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Abstract: Jing et al. dealed with all possible Whiteman generalized cyclotomic binary sequences
s(a, b, c) with period N = pq, where (a, b, c) ∈ {0, 1}3 and p, q are distinct odd primes (Jing et al.
arXiv:2105.10947v1, 2021). They have determined the autocorrelation distribution and the 2-adic
complexity of these sequences in a unified way by using group ring language and a version of quadratic
Gauss sums. In this paper, we determine the linear complexity and the 1-error linear complexity of
s(a, b, c) in details by using the discrete Fourier transform (DFT). The results indicate that the linear
complexity of s(a, b, c) is large enough and stable in most cases.
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1. Introduction

The linear complexity and the k-error linear complexity are important cryptographic characteristics
of stream cipher sequences. The linear complexity of an N-periodic sequence s = {su}

∞
u=0, denoted

by LC(s), is defined as the length of the shortest linear feedback shift register (LFSR) that generates
it [1]. With the Berlekamp-Massey (B-M) algorithm [2], if LC(s) ≥ N/2, then s is regarded as
a good sequence with respect to its linear complexity. For an integer k ≥ 0, the k-error linear
complexity LCk(s) is the smallest linear complexity that can be obtained by changing at most k terms
of s in the first period and periodically continued [3]. The cryptographic background of the k-error
linear complexity is that some key streams with large linear complexity can be approximated by some
sequences with much lower linear complexity [2]. For a sequence to be cryptographically strong, its
linear complexity should be large enough, and its k-error linear complexity should be close to the linear
complexity.

The relationship between the linear complexity and the DFT of the sequence was given by Blahut
in [4]. Let m be the order of 2 modulo an odd number N. For a primitive N-th root β ∈ F2m of unity,
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the DFT of s is defined by

ρi =

N−1∑
u=0

suβ
−iu, 0 ≤ i ≤ N − 1. (1.1)

Then
LC(s) = WH(ρ0, ρ1, · · · , ρN−1), (1.2)

where WH(A) is the hamming weight of the sequence A. The polynomial

G(X) =

N−1∑
i=0

ρiXi ∈ F2m[X] (1.3)

is called the Mattson-Solomon polynomial (M-S polynomial) of s [5]. It can be deduced from
Eqs (1.2)and (1.3) that the linear complexity of s is equal to the number of the nonzero terms of G(X),
namely

LC(s) = |G(X)|. (1.4)

By the inverse DFT,

su =

N−1∑
i=0

ρiβ
iu = G(βu), 0 ≤ u ≤ N − 1. (1.5)

There are many studies about two-prime generators. In 1997–1998, Ding calculated the linear
complexity and the autocorrelation values of binary Whiteman generalized cyclotomic sequences
of order two [6, 7]. In 2013, Li defined a new generalized cyclotomic sequence of order two of
length pq, which is based on Whiteman generalized cyclotomic classes, and calculated its linear
complexity [8]. In 2015, Wei determined the k-error linear complexity of Legendre sequences for
k = 1, 2 [9]. In 2018, Hofer and Winterhof studied the 2-adic complexity of the two-prime generator
of period pq [10]. Alecu and Sălăgean transformed the optimisation problem of finding the k-error
linear complexity of a sequence into an optimisation problem in the DFT domain, by using Blahut’s
theorem in the same year [11]. In 2019, in terms of the DFT, Chen and Wu discussed the k-error
linear complexity for Legendre, Ding-Helleseth-Lam, and Hall’s sextic residue sequences of odd
prime period p [12]. In 2020, Zhou and Liu presented a type of binary sequences based on a general
two-prime generalized cyclotomy, and derived their minimal polynomial and linear complexity [13].
In 2021, the autocorrelation distribution and the 2-adic complexity of generalized cyclotomic binary
sequences of order 2 with period pq were determined by Jing [14].

This paper is organized as follows. Firstly, we present some preliminaries about Whiteman
generalized cyclotomic classes and the linear complexity in Section 2. In Section 3, we give main
results about the linear complexity of Whiteman generalized cyclotomic sequences of order two. In
Section 4, we give the 1-error linear complexity of these sequences. At last, we conclude this paper in
Section 5.

2. Preliminaries

Let p and q be two distinct odd primes with gcd(p− 1, q− 1) = 2, and N = pq, e = (p− 1)(q− 1)/2.
By the Chinese Remainder Theorem, there is a fixed common primitive root g of both p and q such
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that ordN(g) = e. Let x be an integer satisfying

x = g(mod p), x = 1(modq).

