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Abstract: In this paper, we investigate the theory of rough set to study graphs using the concept of
orbits. Rough sets are based on a clustering criterion and we use the idea of similarity of vertices
under automorphism as a criterion. We introduce indiscernibility relation in terms of orbits and prove
necessary and sufficient conditions under which the indiscernibility partitions remain the same when
associated with different attribute sets. We show that automorphisms of the graph G preserve the
indiscernibility partitions. Further, we prove that for any graph G with k orbits, any reduct R consists
of one element from k − 1 orbits of the graph. We also study the rough membership functions for
paths, cycles, complete and complete bipartite graphs. Moreover, we introduce essential sets and
discernibility matrices induced by orbits of graphs and study their relationship. We also prove that
every essential set consists of union of any two orbits of the graph.
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1. Introduction

Rough set theory (RST), introduced by Pawlak [22], provides elegant and powerful techniques
to extract information from data associated with various structures. It also provides terminology to
minimize the number of significant attributes in data tables, also called information systems. It is
always interesting and insightful to know about the objects having similar characteristics to simplify
the study of objects under consideration. The objects which are indistinguishable from each other are
called information granules. Zadeh introduced and studied information granularity in [36]. Information
granules are objects placed together due to similarity of features of interest and are dealt together
yielding partition of objects based upon features. Many applications of granular computing appear
in connection with fuzzy set theory [13, 26], information science [17, 35], data mining [12, 16, 34],
formal concept analysis [15, 33], database theory [11, 27] and rough set theory [2, 9, 23–25, 30] etc.
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in fields, such as medicine, economy, finance, business, document clustering, environment, electrical
and computer engineering. Granular computing and rough sets have been studied in the context of
graphs [5, 6], digraph [19] and hyper graphs [3]. In [14], Hu et al. investigated novel approach to
attribute reduction based on weighted neighborhood rough sets and gave an algorithm to evaluate reduct
of a decision information table. The reader is referred to the following [4,28,29,31] for further reading
in this area of study. Chiaselotti et al. [5, 6, 8] have studied well-known families of graphs using the
notion of neighbourhood of vertices as a clustering criterion. They have remarked two vertices x, y as
indiscernible with respect to a vertex subsetA when these vertices have same neighbours with respect
toA. Symbolically, x ≡A y⇔ N(x) ∩A = N(y) ∩A. In [8], they have remarkedA as symmetry axis
and two vertices are indiscernible with respect toA if they are in a ‘symmetrical’ position with respect
to all vertices of A. Equivalence classes induced by indiscernibility relation of A are the granules
and yield partition of the vertex set of the graph, denoted by γA(G). Rough set theory can be thought
of as a particular type of granular computing. Chiaselotti et al. [8] referred the triplet (G,A, γA(G))
as A-granular reference system. Intersection of granular computing and rough set theory provides
tools to analyze graphs, digraphs and hypergraphs. In [18], Liu et al. discussed the approach of using
covering-based neighborhood with various similarity measures. In [9], Chiaselotti et al. explained
how objects can be classified into the same granule using the approach of their similarity measures
which is a refinement of the indiscernibility relation. The information about granules will simplify
studies associated to graphs and can give important insights about graphs, enriching their applications
in various fields and introduce new perspectives to obtain knowledgeable patterns using different data-
mining techniques [1, 7, 9, 10, 18, 20, 21, 32].

By associating rough set and graphs, properties of rough sets can be understood with the help of
graphs and those of graphs can be explained by using RST. Graphs have been studied using rough
set [4, 6, 19] and rough sets may yield graphs [29]. A strategy developed in one domain can give
insights in another domain. It is worth noting that the partition in the granular reference system may
be induced using different paradigms and it will give useful insights in various directions. Making
comparisons, identifying similarities and studying differences are canonical approaches of study. In
this paper, we study graphs using the idea of orbit of vertices as clustering criterion and we remark two
vertices u, v are indiscernible when orbits intersect withA in the same set or equivalently two vertices
u, v are indiscernible if they belong to same orbits of elements ofA. Chiaselotti et al. [5] remarked two
vertices as indiscernible if their open neighbourhoods intersect with a given setA in the same set. We
consider a different approach than that of Chiaselotti et al. [5] and consider similarity relation yielded
by graph automorphisms to fill the entries of information table. We will study indiscernibility relations
introduced with the help of orbits and prove several results including parallel to those of Chiaselotti
et al. [5, 6, 8] using the concept of orbits of vertices.

