7)
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2.2. Problem description

Suppose that Λ is a subdomain of R2. For any two-tuples α = (α1, α2) ∈ N2, |α|1 = α1 + α2. The
notation ∂ j stands for ∂

∂x j
and Dα f = ∂α1

x1∂
α2
x2 f . For any positive integer q, we define Dq f =: {Dα f :

|α|1 = q} and

|Dq f | =

 ∑
|α|1=q

|Dα f |2


1/2

. (2.8)

The norm ‖ · ‖s,Λ in Sobolev space H s(Λ) is defined as

‖ f ‖s,Λ :=
(∫

Λ

| f |2 + |Ds f |2dx
)1/2

, (2.9)

where s = 0 and ‖ · ‖0,Λ denotes the L2(Λ) norm.
Suppose that g(x) ∈ Hp(R), p ≥ 2 and we only know its approximate function gδ on Λ such that

‖gδ − g‖0,Λ ≤ δ, (2.10)

where δ > 0 is a given constant called the error level. Our problem is to calculate approximate
derivatives of g on Λ from the noisy data gδ, or, equivalently, to construct a function f δ(x) from gδ(x)
which is close to g(x) in the sense that

lim
δ→0
‖ f δ − g‖r,Λ = 0, r ≥ 1. (2.11)

3. Implicit iteration method for numerical differentiation

For any vector~f = {f`}∞|`|1=0 ∈ l2, if we let

H~f :=
∞∑
|`|=0

f`H`(x), (3.1)

then the process of constructing an approximation function f δ from data gδ can be transformed to
solving the following equations

H~f = gδ. (3.2)

In this paper, we present an modified implicit iteration method to solve the above equations. For
this purpose, we introduce the following operator:

R~f := H−1F −1
[
e|ω|Ĥ~f(ω)

]
. (3.3)

It is obvious that R is unbounded self-adjoint strictly positive definite operator. Then we choose

f δn = H~fδn, (3.4)

as the approximation of g, where~fδn is determined by the following implicit iteration process

~fδ0 = 0,
~fδk =~fδk−1 − (H∗H + βkR

2)−1H∗(H~fδk−1 − gδ), k = 1, 2, . . . , n,
(3.5)
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where βk > 0 are properly chosen real numbers. For reference [27], the positive number

σn :=
n∑

k=1

1
βk

(3.6)

plays the role of the regularization parameter and we will chosen it as the solution of the
nonlinear equation

d(σn) := ‖H~fδn − gδ‖0,Λ = Cδ, (3.7)

with a constant C ≥ 1. If we let T = HR−1, then~fδn possesses the representation [27]

~fδn = R−1sn(T ∗T )T ∗gδ with sn(λ) =
1
λ

1 − n∏
k=1

βk

λ + βk

 . (3.8)

Remark 3.1. If we use the operator B =
(∑
|α|1=q Dα

)
with some a constant q instead of R, then we

return to the framework in [27] and the convergence results can be obtained accordingly. When p
and q satisfy a certain relation, the result is order optimal. It should be noticed that for large q, the
numerical process of the method is difficult. We will point that the method is always order optimal
when we use the operator R and the numerical process is uniform for any p.

The following lemma holds for sn(λ).

Lemma 3.1. [27] The function sn : (0, c] → (0,∞) with c = ‖T ‖2 and the corresponding residual
function rn(λ) := 1 − λsn(λ) obey the properties

sn(λ) ≤ σn, λsn(λ) ≤ 1,
λrn(λ) ≤ σ−1

n , rn(λ) ≤ 1.
(3.9)

From above lemma, we can deduce the following results.

Lemma 3.2.
√
λsn(λ) ≤

√
σn,

√
λrn(λ) ≤

√
σ−1

n . (3.10)

Proof. For λ ≤ σ−1,
√
λsn(λ) ≤

√
λσn ≤

√
σn (3.11)

and
√
λrn(λ) ≤

√
λ ≤

√
σ−1

n . (3.12)

Moreover, for λ ≥ σ−1,
√
λsn(λ) =

√
λ

λ
λsn(λ) ≤

√
λ

λ
≤
√
σn (3.13)

and
√
λrn(λ) ≤

√
λ

λ
λrn(λ) ≤

σ−1
n
√
λ
≤

√
σ−1

n . (3.14)

�
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4. Error estimate

Owing to g ∈ Hp(R), we suppose that
‖g‖p ≤ E, (4.1)

where E is a constant. Set the vector ~g contains all Fourier-Hermite coefficients of g, i.e.,

g(x) =
(
H~g

)
(x), ∀x ∈ R2. (4.2)