Then the set
Di = {gsxi mod N : s = 0, 1, · · · , e − 1}

for i = 0, 1 is called a Whiteman generalized cyclotomic class of order two [15].
As pointed out in [14], the unit group of the ring ZN is

Z∗N = {a(mod N) : gcd(a,N) = 1}
= {ip + jq(mod N) : 1 ≤ i ≤ q − 1, 1 ≤ j ≤ p − 1}.

Let P = {p, 2p, · · · , (q − 1)p}, Q = {q, 2q, · · · , (p − 1)q} and R = {0}. Then ZN = Z∗N ∪ P ∪ Q ∪ R. The
sequence s(a, b, c) = {su}

∞
u=0 over F2 is defined by

su =


c, if u = 0,
a, if u ∈ P,

b, if u ∈ Q,
1
2 (1 − ( u

p )( u
q )), if u ∈ Z∗N ,

where ( ·
·
) denotes the Legendre symbol and a, b, c ∈ F2 [14].

Lemma 2.1. [7] −1 ∈ D1, if |p − q|/2 is odd; and −1 ∈ D0, if |p − q|/2 is even.

Lemma 2.2. [6]

(1) If p ≡ ±1(mod8), q ≡ ±1(mod8) or p ≡ ±3(mod8), q ≡ ±3(mod8), then 2 ∈ D0.

(2) If p ≡ ±1(mod8), q ≡ ±3(mod8) or p ≡ ±3(mod8), q ≡ ±1(mod8), then 2 ∈ D1.

Lemma 2.3. [6] (1) If a ∈ P, then aP = P and aQ = R.
(2) If a ∈ Q, then aP = R and aQ = Q.
(3) If a ∈ Di, then aP = P, aQ = Q, and aD j = D(i+ j) mod 2, where i, j = 0, 1.

It was shown in [6] that, for a primitive N-th root β ∈ F2m of unity, we have∑
i∈P

βi = 1,
∑
i∈Q

βi = 1,

and ∑
i∈D0

βi +
∑
i∈D1

βi +
∑
i∈P

βi +
∑
i∈Q

βi = 1. (2.1)

Lemma 2.4. [6]

∑
u∈D j

βiu =

 p−1
2 (mod2), if i ∈ P,

q−1
2 (mod2), if i ∈ Q.
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Actually, if p ≡ −1(mod8) or p ≡ 3(mod8), then (p − 1)/2 = 1; if p ≡ 1(mod8) or p ≡ −3(mod8),
then (p − 1)/2 = 0. By symmetry, if q ≡ −1(mod8) or q ≡ 3(mod8), then (q − 1)/2 = 1; if q ≡
1(mod8) or q ≡ −3(mod8), then (q − 1)/2 = 0.

Lemma 2.5. Define
Di(X) =

∑
u∈Di

Xu ∈ F2[X], i = 0, 1.

Then for β, we have D0(β) = 0 and D1(β) = 1 if 2 ∈ D0; D0(β) = ω and D1(β) = 1 +ω if 2 ∈ D1, where
ω ∈ F4 \ F2.

Proof. (1) If 2 ∈ D0, by Lemma 2.3 we have

[Di(β)]2 = Di(β2) =
∑

2u∈Di

β2u = Di(β) ∈ F2.

(2) If 2 ∈ D1, by Lemma 2.3 we have

[Di(β)]2 = Di(β2) =
∑

2u∈Di+1

β2u = Di+1(β),

[Di(β)]4 = [Di(β)2]2 = [Di+1(β)]2 = Di+1(β2) =
∑

2u∈Di

β2u = Di(β).

Hence Di(β) ∈ F4 \ F2.
And by Eq (2.1), we have D0(β) , D1(β) and D0(β) + D1(β) = 1. Assume that D0(β) = 0, D1(β) = 1

for 2 ∈ D0, and D0(β) = ω, D1(β) = 1 + ω for 2 ∈ D1, where ω ∈ F4 \ F2. �

3. The linear complexity of s(a, b, c)

Let LC(s(a, b, c)) be the linear complexity of s(a, b, c), and the other symbols be the same as before.

Theorem 3.1. Let p ≡ v(mod8) and q ≡ w(mod8), where v,w = ±1,±3. Then the linear complexity
of s(a, b, c) respect to different values of p and q is as shown as Table 1.

Table 1. The linear complexity of s(a, b, c).

