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Abstract: The optimization of fractional-order (FO) chaotic systems is challenging when simulating
a considerable number of cases for long times, where the primary problem is verifying if the given
parameter values will generate chaotic behavior. In this manner, we introduce a methodology for
detecting chaotic behavior in FO systems through the analysis of Poincaré maps. The optimization
process is performed applying differential evolution (DE) and accelerated particle swarm optimization
(APSO) algorithms for maximizing the Kaplan-Yorke dimension (DKY) of two case studies: a 3D
and a 4D FO chaotic systems with hidden attractors. These FO chaotic systems are solved applying
the Grünwald-Letnikov method, and the Numba just-in-time (jit) compiler is used to improve the
optimization process’s time execution in Python programming language. The optimization results
show that the proposed method efficiently optimizes FO chaotic systems with hidden attractors while
saving execution time.
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1. Introduction

Chaos theory is the branch of mathematics that deals with complex behavior emerging in
dynamical systems [1]. Chaotic systems possess special features such as extreme sensitivity to initial
conditions, random-like unpredictable behavior and ergodicity. Improving these characteristics
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enhance applications in almost every field of science and engineering, such as: Biology [2],
astrophysics [3], mechanics [4], economics [5], secure communications [6], cryptography [7],
robotics [8], control [9] and so on. With the study of fractional calculus, it has been found that
Fractional-Order (FO) derivatives serve as an extra-degree freedom for enhancing chaos-based
applications, this thanks to the FO derivatives that have inheritance or memory properties that
preserve complex phenomena with more accuracy [10, 11]. For instance, in cryptography and secure
communications, FO chaotic systems can generate larger keyspace than their integer
counterpart [12, 13].

According to the literature, attractors of dynamical systems can be divided into two categories
depending on the localization of their equilibrium points in the corresponding basin of attraction [14].
On the one hand, chaotic systems with self-excited attractors are those whose basin of attraction
intersects with an unstable equilibrium. On the other hand, chaotic systems with hidden attractors
have a basin of attraction that does not intersect with any open neighborhoods of equilibria. Since the
first hidden attractor was found in the classical Chua’s circuit [15], much more attention has been
shifted towards this new type of attractors. Firstly, the dynamics of hidden attractors are highly
complex to analyze since they can lead to unexpected behavior. For instance, complex phenomena
such as “Multistability” [16], which refers to when two or more different attractors coexist under the
same parameters are likely to appear in dynamical systems with hidden attractors. The multistability
phenomena depend on the initial conditions to switch between one attractor to a totally different one,
and this property can be used as an additional source of randomness for potential applications. For
instance, but not limited to, they might enhance the performance on cryptography [17], and secure
communications [18].

There exist few studies related to FO chaotic systems with hidden attractors, but FO derivatives
can generate several families of hidden chaotic attractors in their commensurate and incommensurate
models where multistability phenomena can also be observed [19, 20]. Therefore, the research effort
oriented to FO chaotic systems with hidden attractors is an area of opportunity to enhance
chaos-based applications. One of the critical factors that guarantees the success of those applications,
is the complexity degree of the chaotic attractor that can be quantified by its Kaplan-Yorke dimension
(DKY). In this manner, the application of metaheuristics, such as: Differential Evolution (DE) and
Accelerated Particle Swarm Optimization (APSO) algorithms, has gained interest in recent years for
solving optimization problems of FO chaotic systems [21]. In [22] the optimization through
metaheuristics of the DKY is achieved on four FO chaotic systems with self-excited attractors, a
similar approach is presented in [23]. To the best of the authors’ knowledge, there are no works that
explore the optimization of FO chaotic systems with hidden attractors.

Motivated by the above discussion, this paper aims to introduce the optimization of FO chaotic
systems with hidden attractors. One of the challenges in the optimization process, is that hidden
attractors have small basin of attraction [24–26], and thus, tiny variations in the parameters, and
fractional-order derivatives or initial conditions can easily shift the chaotic behavior to a periodic
dynamics. Hence, careful considerations needs to be taken to ensure that the optimization process is
performing correctly. The literature reports several methods for detecting Chaos in dynamical
systems, such as phase portraits, bifurcation diagrams, equilibrium points analysis through Shilnikov
theorem, Lyapunov exponents (LEs), Poincaré maps, among others. It is well-known that LEs provide
quantitative information over the stretching and folding of the chaotic attractors. However, accurate
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computation of Lyapunov exponents requires the analysis of large time series by specialized library
packages such as TISEAN [27], which can be high computational expensive, but LEs are necessary
for calculating the DKY of a chaotic attractor. For such problem, one can introduce constraints that
ensures the chaotic motion for its LEs computation through TISEAN. In this manner, Poincaré maps
provide a qualitative understating of the dynamical characteristics of a n-dimensional system into a
(n − 1) representation [28]. This is done by the intersection analysis of a hyper-plane transverse to the
flow of the dynamical system, then the Poincaré map corresponding to a chaotic system should
display enough distribution over a 2-D plane. In this regard, the contribution of this work is to detect
chaotic motion in FO chaotic systems with hidden attractors through the distribution quantification of
Poincaré maps. Moreover, to save execution time, the optimization algorithms are implemented by
using the Numba just-in-time (jit) compiler in the Python programming language.