Let
~gN = PN~g and gN = H~gN . (4.3)

We define the vector~fn as
~fn = R−1sn(T ∗T )T ∗gN , (4.4)

then we have
H(~fδn −~fn) = T sn(T ∗T )T ∗(gδ − gN), (4.5)

H(~g −~fn) = T rn(T ∗T )R~gN , (4.6)

gδ −H~fδn = rn(TT ∗)gδ, (4.7)

R(~fδn −~fn) = sn(T ∗T )T ∗(gδ − gN), (4.8)

R(~g −~fn) = rn(T ∗T )R~gN . (4.9)

In our further analysis, we shall make use of the following lemmas.

Lemma 4.1. If the condition (4.1) holds, then

‖g − gN‖ ≤ N−pE and ‖R~gN‖l2 ≤ CN E, (4.10)

where

CN = max
(
1,

eN

N p

)
. (4.11)

Proof. From (2.1) and (3.3), we can obtain

‖g − gN‖
2 =

∫
|ω|>N
|ĝ(ω)|2 dω ≤ N−2p

∫
|ω|>N

(1 + |ω|2)p |ĝ|2 dω ≤ N−2p‖g‖2p (4.12)

and

‖R~gN‖l2 =

∫
|ω|≤N

e2|ω| |ĝ(ω)|2 dω

=

∫
|ω|≤N

e2|ω|

(1 + |ω|2)p (1 + |ω|2)p |ĝ(ω)|2 dω

≤ max
(
1,

e2N

N2p

)
‖g‖2p.

(4.13)

�
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Lemma 4.2. If the condition (4.1) holds, we have

‖H(~fδn − ~gN)‖0,Λ ≤ (C + 1)δ + N−pE, (4.14)

‖R(~fδn − ~gN)‖l2 ≤
√
σn(δ + N−pE) + CN E (4.15)

and
‖H~fδn − gδ‖0,Λ ≤ δ + N−pE +

√
σ−1

n CN E. (4.16)

Proof. From (2.10), (3.7), (4.10) and the triangle inequality

‖H(~fδn − ~gN)‖0,Λ ≤ ‖H~fδn − gδ‖0,Λ + ‖gδ − g‖0,Λ + ‖g − gN‖0,Λ ≤ (C + 1)δ + N−pE. (4.17)

And by using the triangle inequality, (2.10), (3.10) and (4.8)–(4.10)

‖R(~fδn − ~gN)‖l2 ≤ ‖R(~fδn −~fn)‖l2 + ‖R(~fn − ~gN)‖l2
= ‖sn(T ∗T )T ∗(gδ − gN)‖l2 + ‖rn(T ∗T )R~gN‖l2

≤
√
σn‖(gδ − gN)‖0,Λ + ‖R~gN‖l2

≤
√
σn(δ + N−pE) + CN E.

(4.18)

Moreover, in terms of the triangle inequality, (2.10), (3.9), (3.10) and (4.7), we have

‖H~fδn − gδ‖0,Λ = ‖rn(TT ∗)gδ‖0,Λ
≤ ‖rn(TT ∗)(gδ − g)‖0,Λ + ‖rn(TT ∗)(g − gN)‖0,Λ + ‖rn(TT ∗)gN‖0,Λ

≤ δ + ‖g − gN‖0,Λ + ‖rn(TT ∗)T‖ · ‖R~gN‖

≤ δ + N−pE +
√
σ−1

n CN E.

(4.19)

�

Lemma 4.3. [21] Let Ω be a domain in R2 satisfying the cone condition. There exists a constant K
depending on ε0 and j, s, such that for any 0 < ε ≤ ε0 and 0 ≤ j ≤ s

‖ f ‖ j,Ω ≤ K(ε‖ f ‖s,Ω + ε− j/(s− j)‖ f ‖0,Ω). (4.20)

Lemma 4.4. Suppose that the vector sequence ~hδn =
{
hδ`

}∞
|`|1=0

satisfies

‖H~hδ‖0,Λ ≤ k1δ, ‖R~hδ‖l2 ≤ k2ek3δ
− 1

p
δ, δ→ 0, (4.21)

then for any Ω ⊆ Λ satisfying the cone condition, there exists a constant M

‖H~hδ‖p,Ω ≤ M. (4.22)

Proof. It is easy to deduce that there exist a constant δ0 such that

ek3δ
− 1

p
>

kp
3

δ
, ∀δ < δ0. (4.23)