2. Notations and background

A graph G is an ordered pair consisting of two finite sets,V(G) and E(G), called the vertex set and
the edge set respectively. In this paper, all considered graphs are simple and non-trivial, represented by
G = (V(G),E(G)). When there is no ambiguity, we simply write G = (V,E). Two vertices are called
adjacent or neighbours of each other if there is an edge between them. The cardinality of the vertex set
V and the edge set E of G are termed as order and size of G, respectively. For x, y ∈ V, x ∼ y means
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x and y are adjacent to each other and x / y means x and y are non-adjacent. Open neighbourhood
of x ∈ V is defined as NG(x) = {y ∈ V : x ∼ y}. Similarly, closed neighbourhood of x is defined as
NG[x] = NG(x) ∪ {x}.

A permutation of a set is a bijection from the set to itself. A graph automorphism is a permutation
of the vertex set that preserves adjacency and non-adjacency of the vertices. Alternatively, π : V(G)→
V(G) is an automorphism of a graph G if for all x, y ∈ V(G), π(x) ∼ π(y) if and only if x ∼ y. The
collection of all automorphisms of graph G forms a group, named as the automorphism group of the
graph G. We use Γ(G) or Γ if G is clear from context, to represent the group of automorphisms of graph
G. For y ∈ V, the orbit of y, denoted by O(y), is defined as O(y) = {π(y) : π ∈ Γ} and for any setA, the
orbit ofA is represented by O(A) and is defined as O(A) = ∪O(xi)∀xi ∈ A. Two vertices in the same
orbit are called similar vertices.

A partition γ on a finite set V is a family of non-empty subsets B1, B2, . . . , Bn of V such that
Bi ∩ B j = ∅ for all i , j and ∪n

i=1Bi = V. The subsets B1, B2, . . . , Bn are termed as blocks of γ,
we write γ := B1|B2| . . . |Bn to represent that γ is a partition of sets with blocks B1, B2, . . . , Bn. If
x ∈ V, we denote γ(x) as the block of γ containing the element x. An information table, denoted by
I = ⟨U,A,Val,F ⟩ is a quadruple, where U represents the universal set of objects, A represents the
attribute set, Val is a set of outcomes and F : U × A → Val represents an information map. The
information table is called Boolean ifVal = {0, 1}. For the purpose of our paper, both universal setU
and attribute set A are the vertex set V of the graph G and the indescernibility relation ≡A between
the two vertices of the graphs is an equivalence relation which depends upon a set of attributesA ⊆ V
defined as: x ≡A y if and only if for all z ∈ A, if z ∈ O(x) then z ∈ O(y). If there exists z ∈ A such
that z does not belong to O(x) and O(y) simultaneously, then we say x and y do not belong the same
equivalence class and write it as ⌝(x ≡A y). Equivalence classes also called A-granules of object x
under consideration of ≡A are represented by OA(x) and the indiscernibility partition of I with respect
toA is the family of all equivalence classes, i.e., γA(G) := {OA(x) : x ∈ V}. Given an attribute subset
A and object subset Q, lower and upper approximations of Q by considering the information presented
byA are defined as:

LA(Q) = {x ∈ V : OA(x) ⊆ Q} = ∪{D ∈ γA(G) : D ⊆ Q}
UA(Q) = {x ∈ V : OA(x) ∩ Q , ∅} = ∪{D ∈ γA(G) : D∩ Q , ∅}.

In general, LA(Q) is subset of Q while UA(Q) is a superset of Q. A subset Q is termed as A-exact if
and only if LA(Q) = UA(Q), A-rough otherwise. Let A,Q ⊆ V then rough membership function is
defined by:

µA
Q

(x) = |OA(x)∩Q|
|OA(x)| =

|[x]A∩Q|
|[x]A |

.