The rest of the paper is organized as follows: Section 2 summarizes the background of this work.
DE and APSO algorithms are described in Section 3. Section 4 shows the numerical analysis of the FO
chaotic systems. Section 5 details the optimization process whereas the discussion of the optimization
results is presented in Section 6. Finally, the authors’ conclusions are given in Section 7.

2. Mathematical background

2.1. Grünwald-Letnikov method

Although one can cite various definitions of FO derivatives such as as the Grünwald-Letnikov [29],
Riemman Liouville [30] and Caputo definitions [31], these mathematical interpretations do not allow
a direct understanding of the derivative solution. Therefore, the solution of FO differential equations
are often obtained through numerical approximations accordingly the used fractional derivative
definition [32–35]. For instance, the Adams Bashforth Moulton (ABM) method is a
predictor-corrector scheme highly recognized as a valuable fractional calculus tool due to the good
approximation that it produces [36]. Drawbacks of this scheme are related to the complexity for
representing the memory properties of FO derivatives, that requires from long time computation. The
Grünwald Letnikov (GL) method is another numerical scheme very suitable for solving FO systems.
It can be considered as a generalization of the Euler method for solving ordinary differential
equations [37]. The GL method is of low computational cost and has approximately the same order of
accuracy and good match of numerical solutions as ABM [38]. Therefore, this work uses the
Grünwald-Letnikov method for solving the FO differential equations that comprises the FO chaotic
systems that are the case study. The mathematical description is given below.

According to the explicit numerical approximation of the Grünwald-Letnikov derivative [39], the
FO derivative 0 < q < 1 for a discrete function f (tk), can be described by (2.1), h is the integration
step-size, and Cq

j are binomial coefficients which are recursively calculated by (2.2).

Dq
tk f (tk) ≈ h−q

k∑
j=0

Cq
j f (tk− j), (2.1)

Cq
0 = 1, Cq

j =

(
1 −

1 + q
j

)
Cq

j−1, j = 1, 2, ..., k. (2.2)

The solution of a FO system in the form Dq
tk x(tk) = f (x(tk)), can be obtained by (2.3), which ideally
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requires infinite memory length for numerical simulation since the summation term depends on the
discretized time tk.

x(tk) = f (x(tk−1))hq −

k∑
j=1

Cq
j x(tk− j). (2.3)

2.2. Poincaré maps

One of the features of chaos behavior is the existence of a dense set of periodic orbits, which
implies that any periodic trajectory of the orbit visits an arbitrarily small neighborhood of a non-
periodic one [40]. In this manner, and since Poincaré maps preserve many of the orbits of dynamical
systems, it is a viable tool for detecting chaos in both integer and FO systems [41, 42]. Below is
described the elaboration of a Poincaré map.

Lets consider a FO system of the form given in (2.4), where 0 < q < 1,
x(t) = [x1(t), x2(t), ..., xn(t)]T ∈ Rn and f

(
x(t)
)
= [ f1

(
x(t)
)
, f2
(
x(t)
)
, ..., fn

(
x(t)
)
]T .

Dq
t x(t) = f

(
x(t)
)
, (2.4)

The Poincaré map of the system given in (2.4) is obtained as follows:

(1) Without loss of generality, let Σ ∈ Rn−1 be the Poincaré section of system (2.4) such that Σ∩ x(t) =
[x1(t), x2(t), ..., xn−1(t)]T .

(2) Next, the Poincaré section is settled on a given xn = σ.
(3) Finally, all states [x1(t), x2(t), ..., xn−1(t)]T are captured each time the dynamical flow intersects the

Poincaré section.

The captured points by the above procedure portrait the Poincaré map of system (2.4), then, the
behavior of the system is obtained by analyzing the distribution of the distinct points of the Poincaré
map. If the Poincaré map consists neither of a small number of points or filling a continuous line but
instead a large and irregular distribution, then it is a strong indicator of chaos [43].