And for simplicity, we prove the theorem with δ < δ0. Let

N0 = k3δ
− 1

p , (4.24)
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and we have ∥∥∥∥H~hδ∥∥∥∥
p,Ω
≤

∥∥∥∥H (
PN0

~hδ
)∥∥∥∥

p,Ω
+

∥∥∥∥H [
(I − PN0)~h

δ
]∥∥∥∥

p,Ω

= I1 + I2.
(4.25)

By Parseval’s formula, we can see that the second term I2 satisfies∥∥∥∥H [
(I − PN0)~h

δ
]∥∥∥∥2

p,Ω
≤

∥∥∥∥H [
(I − PN0)~h

δ
]∥∥∥∥2

=

∫
|ω|>N0

(1 + |ω|2)p|Ĥ~hδ(ω)|2dω

=

∫
|ω|>N0

(1 + |ω|2)p

e2|ω| |e2|ω|Ĥ~hδ(ω)|2dω

≤
(N0 + 1)2p

e2N0

∫
|ω|>N0

|e2|ω|Ĥ~hδ(ω)|2dω

≤
N2p

0

e2(N0−1) ‖R
~hδ‖2l2

≤ e−2k2p
3

1
δ2 · k

2
2δ

2 = e−2k2p
3 k2

2.

(4.26)

Hence
I2 ≤ 2e−1kp

3 k2. (4.27)

So all we need is to prove there exist a constant M1 such that

I1 < M1, δ→ 0. (4.28)

Note that
‖H

(
PN0

~hδ
)
‖0,Ω ≤ ‖H~hδ‖0,Ω + ‖H

[
(I − PN0)~h

δ
]
‖0,Ω (4.29)

and ∥∥∥∥H(I − PN0)~h
δ
∥∥∥∥

0,Ω
≤

∥∥∥∥H [
(I − PN0)~h

δ
]∥∥∥∥2

=

∫
|ω|>N0

|Ĥ~hδ(ω)|2dω

=

∫
|ω|>N0

1
e2|ω|
|e|ω|Ĥ~hδ(ω)|2dω

≤
1

e2N0
‖R~hδ‖2l2≤ k2

2δ
2.

(4.30)

Therefore
‖H

(
PN0

~hδ
)
‖0,Ω ≤ (k1 + 2k2)δ. (4.31)

Now we prove (4.28) by using reduction to absurdity, if (4.28) does not hold, then for any q > p
there exist a sequence δi such that

‖H
(
PN0

~hδ
)
‖q ≥ 2k2kp

3

(
δi

kp
3

) p−q
p

, δi → 0. (4.32)

If not, ∃q̄ for any δ→ 0

‖H
(
PN0

~hδ
)
‖q̄ < 2k2kp

3

(
δ

kp
3

) p−q̄
p

, (4.33)
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then (4.28) can be derived by 4.29 and Lemma 4.3 with ε =

(
δi
kp

3

) q̄−p
p

, s = q̄ and j = p. Then

∫
|ω|<N0

 N0∑
k=0

|ω|k

k!

2 ∣∣∣∣∣∣Ĥ~hδi

(ω)

∣∣∣∣∣∣2 dω =

∫
|ω|<N0

(∑N0
k=0

|ω|k

k!

)2

(1 + |ω|2)N0
(1 + |ω|2)N0

∣∣∣∣∣∣Ĥ~hδi

(ω)

∣∣∣∣∣∣2 dω

≥

∫
|ω|<N0

(∑N0
k=0

|ω|k

k!

)2

(1 + |ω|)2N0
(1 + |ω|2)N0

∣∣∣∣∣∣Ĥ~hδi

(ω)

∣∣∣∣∣∣2 dω

≥

∫
|ω|<N0

(∑N0−1
k=0

|ω|k

k!

)2

|ω|2N0
(1 + |ω|2)N0

∣∣∣∣∣∣Ĥ~hδi

(ω)

∣∣∣∣∣∣2 dω

≥

∫
|ω|<N0

(∑N0−1
k=0

N0
k

k!

)2

N2N0
0

(1 + |ω|2)N0

∣∣∣∣∣∣Ĥ~hδi

(ω)

∣∣∣∣∣∣2 dω

≥

(∑N0−1
k=0

N0
k

k!

)2

N2N0
0

∥∥∥∥H (
PN0

~hδi
)∥∥∥∥2

N0

≥ k2
2


N0∑

k=0

(
k3δ
− 1

p

i

)k

k!


2

δ2
i .