ForA,D ⊆ V, the positive region is defined as POSA(D) = {x ∈ V : OA(x) ⊆ OD(x)} and the number
degA(D) = |POSA(D)|

|V|
is calledA-degree dependency ofD.

Important terms associated with rough set theory include the indiscernibility relations, lower and
upper approximations, reducts, essential sets and the discernibility matrix. The reduct [22] of an
information table consists of the set of attributes which provide same information and characterization
as does the set of all attributes. Essential sets and the core [22] of an information table usually
consists of the set of attributes which are considered most important in characterization of an
information table. The discernibility matrix [28] is a square matrix with i jth entry consisting of
attributes for which the attribute value is different for objects xi and x j.
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This paper is organized as follows: In section 3, we introduce and study the indiscernibility
partitions and we also discuss the action of automorphisms in connection with indiscernibility
relations. In section 4, we study lower and upper approximations of graphs in terms of orbits. We also
examine the rough membership function and dependency measures for graphs. In section 5, we
discuss essential sets, discernibility matrix and their relationships. Conclusions are given as last
section of the paper.

3. Indiscernibility partitions of graphs

An undirected simple graph G is described by an information table represented by I(G). Suppose
that the vertex set V(G) = {x1, x2, . . . , xn} and both universal and attribute sets of information table
I(G) are equal to V and characterize the information map as follows: For xi ∈ A, F (xi, x j) = 1 if
x j ∈ O(xi) and F (xi, x j) = 0 if x j < O(xi).

In Theorem 3.1, we show how indiscernibility relation ≡A and the concept of orbit are related.

Theorem 3.1. For an attribute subset A ⊆ V, any two vertices x, y ∈ V are indiscernible if and only
if O(x) ∩A = O(y) ∩A.

Proof. If z ∈ O(x) ∩A then F (x, z) = 1 = F (y, z) by definition it implies that z ∈ O(y) ∩A. Hence
O(x) ∩A ⊆ O(y) ∩A. Using similar argument, O(y) ∩A ⊆ O(x) ∩A. Hence O(x) ∩A = O(y) ∩A.
Now suppose O(x) ∩ A = O(y) ∩ A, then z ∈ O(x) ∩ A implies that F (x, z) = 1 which implies that
F (y, z) = 1. Hence F (x, z) = F (y, z), which implies that x ≡A y. □

Theorem 3.1, serves as criterion to decide indiscernibility of vertices. Before we provide a sketch
of indiscernibility partitions of a graph G in the form of orbits, please note the relationship of similarity
of vertices of graph with indiscernibility of vertices. If O(x) = O(y) in G, then x ≡A y for any attribute
subset A. Moreover, converse is not true in general. Consider a path graph, P5 with the vertex set
{x1, x2, x3, x4, x5} and xi is adjacent to xi+1 for i = 1, 2, 3, 4. The orbits of P5 are {x1, x5}, {x2, x4} and
{x3}. For A = {x1} be an attribute set, the A-equivalence classes are {x1, x5}, {x2, x3, x4}. Check that
x2 ≡A x3 but x2 is not similar to x3 in P5, hence converse is not true in general.

For a subsetA ofV, set O(A) = ∪x∈AO(x). In the following proposition, we give a complete sketch
for the indiscernibility partitions of graph G in the form of orbits.

Proposition 3.2. Let G be a graph and A ⊆ V be a given attribute subset. If BA(G) = (O(A))c

and A = {x1, x2, . . . , xk} such that O(xi) ∩ O(x j) = ∅ for each i , j and O(A) = ∪k
i=1O(xi), then

γA(G) = BA(G)|O(x1)|O(x2)| . . . |O(xk).