2.3. Kaplan Yorke dimension

The Kaplan Yorke dimension DKY describes the fractal dimension of an attractor by means of its
Lyapunov exponents as follows [44]:

DKY = j +
1
|λ j+1|

j∑
k=1

λk, (2.5)

herein, the Lyapunov exponents are sorted from highest to lowest λ1 ≥ λ2 ≥ · · · ≥ λ j+1 and j ∈ N is
the largest integer for which λ1 + λ2 + · · · + λ j ≥ 0. The DKY gives a meaningful measure to quantify
the complexity of a chaotic attractor [45, 46]. Therefore, it is the interest of this optimization work to
determine a set of parameters and fractional orders that leads to a higher DKY .
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3. DE and APSO algorithms

3.1. Differential Evolution algorithm

The Differential Evolution (DE) algorithm belongs to the family of algorithms based on biological
evolution, which uses genetic cross and mutation operators to generate new candidate solutions [47].
The structure of DE is illustrated in the chart flow of Figure 1, whose description is as follows:

(1) In the first step, the initial population is generated within the range of interest.

Xi ∈ R
n, i = 1, 2, ..., p, (3.1)

(2) Next, the objective function is evaluated for each individual in the population

∀Xi, do f (Xi) ∈ R. (3.2)

(3) In the next step, the mutation operation is carried out:

• (3.1) First, three randomly individuals X1, X2 and X3 are selected.
• (3.2) Then, the following operation is performed:

wi = X1 + µ(X2 − X3) (3.3)

where µ ∈ R is a scaling parameter.

(4) In the next step, individuals are crossed according to the condition

Fi( j) =
{

wi( j), rand ≤ Cr,
Xi( j), other.

(3.4)

Specifically, if the random number (rand) is less than or equal to the cross parameter Cr, then the
term Fi( j) takes the value wi( j), otherwise it will be Xi( j). Next, the first generation of individuals
generates new individuals through mutation and cross operations. Subsequently, the objective
function is evaluated in the new individual.

(5) Steps 2–5 are repeated for a number of k generations.
(6) In the last step, the lowest cost function is printed.

Figure 1. Chart flow of the Differential Evolution algorithm.
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3.2. Accelerated Particle Swarm Optimization algorithm

In the Accelerated Particle Swarm Optimization (APSO) algorithm, the tentative solutions are called
particles. This algorithm consists of disturbing the behavior of the particles in such a way that they can
move within a search space and finding the solution to the optimization problem [48]. The algorithm
is inspired by the flight of birds to find food in an unknown field with the lowest possible energy
expenditure, which can be translated into finding the minimum value of a function. The structure of
the APSO is illustrate in the chart flow of Figure 2, and its description is given as follows:

(1) In the first step, the initial population is generated, meaning the particles position within a range
of interest.

Xi ∈ R
n, i = 1, 2, ..., p. (3.5)

(2) Next, the objective function is evaluated for each particle

∀Xi, do f (Xi) ∈ R. (3.6)

(3) In the next step, the position of the particles is disturbed:

• (3.1) First, the best particles are selected

g∗ = min
(
f (Xi)
)
. (3.7)

• (3.2) Then, the position is updated

Xi(k + 1) = (1 − β) + βg∗ + αϵn. (3.8)

Specifically, the new population is generated from the change in position of the particles. The
value for ϵn is randomly initialized within the range [0, 1] whereas α and β are estimated
experimentally.

(4) Steps 2–5 are repeated for a number of k generations.
(5) In the last step, the lowest cost function is printed.

Figure 2. Chart flow of the Accelerated Particle Swarm Optimization algorithm.
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4. Fractional order chaotic systems

This section shows the numerical simulations and Poincaré maps of the FO chaotic systems that are
case study. For instance, the authors in [19] introduced the 3D FO chaotic system given in (4.1), where
0 < qi < 1, (i = 1, 2, 3) and a ∈ R. According to expression (4.2), it can be seen that by setting the
parameter a > 1/4, the 3D FO chaotic system does not posses an equilibrium point (Ep = (x̄, ȳ, z̄)), and
thus, any existing basin of attraction is considered as hidden.

Dq1
t x = yz + x(y − a),

Dq2
t y = 1 − |x|,

Dq3
t z = −xy − z,

(4.1)

Ep1 =
(
1, (1 +

√
1 − 4a)/2,−(1 +

√
1 − 4a)/2

)
,

Ep2 =
(
− 1, (1 −

√
1 − 4a)/2, (1 −

√
1 − 4a)/2

)
,

Ep3 =
(
1, (1 −

√
1 − 4a)/2,−(1 −

√
1 − 4a)/2

)
,

Ep4 =
(
− 1, (1 +

√
1 − 4a)/2, (1 −

√
1 − 4a)/2

)
.