(4.34)

Therefore ∫
R2

e2|ω|

∣∣∣∣∣∣Ĥ~hδi

(ω)

∣∣∣∣∣∣2 dω = lim
δi→0

∫
|ω|<N0(δi)

N0(δi)∑
k=0

|ω|k

k!


2 ∣∣∣∣∣∣Ĥ~hδi

(ω)

∣∣∣∣∣∣2 dω

≥ k2
2


N0∑

k=0

(
k3δ
− 1

p

i

)k

k!


2

δ2
i

= k2
2 lim
δi→0

e2k3δ
− 1

p
i δ2

i .

(4.35)

So there exists a δ̄ such that

‖R~hδ̄‖2l2 =

∫
R2

e2|ω|
∣∣∣∣Ĥhδ̄(ω)

∣∣∣∣2 dω >

∫
R2

e2|ω|
∣∣∣∣Ĥhδ̄(ω)

∣∣∣∣2 dω ≥ k2
2e2k3δ̂

− 1
p
δ̄2, (4.36)

which contradicts the assumptions of the Lemma. �

Theorem 4.1. Suppose that the conditions (2.10) and (4.1) hold, f δn is defined by (3.4) and (3.7) then
for any Ω ⊆ Λ satisfying the cone condition and 0 < j ≤ p,

‖ f δn − g‖ j,Ω = O
(
δ

p− j
p

)
. (4.37)

Proof. Let

N0 =

(
2E

(C − 1)δ

) 1
p

. (4.38)
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Then from Lemma 4.2, we have

‖H(~fδn − ~gN0)‖0,Λ ≤
3C + 1

2
δ, (4.39)

‖R(~fδn − ~gN0)‖l2 ≤
C + 1

2
e( 2E

C−1 )
1
p δ
− 1

p
δ. (4.40)

Thus, by using Lemma 4.4, there exists a constant M

‖H(~fδn − ~gN0)‖0,Ω ≤ M. (4.41)

Then
‖H~fδn − g‖p,Ω ≤ ‖H(~fδn − ~gN0)‖0,Ω + ‖g − gN‖p,Ω

≤ ‖H(~fδn − ~gN0)‖0,Ω + ‖g‖p

≤ M + E.
(4.42)

Moreover, by using (2.10), (3.7) and the triangle inequality

‖H~fδn − g‖0,Ω ≤ ‖H~fδn − gδ‖0,Ω + ‖gδ − g‖0,Ω ≤ ‖H~fδn − gδ‖0,Λ + ‖gδ − g‖0,Λ ≤ (C + 1)δ. (4.43)

The assertion of theorem follows from (4.42), (4.43) and Lemma 4.3.
�

5. Numerical realization

The data are usually given at scatter points in practical applications. Let xi ∈ Λ(i = 1, 2, . . . ,m) be
the given points and

gδ = (gδ(x1), gδ(x2), . . . , gδ(xm))T

be the noisy data vector. Let σ( j) = (σ( j1), σ( j2)), (0 ≤ j1, j2 ≤ n) being the Hermite-Gauss type
interpolation points and ρ( j) are the corresponding Hermite-Gauss weights. For f , g ∈ L2(R2), we
define the discrete inner product

〈 f , g〉n :=
n∑

j1=1

n∑
j2=1

ρ( j) f (σ( j))g(σ( j)),

and
H̆`(ω) := (−1)|`|1e|ω|H`(ω).

Let
Hn = span{H(0,0)(x),H(1,0)(x),H(1,1)(x), . . . ,H(n,n−1)(x),H(n,n)(x)},

then we give the matrices A(n+1)2×(n+1)2 , R(n+1)2×(n+1)2 , Hm×(n+1)2 as

A|`|1+1,|k|1+1 =
∑m

i=1 H`(xi)Hk(xi), R|`|1+1,|k|1+1 = 〈H̆`, H̆k〉n,

Hi,|`|1+1 = H`(xi), i = 1, 2, . . . ,m; |`|1, |k|1 = 0, 1, . . . n.

With these preparations, the discrete form of the implicit iteration method can be given as

fδ0 = 0,
fk = fk−1 − (HT H + βkR)−1HT (Hfδk−1 − gδ), k = 1, 2, . . . , n.

(5.1)
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Suppose that  m∑
i=1

(gδ(xi) − g(xi)2

1/2

≤ δ. (5.2)

Similar to what is done in [27], we take β1 = 1, βk = qk−1β1 with some q < 1 and choose n as the
first integer for which

‖Hfδn − gδ‖ ≤ C1δ < ‖Hfδk − gδ‖, 0 ≤ k < n, (5.3)

and then adjust the parameter βn such that

C2δ ≤ ‖Hfδn − gδ‖ ≤ C1δ, (5.4)

where C1,C2 are two constants that obey 1 ≤ C1 ≤ C2.