(v,w)
s(a, b, c) s(0, 0, 0) s(0, 0, 1) s(0, 1, 0) s(0, 1, 1) s(1, 0, 0) s(1, 0, 1) s(1, 1, 0)) s(1, 1, 1)

(−1,−3) or (3, 1) pq − p pq − q + 1 pq − 1 pq − p − q + 2 pq − p − q + 1 pq pq − q pq − p + 1

(−1, 3) or (3,−1) pq − 1 pq − p − q + 2 pq − p pq − q + 1 pq − q pq − p + 1 pq − p − q + 1 pq

(−1, 1) or (3,−3) pq−p+q−1
2

pq+p−q+1
2

pq+p+q−3
2

pq−p−q+3
2

pq−p−q+1
2

pq+p+q−1
2

pq+p−q−1
2

pq−p+q+1
2

(−1,−1) or (3, 3) pq+p+q−3
2

pq−p−q+3
2

pq−p+q−1
2

pq+p−q+1
2

pq+p−q−1
2

pq−p+q+1
2

pq−p−q+1
2

pq+p+q−1
2

(−3,−1) or (1, 3) pq − q pq − p + 1 pq − p − q + 1 pq pq − 1 pq − p − q + 2 pq − p pq − q + 1

(1,−1) or (−3, 3) pq+p−q−1
2

pq−p+q+1
2

pq−p−q+1
2

pq+p+q−1
2

pq+p+q−3
2

pq−p−q+3
2

pq−p+q−1
2

pq+p−q+1
2
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Proof. We provide the process of calculating LC(s(0, 0, 0)) when v = −1 and w = −3, and can prove
other cases in a similar way.

By Lemmas 2.1–2.3 and Eq (1.1), we have −1 ∈ D1, 2 ∈ D1, then

ρi =

N−1∑
u=0

suβ
−iu =

∑
u∈D1

β−iu =
∑
u∈D0

βiu,

and ρ0 = 0. By Eq (1.3), we have

G(X) =

N−1∑
i=0

ρiXi =
∑
i∈D0

ρiXi +
∑
i∈D1

ρiXi +
∑
i∈P

ρiXi +
∑
i∈Q

ρiXi + ρ0

=
∑
i∈D0

∑
u∈D0

βiuXi +
∑
i∈D1

∑
u∈D0

βiuXi +
∑
i∈P

∑
u∈D0

βiuXi +
∑
i∈Q

∑
u∈D0

βiuXi.

Let t = iu. Then by Lemmas 2.3–2.5, we have

G(X) =
∑
i∈D0

∑
t∈D0

βtXi +
∑
i∈D1

∑
t∈D1

βtXi +
∑
i∈P

p − 1
2

Xi +
∑
i∈Q

q − 1
2

Xi

= D0(β)D0(X) + D1(β)D1(X) +
∑
i∈P

Xi

= ωD0(X) + (1 + ω)D1(X) +
∑
i∈P

Xi.

By Eq (1.4) we can get the linear complexity of s(0, 0, 0) as

LC(s(0, 0, 0)) = |G(X)| = pq − p.

�

Actually, the linear complexity of s(1, 0, 0) was studied by Ding in [6] with its minimal polynomial.

4. The 1-error linear complexity of s(a, b, c)

Let LCk(s(a, b, c)) be the k-error linear complexity of s(a, b, c), s̃ = {s̃u}
∞
u=0 be the new sequence

obtained by changing at most k terms of s, that s̃ = s + e, where e = {eu}
∞
u=0 is an error sequence of

period N. Ding has provided in [2] that, the k-error linear complexity of a sequence can be expressed
as

LCk(s) = minWH(e)≤k{LC(s + e)}. (4.1)

It is clearly that LC0(s) = LC(s) and

N ≥ LC0(s) ≥ LC1(s) ≥ · · · ≥ LCl(s) = 0,

where l = WH(s) .

AIMS Mathematics Volume 7, Issue 4, 5821–5829.



5826

Let G(X), Gk(X) and G̃(X) be the M-S polynomials of s, e and s̃ respectively. Note that

G(X) =

N−1∑
i=0

ρiXi, Gk(X) =

N−1∑
i=0

ηiXi, G̃(X) =

N−1∑
i=0

ξiXi, (4.2)

where ρi, ηi and ξi are the DFTs of s, e and s̃ respectively. By Eqs (1.5), (4.1) and (4.2), we have
G̃(X) = G(X) + Gk(X), then

ξi = ρi + ηi. (4.3)

Assume that eu0 = 1 for 0 ≤ u0 ≤ N − 1 and eu = 0 for u , u0 in the first period of e. Then the DFT
of e is

ηi =

N−1∑
u=0

euβ
−iu = β−iu0 , 0 ≤ i ≤ N − 1.

Specially, if u0 = 0, then ηi = 1 for all 0 ≤ i ≤ N − 1; otherwise, η0 = 1 and the order of ηi is N for
1 ≤ i ≤ N − 1.

Theorem 4.1. Let p ≡ v(mod8) and q ≡ w(mod8), where v,w = ±1,±3, and the other symbols be the
same as before. Then the 1-error linear complexity of s(a, b, c) is as shown as Table 2.

Table 2. The 1-error linear complexity of s(a, b, c).