Proof. Let x, y ∈ V such that x ≡A y thenO(x)∩A = O(y)∩A and we have the following two cases.
Case 1. Suppose O(x) ∩ A = O(y) ∩ A = ∅, clearly x, y ∈ BA(G) which gives that BA(G) is an A-
equivalence class inV.
Case 2. Suppose O(x) ∩ A = O(y) ∩ A , ∅ which implies that x, y ∈ O(A) = ∪k

i=1O(xi) and O(xi) ∩
O(x j) = ∅. This gives that x, y ∈ O(xi) for some 1 ≤ i ≤ k because if x ∈ O(xi) and y ∈ O(x j) for i , j
then O(x) ∩ A , O(y) ∩ A. Note that O(x) = O(y) implies x ≡A y, hence OA(x) = OA(y) = OA(xi) =
O(xi) and OA(xi) = O(xi) for each i.

Concluding above two cases and using the fact that BA(G), O(x1), O(x2), . . . ,O(xk) give a partition
ofV, we have γA(G) = BA(G)|O(x1)|O(x2)| . . . |O(xk). □
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Example 3.1. Consider a graph G as in Figure 1.

0

1

2

3

4

5

Figure 1. A Graph G.

In Figure 1, subscripts of the vertices are used as labels. We have O(0) = {0, 5, 1} = O(5) =
O(1),O(4) = {2, 4} = O(2),O(3) = {3}. Fix a vertex subsetA = {1, 5}, then we have 0 ≡A 1 ≡A 5, and
similarly 2 ≡A 3 ≡A 4 so γA(G) = 015|234.

Proposition 3.2 clearly suggests that indiscernibility partition of G depends upon the choice of A.
However, it remains an interesting question to identify conditions under which for given two attribute
sets A1 and A2, γA1(G) = γA2(G). We now provide a necessary and sufficient condition under which
the indiscernibility partitions associated to two different attribute sets are same.

Proposition 3.3. For an attribute subsetA ⊆ A, define BA(G) = (O(A))c. LetA1,A2 be two attribute
subsets, then γA1(G) = γA2(G) if and only if one of the following hold:

(1) BA1(G) = BA2(G);
(2) BA1(G),BA2(G) are either empty or consists of only one orbit.

Proof. (1) Suppose that BA1(G) = BA2(G) then O(A1) = O(A2). Hence by Proposition 3.2,
γA1(G) = γA2(G).

(2) Suppose that BA1(G) = ∅ and BA2(G) consists of only one orbit. Then the orbit of BA2(G) must
coincide with at least one orbit of γA1(G). Hence by Proposition 3.2, γA1(G) = γA2(G). Similarly, if
BA2(G) = ∅ and BA1(G) consists of only one orbit, then γA1(G) = γA2(G).

Now, suppose contrary that BA1(G) , BA2(G) and neither BA1(G) nor BA2(G) is empty or consists
of only one orbit. By Proposition 3.2, this implies that γA1(G) , γA2(G) but γA1(G) = γA2(G), a
contradiction. □

From Proposition 3.3, it can be noted that different attribute sets can yield same indiscernibility
partitions. Further, in the next proposition, we prove that for a graph G having n orbits and two
attribute sets having elements from n or n − 1 orbits, yield the same partition.

Proposition 3.4. If a graph G has n orbits and attribute subsets A1 and A2 contain elements of n or
n − 1 orbits then γA1(G) = γA2(G).

Proof. Since graph G has n orbits. If O(A1) = O(A2), then BA1(G) = BA2(G) hence by
Proposition 3.3, γA1(G) = γA2(G). Now suppose that A1 contains elements of n orbits and A2

contains elements of n − 1 orbits, then by second part of Proposition 3.3, γA1(G) = γA2(G). □
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Proposition 3.4 yields that for a graph G with n orbits, the indiscernibility partitions remain same
under different attributes from n or n−1 orbits. For two attribute sets having elements from n−2 orbits,
we have the following proposition.

Proposition 3.5. If A1 and A2 are two subsets of attributes with elements from at most n − 2 orbits
then γA1(G) = γA2(G) if and only if O(A1) = O(A2).

Proof. As O(A1) = O(A2), by Proposition 3.3, γA1(G) = γA2(G). Suppose contrary that O(A1) ,
O(A2) but γA1(G) = γA2(G). Since A1 and A2 contain elements of at most n − 2 orbits. Hence their
complement will consist of the elements of at least two different orbits which implies that BA1(G) ,
BA2(G), yielding γA1(G) , γA2(G), a contradiction. □

Proposition 3.5 implies that indiscernibility partitions remain same if their orbits under different
attributes remain same with elements from n − 2 orbits. In the next proposition, we show that the
automorphisms of G preserve the structure of blocks in indiscernibility partition.