(4.2)

By taking into account (2.3), the solution of the 3D FO chaotic system by means of the
Grünwald-Letnikov method is given in (4.3), whereas Figure 3 shows the simulation results. Figure 4
shows the LEs spectra by varying the fractional derivative.

x(tk) =
(
y(tk−1)z(tk−1) + x(tk−1)

(
y(tk−1) − a

))
hq1 −

k∑
j=1

Cq1
j x(tk− j),

y(tk) =
(
1 − |x(tk−1)|

)
hq2 −

k∑
j=1

Cq2
j y(tk− j),

z(tk) =
(
− x(tk−1)y(tk−1) − z(tk−1)

)
hq3 −

k∑
j=1

Cq3
j z(tk− j).

(4.3)

To demonstrate the usefulness of Poincaré maps in detecting chaotic behavior, a Poincaré section
Σ ∈ R2 on y = 2 is defined as depicted in Figure 5 (a), then, by following the steps of Section 2.2,
the Poincaré map of Figure 5 (b) is obtained. It can be seen that the displayed points resembles the xz
phase portrait of Figure 3 (b), the markers illustrates if the flow intersects the Poincaré section on y > 2
(blue, in-direction) and if it intersects on y < 2 (red, out-direction).
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(a) (b) (c)

(d)

Figure 3. Numerical simulation of the 3D FO chaotic system with hidden attractors, with
step size h = 0.015, simulation time Tsim = 2200s, initial conditions (x(t0), y(t0), z(t0)) =
(1, 1, 1), parameter a = 0.35, and fractional order qi = 0.97, (i = 1, 2, 3). Hidden chaotic
attractor depicted in (a) xy phase portrait, (b) xz phase portrait, (c) yz phase portrait and (d)
the corresponding time series.

Figure 4. LEs spectra of the 3D FO system with hidden attractors, with a = 0.35 and varying
the fractional-order derivative q. λ1 is in blue color, λ2 is in orange color and λ3 is in green
color.
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(a) (b)

Figure 5. (a) Chaotic flow of the 3D FO chaotic system intersecting the Poincaré section
Σ ∈ R2 on y = 2, and (b) its corresponding Poincaré map.

It is worthy to mention that the number of points portrayed in the Poincaré map is in relation to the
amount of used data. However, the number of points itself says nothing about the dynamical behavior.
For instance, lets us consider the dynamical behavior of the system (4.1) illustrated in Figure 6, then, a
Poincaré section Σ ∈ R2 on y = 2 is defined as depicted in Figure 7 (a). The obtained Poincaré map in
Figure 7 (b) displays only two points, indicating the flow intersects twice in different in-out directions
of the Poincaré section, and thus, resembling a periodic behavior. Nevertheless, this is only apparent,
due to the fact of the non-existence of exactly periodic solutions in FO systems [49, 50], thereby,
the importance of the distribution quantization of the Poincaré map. The next step is the distribution
quantization of the Poincaré map. Herein, a simple procedure is proposed as follows:

(1) Verify that the solution of a system (4.1) remains bounded but does not converge to a fixed point.
(2) Next, the first 10 % samples of the time series are deleted to avoid the initial transient.
(3) Then, the Poincaré map is portrayed with the obtained points when the flow intersects on y < 2

(out-direction).
(4) In the next step, only the points that satisfies the condition (4.4) are considered, where (u j, v j) and

(uk, vk) denotes the coordinates of the P j and Pk points respectively, p is the total number of points
intersecting the Poincaré section and ϵ = 0.1, this ensures to preserve only the points distributed
over the plane and remove those located closer than (ϵ, ϵ),

|P j(u j, v j) − Pk(uk, vk)| ≥ (ϵ, ϵ), k = j + 1, · · · , p, ∀ j = 1, 2, · · · p − 1. (4.4)

(5) Finally, the number of points remaining in the Poincaré map is co-related with the dynamical
behavior.

For instance, Figures 8 and 9 illustrates the hidden attractors and its corresponding Poincaré maps
when system (4.1) behaves quasi-periodic. After applying 1–5 from above procedure, the obtained
results in Table 1 shows that the remaining points are 10 and 3 respectively. On the other hand, when
system (4.1) behaves chaotic such as in Figure 5, the remaining points in the Poincaré map must portrait
≈ 100 points.
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(a) (b) (c)

(d)

Figure 6. Numerical simulation of the 3D FO system (4.1) with hidden attractors, with
step size h = 0.015, simulation time Tsim = 2200s, initial conditions (x(t0), y(t0), z(t0)) =
(1, 0, 1), parameter a = 0.35, and fractional order qi = 0.996, (i = 1, 2, 3). Hidden chaotic
attractor depicted in (a) xy phase portrait, (b) xz phase portrait, (c) yz phase portrait and (d)
the corresponding time series.

(a) (b)

Figure 7. (a) Quasi-periodic flow of the 3D FO system intersecting the Poincaré section
Σ ∈ R2 on y = 2, and (b) its corresponding Poincaré map.
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(a) (b)

Figure 8. (a) Quasi-periodic flow of the 3D FO sytem (4.1) with configuration a =
0.436, (q1, q2, q3) = (0.998, 0.989, 0.986) and initial conditions (x(t0), y(t0), z(t0)) = (1, 0, 1),
intersecting the Poincaré section Σ ∈ R2 on y = 2, (b) shows its corresponding Poincaré map.