(v,w)
s(a, b, c) s(0, 0, 0) and s(0, 0, 1) s(0, 1, 0) and s(0, 1, 1) s(1, 0, 0) and s(1, 0, 1) s(1, 1, 0)) and s(1, 1, 1)

(−1,−3) or (3, 1)
(1) pq − p, if p > q;
(2) pq − q + 1, if p < q. pq − p − q + 2 pq − p − q + 1

(1) pq − p + 1, if p > q;
(2) pq − q, if p < q.

(−1, 3) or (3,−1) pq − p − q + 2
(1) pq − p, if p > q;
(2) pq − q + 1, if p < q.

(1) pq − p + 1, if p > q;
(2) pq − q, if p < q. pq − p − q + 1

(−1, 1) or (3,−3)
(1) pq−p+q−1

2 , if p > q;
(2) pq+p−q+1

2 , if p < q.
pq−p−q+3

2
pq−p−q+1

2
(1) pq−p+q+1

2 , if p > q;
(2) pq+p−q−1

2 , if p < q.

(−1,−1) or (3, 3) pq−p−q+3
2

(1) pq−p+q−1
2 , if p > q;

(2) pq+p−q+1
2 , if p < q.

(1) pq−p+q+1
2 , if p > q;

(2) pq+p−q−1
2 , if p < q.

pq−p−q+1
2

(−3,−1) or (1, 3)
(1) pq − p + 1, if p > q;
(2) pq − q, if p < q. pq − p − q + 1 pq − p − q + 2

(1) pq − p, if p > q;
(2) pq − q + 1, if p < q.

(1,−1) or (−3, 3)
(1) pq−p+q+1

2 , if p > q;
(2) pq+p−q−1

2 , if p < q.
pq−p−q+1

2
pq−p−q+3

2
(1) pq−p+q−1

2 , if p > q;
(2) pq+p−q+1

2 , if p < q.

Proof. We consider the case v = −1,w = −3 for LC1(s(0, 0, 0)). By Lemmas 2.1–2.5 and Eq (1.1), we
have −1 ∈ D1, 2 ∈ D1 and

ξi = ρi + ηi =
∑
u∈D0

βiu + β−iu0 =



ω + β−iu0 , if i ∈ D0,

1 + ω + β−iu0 , if i ∈ D1,

1 + β−iu0 , if i ∈ P,

β−iu0 , if i ∈ Q,

1, if i = 0.

Then by Eq (4.2), we can get

G̃(X) =

N−1∑
i=0

ξiXi =
∑
i∈D0

(
ω + β−iu0

)
Xi +

∑
i∈D1

(
1 + ω + β−iu0

)
Xi +

∑
i∈P

(
1 + β−iu0

)
Xi +

∑
i∈Q

β−iu0 Xi + 1.
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According to Lemma 2.3, we can get the following results.
(1) If u0 = 0, then

G̃(X) =
∑
i∈D0

(ω + 1) Xi +
∑
i∈D1

ωXi +
∑
i∈Q

Xi + 1,

|G̃(X)| = pq − q + 1.

(2) If u0 ∈ Q, then

G̃(X) =
∑
i∈D0

(
ω + β−iu0

)
Xi +

∑
i∈D1

(
1 + ω + β−iu0

)
Xi +

∑
i∈Q

β−iu0 Xi + 1,

|G̃(X)| = pq − q + 1.

(3) If u0 ∈ D0 or u0 ∈ D1 or u0 ∈ P, then

G̃(X) =
∑
i∈D0

(
ω + β−iu0

)
Xi +

∑
i∈D1

(
1 + ω + β−iu0

)
Xi +

∑
i∈P

(
1 + β−iu0

)
Xi +

∑
i∈Q

β−iu0 Xi + 1,

|G̃(X)| = pq.

Compare the results of Cases (1)–(3) with LC(s(0, 0, 0)) = pq− p. If p > q, then pq− p < pq−q + 1 <
pq; if p < q, then pq − q + 1 < pq − p < pq. Hence

LC1(s(0, 0, 0)) =

pq − p, if p > q,

pq − q + 1, if p < q.

Similarly we can prove the other cases for LC1(s(a, b, c)). �

All results of LC(s(a, b, c)) and LC1(s(a, b, c)) in Sections 3 and 4 have been tested by MAGMA
program.

5. Conclusions

The purpose of this paper is to determine the linear complexity and the 1-error linear complexity
of s(a, b, c). In most of the cases, s(a, b, c) possesses high linear complexity, namely LC(s(a, b, c)) >
N/2, consequently has decent stability against 1-bit error. Notice that the linear complexity of some of
the sequences above is close to N/2. Then the sequences can be selected to construct cyclic codes by
their minimal generating polynomials with the method introduced by Ding [16].
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