Proposition 3.6. For a graph G, let A ⊆ V(G) be any attribute subset. If η ∈ Γ(G) then γA(G) =
γη(A)(G).

Proof. Suppose γA(G) = B1|B2| . . . |Bm and γη(A)(G) = K1|K2| . . . |Kn. Let Bi = OA(xi) = {x j :
O(x j) ∩A = O(xi) ∩A} and Ki = Oη(A)(xi) = {x j : O(x j) ∩ η(A) = O(xi) ∩ η(A)}.

It is easy to see that for η ∈ Γ(G), O(xi)∩A , ∅ if and only if O(xi)∩η(A) , ∅ for 1 ≤ i ≤ k because
xk ∈ O(xi) ∩ A if and only if η(xk) ∈ O(xi) ∩ η(A). By 3.2, Bi = Ki = O(xi) or Bi = Ki = (O(A))c

which implies that γA(G) = γη(A)(G). □
For a set of attributesA ⊆ V, INDA(V) = {(x, y) ∈ V2|O(x)∩A = O(y)∩A}.An attribute x ∈ A is

called dispensable in A if INDA(V) = INDA\{x}(V), otherwise x is called indispensable with respect
toA. A minimal subset R of an attribute setA that yields the same partition as provided by the set of
all attributes is called reduct.

Proposition 3.7. For a graph G with a reduct R and orbits O1,O2, . . . ,Ok, |R ∩ Oi| = 1 for all i =
1, 2, . . . , k except one i.

Proof. Suppose there exists two orbits for which R∩Oi and R∩O j is empty then Oi∪O j forms one
class. Hence, R must have empty intersection with at most one orbit. Now, suppose that there exists
an orbit Ok such that |R ∩ Ok| > 1. Let x1, x2 ∈ R ∩ Ok then γR(I) = γR\{x2}(I). This implies R is not
minimal (a contradiction). Hence, |R ∩ Oi| = 1 for all i = 1, 2, . . . , k except one i. □

Proposition 3.7 gives the method to identify reducts for any given graph G with k orbits. Also, it
is obvious that any attribute subset A may have more than one reducts, the set of all reducts of an
attribute subset is denoted by REDA(G). LetK ∈ REDA(G) then γA(G) = γK (G) = B1|B2| . . . |Bn. By
Proposition 3.6, γη(A)(G) = γ(η(K))(G) = B1|B2| . . . |Bn. We note that the automorphism of G preserves
the structure of reducts. Hence we have the following proposition:

Proposition 3.8. For a graph G, let A ⊆ V. If η ∈ Γ(G), then K ∈ REDA(G) if and only if η(K) ∈
REDη(A)(G).

According to Proposition 3.8, for a graph G, attribute set A and η ∈ Γ(G), K ∈ REDA(G) implies
that η(K) ∈ REDη(A)((G)). If K is a reduct for attribute set A, then η(K) does not necessarily belong
to REDA(G).
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Consider a graph G in Figure 2. Note that O(1) = O(4) = {1, 4}, O(2) = O(3) = {2, 3} and
O(5) = O(6) = O(7) = O(8) = {5, 6, 7, 8}. Let A = {1, 2, 5, 6} and take η = (14)(23)(57)(68), then
K = {1, 2} is a reduct ofA and η(K) = {3, 4} is a reduct of η(A) but not that ofA.

1

2 3

4

5

6

7

8

Figure 2. A Graph G.