(a) (b)

Figure 9. (a) Quasi-periodic flow of the 3D FO system (4.1) with configuration a =
0.277, (q1, q2, q3) = (0.988, 0.948, 0.881) and initial conditions (x(t0), y(t0), z(t0)) = (1, 0, 1),
intersecting the Poincaré section Σ ∈ R2 on y = 2, (b) shows its corresponding Poincaré map.
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Table 1. Relation between the remainder number of points in the Poincaré map of the 3D
FO system (4.1) and its dynamical behavior. Obtained results with step size h = 0.025,
simulation time Tsim = 2200s, and initial conditions (x(t0), y(t0), z(t0)) = (1, 0, 1).

Parameters
Fractional order
derivative

Number
of points

LEs DKY
Dynamical
behavior

a = 0.35
q1 = 0.97,
q2 = 0.97,
q3 = 0.97

107
λ1 = 0.0011,
λ2 = −0.0006,
λ3 = −0.0036

2.1504 chaotic

a = 0.3
q1 = 0.993,
q2 = 1,
q3 = 0.75

96
λ1 = 0.0010,
λ2 = −0.0009,
λ3 = −0.0047

2.0208 chaotic

a = 0.325
q1 = 1,
q2 = 0.99,
q3 = 0.85

104
λ1 = 0.0018,
λ2 = −0.0006,
λ3 = −0.0057

2.2071 chaotic

a = 0.337
q1 = 0.966,
q2 = 0.968,
q3 = 0.926

105
λ1 = 0.0013,
λ2 = −0.0008,
λ3 = −0.0036

2.1452 chaotic

a = 0.6
q1 = 0.992,
q2 = 0.938,
q3 = 0.968

94
λ1 = 0.0022,
λ2 = −0.0009,
λ3 = −0.0051

2.2452 chaotic

a = 0.437
q1 = 0.993,
q2 = 0.956,
q3 = 0.874

105
λ1 = 0.0010,
λ2 = −0.0009,
λ3 = −0.0043

2.003 chaotic

a = 0.322
q1 = 0.982,
q2 = 0.955,
q3 = 0.985

96
λ1 = 0.0017,
λ2 = −0.0009,
λ3 = −0.0052

2.1593 chaotic

a = 0.29
q1 = 0.986,
q2 = 0.967,
q3 = 0.981

17
λ1 = 0.0008,
λ2 = −0.0017,
λ3 = −0.0018

1.5219 quasi-periodic

a = 0.436
q1 = 0.998,
q2 = 0.989,
q3 = 0.986

10
λ1 = 0.0007,
λ2 = −0.0012,
λ3 = −0.0028

1.8214 quasi-periodic

a = 0.277
q1 = 0.988,
q2 = 0.948,
q3 = 0.881

3
λ1 = 0.0009,
λ2 = −0.0038,
λ3 = −0.0183

1.8415 quasi-periodic

a = 0.382
q1 = 0.994,
q2 = 0.922,
q3 = 97

2
λ1 = −0.0003,
λ2 = −0.0011,
λ3 = −0.0015

1.06 quasi-periodic

a = 0.387
q1 = 0.976,
q2 = 0.968,
q3 = 0.804

2
λ1 = 0.0001,
λ2 = −0.0011,
λ3 = −0.0016

1.375 quasi-periodic
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The second case study is a 4D FO chaotic system introduced in [51] as a 4D integer chaotic system
with coexisting hidden attractors. Later on, in [52] the FO version given in (4.5) was proposed, where
0 < qi < 1, (i = 1, 2, 3) and a ∈ R. According to expression (4.6), it can be seen that for a , 0, the
4D FO chaotic system does not present an equilibrium point (Ep = (x̄, ȳ, z̄, w̄)), and thus, any existing
basin of attraction is considered as hidden.

Dq1
t x = y − x,

Dq2
t y = −xz + w,

Dq3
t z = xy − a,

Dq4
t z = −by,

(4.5)

y − x = 0,
−xz + w = 0,

xy − a = 0,
−by = 0.

(4.6)

By taking into account (2.3), the solution of the 4D FO chaotic system by means of the Grünwald-
Letnikov method is given in (4.7), whereas Figure 10 shows the simulation results. Figure 11 shows
the LEs spectra by varying the fractional derivative.

x(tk) =
(
y(tk−1) − x(tk−1)

)
hq1 −

k∑
j=1

Cq1
j x(tk− j),

y(tk) =
(
− x(tk− j)z(tk− j) + w(tk− j)

)
hq2 −

k∑
j=1

Cq2
j y(tk− j),

z(tk) =
(
x(tk−1)y(tk−1) − a)

)
hq3 −

k∑
j=1

Cq3
j z(tk− j),

z(tk) =
(
− by(tk−1)

)
hq3 −

k∑
j=1

Cq4
j w(tk− j).