Remark 5.1. It should be noted that the Hermite-Gauss points are only used to calculate the matrix
R, regardless of the location of the noisy data.

6. Numerical tests

In this section, we give some numerical tests to verify the effect of the new method. All tests
are realized on Windows 10 system with Memory 16GB, CPU Intel(R) Core(TM)i7-8550U by using
Matlab 2017b. Let x = (x1, x2, . . . , xm)T and the perturbed data are generated by

gδ(x) = g(x) + randn(size(x)) · ε, (6.1)

where ε is the error level and randn(size(·)) is Matlab functions. In all cases we choose the parameter
n = 64, q = 1/2 and C = 1.01. We have tested these parameters with other values, and the results
are similar. In order to adapt to the characteristic of Hermite function approximation, the scaling
factor [29] is used in the numerical processing.

Example 6.1. [18] Let Λ = {(x1, x2) | x2
1 + x2

2 ≤ 1} is a disk and scatter nodes are given as Figure
2a. We choose the exact function as g(x) = (x2

1 + x2
2 − 2)3 and set ε = 0.01. The numerical results are

exhibited in Figures 2c–3h.

Example 6.2. [18] Let Λ = {(x1, x2) | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ π} is a rectangle and scatter nodes are
given as Figure 3i. We choose the exact function as g(x) = (x2

1 + x2
2 − 2)3 and set ε = 0.01. We have

shown the numerical results in Figures 3k–4h.

Example 6.3. [19] Let Λ = {(x1, x2) | − 1 ≤ x1 ≤ 3, − 1 ≤ x2 ≤ 3}, the data are given at
the equidistant nodes whose sampling step was 0.1 × 0.1. The exact function is chosen as g(x) =

sin
(

1
2 x2

1 + 1
4 x2

2 + 3
)

cos(2x1 + 1 − exp(x2)). We have shown the numerical results in Figures 4i–5h with
ε = 0.01.

Example 6.4. Now we let Λ is a irregular domain and scatter nodes are given as Figure 5i. We
choose the exact function as g(x) = cos(x1 · x2) and set ε = 0.01. The numerical approximations and
corresponding errors are shown in Figures 5k–6h.

All the above numerical results show that the proposed method is effective.
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a Λ and nodes b the exact function g

c the constructed function of g d the constructed error function of g

e the constructed function of gx f the constructed error function of gx

Figure 2. Example 1.
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a the constructed function of gy b the constructed error function of gy

c the constructed function of gxx d the constructed error function of gxx

Figure 2. Continued.
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e the constructed function of gyy f the constructed error function of gyy

g the constructed function of gxy h the constructed error function of gxy

Figure 2. Continued.
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i Λ and nodes j the exact function g

k the constructed function of g l the constructed error function of g

m the constructed function of gx n the constructed error function of gx

Figure 3. Example 2.
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a the constructed function of gy b the constructed error function of gy

c the constructed function of gxx d the constructed error function of gxx

Figure 3. Continued.
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e the constructed function of gyy f the constructed error function of gyy

g the constructed function of gxy h the constructed error function of gxy

Figure 3. Continued.
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i the constructed function of g j the constructed error function of g

k the constructed function of gx l the constructed error function of gx

Figure 4. Example 3.
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a the constructed function of gy b the constructed error function of gy

c the constructed function of gxx d the constructed error function of gxx

Figure 4. Continued.
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e the constructed function of gyy f the constructed error function of gyy

g the constructed function of gxy h the constructed error function of gxy

Figure 4. Continued.
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i Λ and nodes j the exact function g

k the constructed function of g l the constructed error function of g

m the constructed function of gx n the constructed error function of gx

Figure 5. Example 4.
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a the constructed function of gy b the constructed error function of gy

c the constructed function of gxx d the constructed error function of gxx

Figure 5. Continued.
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e the constructed function of gyy f the constructed error function of gyy

g the constructed function of gxy h the constructed error function of gxy

Figure 5. Continued.
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7. Conclusions

In this paper, we present a Hermite extension method with an implicit iteration process for numerical
differentiation of two-dimensional functions. Because the method can directly deal with the data given
on any domain, it is more convenient than other methods in practical application. The theoretical
results show that the convergence rates of the method is self-adaptive.
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