Let P(V) denotes the set of all partitions ofV. For two partitions γ1 and γ2 ofV, γ1 is called finer
than γ2 if all blocks of γ1 are subset of the blocks of γ2, denoted by γ1 ⪯ γ2. It is straightforward to see
that for two attribute sets,A1 andA2 of graph G withA1 ⊆ A2, then γA2(G) ⪯ γA1(G). For a graph G
with orbits O1,O2, . . . ,Ok and attribute setsA1 ⊆ A2, γA2(G) = γA1(G), ifA1 andA2 have non-empty
intersection with same orbits Oi for 1 ≤ i ≤ k. If A1 ⊆ A2 and there exists some Oi (1 ≤ i ≤ k) such
that A1 ∩ Oi = ∅ and A2 ∩ Oi , ∅ then γA2(G) ≺ γA1(G). From this discussion, we conclude that a
partition consisting of orbits of the graphs is the finest partition of the vertex set in P(V).

Now, we introduce three sets, namelyA-interior set,A-exterior set andA-delimiting set as follows.

Definition 3.1. For an attribute subsetA ⊆ A, let x ∈ V. Then

• x is calledA-interior, if O(x) ⊆ A.
• x is calledA-exterior, if O(x) ⊆ V\A.
• x is calledA-delimiting, if OA(x) , ∅ and OV\A(x) , ∅.

Represent by Int(A), Ext(A) and Del(A) respectively, the subset of allA-interior, A-exterior and
A-delimiting vertices of graph G.

Note that the family of all subsets of Definition 3.1 is a set partition of V(G) and for an attribute
subset A ⊆ V(G), and Ac = V\A then Int(A) = Ext(Ac) and Del(A) = Del(Ac). For an attribute
subsetA ⊆ V(Kn), following is straightforward.

(i) If |A| < n then Int(A) = Ext(A) = ∅ and Del(A) = V(Kn).

(ii) If |A| = n then Del(A) = Ext(A) = ∅ and Int(A) = V(Kn).

(iii) IfA = ∅ then Int(A) = Del(A) = ∅ and Ext(A) = V(Kn).

Proposition 3.9. For an attribute subset A ⊆ A, a non-empty Ext(A) is a block of A-indiscernible
partition γA(G).

Proof. Let x, x′ ∈ Ext(A) then for all y ∈ A, we have F (x, y) = F (x′, y) = 0, so x ≡A x′. If
z ∈ V(G) such that for some z′ ∈ Ext(A), z ≡A z′ then OA(z) = ∅ implying that z ∈ Ext(A). Because
if there exists a vertex y ∈ OA(z) then 1 = F (y, z) , F (y, z′) = 0, which is contradiction to the
assumption that z ≡A z′. Therefore, OA(z) = ∅ and z ∈ Ext(A). □
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Remark 1. It is straightforward to observe that the Int(A) and Del(A) need not be a block of γA(G).
Further, Int(A) and Del(A) are blocks of γA(G) if and only if it consists of only one orbit.

Proposition 3.10. For an attribute subset A, if x, y ∈ Int(A) ∪ Del(A), then x ≡A y if and only if
O(x) = O(y).

Proof. Suppose that x, y ∈ Int(A) ∪ Del(A) and O(x) = O(y), then by definition of indiscernibility,
x ≡A y. Conversely, suppose that x ≡A y and O(x) , O(y). Then there exists z ∈ A which will belong
to at most one of O(x) or O(y) because if no such z ∈ A belongs to O(x) or O(y) then x, y ∈ Ext(A).
Therefore, ⌝(x ≡A y), contradiction. Hence O(x) = O(y). □

4. Upper and lower approximations in graphs

In this section, lower and upper approximations of various subsets of vertices are studied using
similarity relations.

Theorem 3.1, provides information about the behavior of objects in the indiscernibility relation ≡A.
Indiscernibility relations can be considered as a type of symmetry relations as for the attribute subset
A. Using the fact that for any two distinct vertices x, y ∈ V(G) either O(x) = O(y) or O(x) ∩ O(y) = ∅,
it is straightforward to note that every proper subset X of V(G) is rough if O(x) = V(G). Also note
that for x, y ∈ V(G) with O(x) , O(y) and O(x) ∪ O(y) = V(G), a subset X of V(G) is rough if and
only if X , O(x), X , O(y) and X , V(G).