(4.7)
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(a) (b)

(c) (d)

(e)

Figure 10. Numerical simulation of the 4D FO chaotic system with hidden attractors, with
step size h = 0.003, simulation time Tsim = 400s, initial conditions (x(t0), y(t0), z(t0),w(t0)) =
(0.1, 5, 0, 2), parameters a = 3.5, b = 0.1 and fractional order qi = 0.98, (i = 1, · · · , 4).
Hidden chaotic attractor depicted in (a) xy phase portrait, (b) xz phase portrait, (c) yz phase
portrait, (d) xw phase portrait and (e) the corresponding time series.
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Figure 11. LEs spectra of the 4D FO system with hidden attractors (4.5), with a = 0.35 and
varying the fractional-order derivative q. λ1 is in blue color, λ2 is in orange color, λ3 is in
green color and λ4 is in red color.

In the same manner, a Poincaré map is elaborated for analyzing the behavior of the 4D FO chaotic
system. Herein, the Poincaré section Σ ∈ R2 is settled on z = 0 as depicted in Figure 12 (a), then, by
following the steps of Section 2.2, the Poincaré map of Figure 12 (b) is obtained.

(a) (b)

Figure 12. (a) Chaotic flow of the 4D FO chaotic system intersecting the Poincaré section
Σ ∈ R2 on z = 2, and (b) its corresponding Poincaré map.

The distribution quantization of the Poincaré map of the 4D FO chaotic system is quite similar to
the quantization of the Poincaré map of the 3D FO chaotic system. Herein, only the obtained points
when the flow intersects on z > 0 (in-direction) are considered with a separation of ϵ = 0.1. This
procedure is repeated for different parameters and fractional order for the system (4.5). The obtained
results with a number of data of 1.20×105 are shown in Table 2. It can be seen that for chaotic behavior
to exist in the system (4.1), its corresponding Poincaré map must portrait ≈ 40 − 60 points.
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Table 2. Relation between the remainder number of points in the Poincaré map of the 4D
FO system (4.1) and its dynamical behavior. Obtained results with step size h = 0.003,
simulation time Tsim = 400s, and initial conditions (x(t0), y(t0), z(t0),w(t0)) = (0.1, 5, 0, 2).

Parameters
Fractional order
derivative

Number
of points

LEs DKY
Dynamical
behavior

a = 3.5,
b = 0.1

q1 = 0.98, q2 = 0.98,
q3 = 0.98, q4 = 0.98

43
λ1 = 0.0011, λ2 = 0,
λ3 = −0.0001, λ4 = −0.0024

3.4257 chaotic

a = 3.5,
b = 0.1

q1 = 1.0, q2 = 0.997,
q3 = 1.0, q4 = 0.45

50
λ1 = 0.0030, λ2 = 0,
λ3 = −0.0017, λ4 = −0.0040

3.3368 chaotic

a = 2.9,
b = 0.1

q1 = 0.45, q2 = 0.95,
q3 = 1.0, q4 = 0.985

40
λ1 = 0.0008, λ2 = 0,
λ3 = −0.0003, λ4 = −0.0030

3.1666 chaotic

a = 3.162,
b = 0.182

q1 = 0.980, q2 = 0.942,
q3 = 0.978, q4 = 0.975

42
λ1 = 0.0008, λ2 = 0.0001,
λ3 = 0, λ4 = −0.0018

3.5029
hyper-
chaotic

a = 3.128,
b = 0.285

q1 = 0.946, q2 = 0.964,
q3 = 0.957, q4 = 0.923

41
λ1 = 0.0003, λ2 = 0.0001,
λ3 = 0, λ4 = −0.0006

3.5103
hyper-
chaotic

a = 3.131,
b = 0.285

q1 = 0.945, q2 = 0.963,
q3 = 0.956, q4 = 0.922

41
λ1 = 0.0004, λ2 = 0.0002,
λ3 = 0,λ4 = −0.0011

3.5282
hyper-
chaotic

a = 3.088,
b = 0.12

q1 = 0.925, q2 = 0.948,
q3 = 0.933, q4 = 0.932

38
λ1 = 0.0016, λ2 = 0,
λ3 = −0.0004,λ4 = −0.0031

3.387 chaotic

a = 3.601,
b = 0.3

q1 = 0.999, q2 = 0.999,
q3 = 0.999, q4 = 0.962

48
λ1 = 0.0005, λ2 = 0,
λ3 = −0.0001, λ4 = −0.0022

3.2014 chaotic

a = 9.4,
b = 0.01

q1 = 0.936, q2 = 0.935,
q3 = 0.958, q4 = 0.946

60
λ1 = 0.0009, λ2 = 0,
λ3 = −0.0001, λ4 = −0.0013

3.5972 chaotic

a = 8.4,
b = 0.1

q1 = 0.990, q2 = 0.980,
q3 = 0.980, q4 = 0.981

8
λ1 = 0, λ2 = −0.0002,
λ3 = −0.0014, λ4 = −0.0039

2.5897
quasi-
periodic

a = 7.8,
b = 0.1

q1 = 0.990, q2 = 0.980,
q3 = 0.970, q4 = 0.981

10
λ1 = 0, λ2 = −0.0002,
λ3 = −0.0011, λ4 = −0.0041

2.6829
quasi-
periodic

a = 7.3,
b = 0.08

q1 = 0.989, q2 = 0.998,
q3 = 0.967, q4 = 0.981

11
λ1 = −0.0001, λ2 = −0.0002,
λ3 = −0.0007, λ4 = −0.0042

2.7619
quasi-
periodic

5. Description of the optimization process

This section details the maximization process of the DKY for the 3D and 4D FO chaotic systems.
Given the nature of the DE and APSO, the optimization problem is given as follows:

Maximize
(
f (X)
)
= Minimize

(
− f (X)

)
, f (X) ∈ R, (5.1)

where X ∈ Rn are the parameters and fractional order derivative values of the FO chaotic system of
interest and f (X) returns the DKY .

The optimization process is performed applying DE and APSO who are programmed in Python,
because it is a multi-paradigm programming language highly versatile for creating all kind of
applications and, therefore, it has become one of the most used in recent years. However, Python
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based applications pays a penalty in the form of speed execution, thereby complex projects can
benefit from the use of the Numba JIT compiler [53], which allows to translate Python functions to
optimized machine code and thus obtaining better speed performance [54]. Moreover, the
implementation of the Numba JIT compiler only requires from slight modifications in the original
Python code and, therefore, maintaining the flexibility of the language. Table 3 shows a comparison
of the speed performance between a normal Python code and one Python code using the Numba JIT
compiler. In both executions, the argument is to solve the proposed FO chaotic system and elaborate
its corresponding Poincaré maps for the chaotic behavior validation. It can be seen, that the optimized
Python code performs ≈ 375 times faster than the non-optimized. Thereby the interest of using this
compiler in the optimization process.

Table 3. Execution time in seconds, between a Python code and a Python code using the
Numba Jit compiler.

FO chaotic
system

Python code Code using the Numba Jit compiler Number of generated data

3D 1.025 × 103s 2.61s 146, 666
4D 2.085 × 103s 5.55s 133, 332

Algorithms 1 and 2 show the pseudocodes for the implementation of DE and APSO, respectively.
It can be seen that the implementation is quite similar in both algorithms. The Numba JIT compiler is
used in most of the Python code with the exception of the Lyapunov exponents (LEs) computation
DKY computation, in this step, the computation of the Lyapunov exponents λi, (i = 1, 2, ..., n) is made
with the TISEAN package by removing the first 10% samples of the time series.

Algorithm 1 Maximizing DKY applying DE
Require: µ, Cr, p, gen.
Ensure: best D j, j = 0, 2, ..., gen

Initialize population Xi ∈ R
n, i = 1, 2, ..., p

for i = 1 : p do
Compute numerical solution for each Xi using (2.3)
Calculate DKYi using (2.5)

store D0 ← best DKYi

for j = 1 : gen do
for k = 1 : p do

generate Xk using (3.3) and (3.4)
Compute numerical solution for each new Xi using (2.3)
Detect chaotic behavior using Poincaré map
Compute LEs using Tisean
Calculate DKYk using (2.5)

store D j ← best DKYk
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Algorithm 2 Maximizing DKY applying APSO
Require: α, β, p, gen.
Ensure: Best D j, for j = 0, 2, . . . , gen.

Initialize population Xi ∈ R
n, i = 1, 2, ..., p

for i = 1 : p do
Compute numerical solution for each Xi using (2.3)
Calculate DKYi using (2.5)

Store D0 ← best DKYi

for j = 1 : gen do
for k = 1 : p do

Generate Xk using (3.8)
Compute numerical solution for each new Xi using (2.3)
Detect chaotic behavior using Poincaré map
Compute LEs using Tisean
Calculate DKYk using (2.5)

Store D j ← best DKYk

6. Optimization results

The DE and APSO were executed for a 100 population and for 50–100 generations. Table 4 shows
the ranges of interest and the configuration of the metaheuristics for the optimization of the 3D and
4D FO chaotic systems, respectively. The values of the parameters and fractional-order derivatives in
the search space, were encoded within three decimal places. For convenience, the initial population
is set with parameters and fractional-order derivatives that lead to chaotic behavior and, therefore, the
elaboration of Poincaré maps is not necessary for this step. In Tables 5 and 6 are shown the optimization
results of the 3D and 4D FO chaotic systems by DE and APSO, respectively. It can be seen that in all
cases, the obtained results lead to higher DKY than those shown in Tables 1 and 2, thus validating the
optimization process. The best results for the 3D FO chaotic system are those obtained APSO by using
50 generations whereas the best results for the 4D FO chaotic system are obtained with DE by using
100 generations.

Table 4. Range of parameters and fractional order derivative values for the optimization of
the 3D and 4D FO chaotic systems.

FO chaotic
system

Parameters FO derivative DE parameters APSO parameters

3D a ∈ [0.251, 0.5] qi ∈ [0.3, 0.999] µ = 0.5, Cr = 0.6 α = 0.1, β = 0.1
4D a ∈ [0.251, 0.45], b ∈ [−0.1, 0.3] qi ∈ [0.3, 0.999] µ = 0.5, Cr = 0.6 α = 0.3, β = 0.1
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Table 5. Optimization results of the 3D and 4D FO chaotic systems by DE.

DE optimization results

FO chaotic
system

Generations Parameters
Fractional order
derivative

Number
of points

LEs DKY
Dynamical
behavior

3D 50 a = 0.351
q1 = 0.976,
q2 = 0.956,
q3 = 0.906

101
λ1 = 0.0023,
λ2 = −0.0004,
λ3 = −0.0034

2.5282 chaotic

100 a = 0.322
q1 = 0.986,
q2 = 0.927,
q3 = 0.971

92
λ1 = 0.0029,
λ2 = −0.0005,
λ3 = −0.0032

2.6120 chaotic

4D 50
a = 3.291,
b = 0.099

q1 = 0.936,
q2 = 0.965,
q3 = 0.936,
q4 = 0.887

42

λ1 = 0.0020,
λ2 = 0,
λ3 = −0.0003,
λ4 = −0.0023

3.6803 chaotic

100
a = 2.688,
b = 0.152

q1 = 0.951,
q2 = 0.970,
q3 = 0.910,
q4 = 0.970

41

λ1 = 0.0144,
λ2 = 0.0027,
λ3 = 0,
λ4 = −0.0201

3.8543 hyperchaotic

Table 6. Optimization results of the 3D and 4D FO chaotic systems by APSO.

APSO optimization results

FO chaotic
system

Generations Parameters
Fractional order
derivative

Number
of points

LEs DKY
Dynamical
behavior

3D 50 a = 0.378
q1 = 0.999,
q2 = 0.969,
q3 = 0.902

101
λ1 = 0.0026,
λ2 = −0.0005,
λ3 = −0.0032

2.66 chaotic

109 a = 0.38
q1 = 0.998,
q2 = 0.970,
q3 = 0.902

113
λ1 = 0.0034,
λ2 = −0.0006,
λ3 = −0.0045

2.5978 chaotic

4D 50
a = 3.193,
b = 0.299

q1 = 0.965,
q2 = 0.980,
q3 = 0.985,
q4 = 0.967

40

λ1 = 0.0007,
λ2 = 0.0003,
λ3 = −0.0001,
λ4 = −0.0011

3.7633 hyperchaotic

100
a = 3.106,
b = 0.19

q1 = 0.878,
q2 = 0.957,
q3 = 0.945,
q4 = 0.970

41

λ1 = 0.0008,
λ2 = 0.0002,
λ3 = 0,
λ4 = −0.0015

3.6358 hyperchaotic
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7. Conclusions

In this paper, the optimization of the DKY of a 3D and a 4D FO chaotic systems was performed by
applying two metaheuristics, DE and APSO. The main contribution of this work is the use of Poincaré
maps for validating the chaotic behavior in FO chaotic systems with hidden attractors. Herein a simple
numerical procedure was proposed for the analysis of points distribution in Poincaré maps. It has been
shown that with this simple procedure, it is possible to differentiate a chaotic attractor from a periodic
or quasi-periodic attractor. Moreover, the use of the Numba JIT compiler in the Python programming
language has been an essential tool to save execution time, while preserving the versatility in the
implementation of the metaheuristics. This last part is essential and it has been demonstrated that it
facilitates the optimization process of FO chaotic systems with hidden attractors. Finally, it is worthy
to mention that Poincaré maps can be used in both FO and integer chaotic systems regardless of the
attractor nature (hidden or self-excited). The proposed approach can be applied in FO chaotic systems
with self-excited attractor as done in integer chaotic systems with hidden and self-excited attractors.
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