Note that the indiscernibility partition of complete graph on n vertices consists of only one orbit
yielding one block. IfV(Kn) = {x1, . . . , xn}, then γA(Kn) = x1, . . . , xn for any attribute subset A ⊆ Kn

and every proper subset Q ofV(Kn) isA-rough because LA(Q) = ∅ and UA(Q) = V(Kn). A subset Q
ofV(Kn) isA-exact if and only if Q = V(Kn).

A given graph G in which V = V1 ∪ V2, V1 ∩ V2 = ∅, x ∼ y for each x ∈ V1, y ∈ V2 and
x / y if and only if x, y ∈ V1 or x, y ∈ V2, is called a complete bipartite graph. For a complete
bipartite graph Km,n = (V1|V2) where V1 = {x1, x2, . . . , xm} and V2 = {y1, y2, . . . , yn}, γA(Km,n) =
x1, x2, . . . , xm|y1, y2, . . . , yn, for any non-empty attribute subsetA.

In the following proposition, we study rough sets in complete bipartite graphs.

Proposition 4.1. If G is a complete bipartite graph then a subset Q of V is rough with respect to
attributesA if and only if Q , V1, Q , V2 and Q , V, whereV1,V2 are partites of G.

Proof. Let Q be a rough set in G. If Q = V then clearly Q is exact, hence Q , V. Now if Q = V1

then for each x ∈ V2, O(x) ∩ Q = ∅ which gives that Q is exact. Similar arguments holds for Q = V2.
Hence, Q , V1, Q , V2 and Q , V.

Conversely, suppose Q , V1, Q , V2 and Q , V, we need to prove that LA(Q) , UA(Q). Since
Q , V1 so we have three cases:
(1) SupposeV1∩Q = ∅ andV2∩Q , ∅ then Q , V2 which implies that Q ⊂ V2. Now for any x ∈ V,
if x ∈ V1 then O(x)∩Q = ∅ because O(x) = V1. Moreover, for x ∈ V2, O(x) = V2 which implies that
LA(Q) = ∅ and UA(Q) = V2. Hence, Q is a rough set.
(2) For the case V1 ∩ Q , ∅ and V2 ∩ Q = ∅ then Q , V1 which implies that Q ⊂ V1. Now for any
x ∈ V, if x ∈ V1 then O(x) ∩ Q , ∅ because O(x) = V1. Moreover, for x ∈ V2, O(x) = V2 which
implies that LA(Q) = ∅ and UA(Q) = V1. Hence, Q is a rough set.
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(3) Now supposeV1 ∩ Q , ∅ andV2 ∩ Q , ∅ then we have three sub-cases:
i) SupposeV1 ∩ Q = V1 then LA(Q) = V1 and UA(Q) = V which gives that Q is rough.
ii) Suppose V2 ∩ Q = V2 then for every x ∈ V2 we have x ∈ LA(Q) = V2 and UA(Q) = V which
gives that Q is rough.
iii) Suppose V1 ∩ Q , V1 and V2 ∩ Q , V2. Let x ∈ V such that x ∈ V1 then x ∈ UA(Q) because
O(x) = V1 and O(x) ∩ Q , ∅ but O(x) ⊈ Q. Similarly, if x ∈ V2 then x ∈ UA(Q). Also, for every
x ∈ V we have O(x) ⊈ Q which gives that LA(Q) = ∅ so Q is a rough set in G. □

In the following proposition, we discuss lower and upper approximation of a subset Q of complete
bipartite graph Km,n.

Proposition 4.2. Let Km,n = (V1|V2) is a complete bipartite graph where V1 = {x1, x2, . . . , xm} and
V2 = {y1, y2, . . . , yn}. Let Q andA are two subsets ofV(Km,n) such that Q , V. Then

(i) LA(Q) =


V1 if V1 ⊆ Q

V2 if V2 ⊆ Q

∅ otherwise.

(ii) UA(Q) =


V1 if Q ⊆ V1

V2 if Q ⊆ V2

V otherwise.

(iii) Q isA-exact if and only if Q = V1 orV2.

Proof.

(1) LetV1 ⊆ Q. If x ∈ V1, then it follow by Theorem 3.1, that OA(x) ⊆ Q, thus by definition of the
lower approximation, we getV1 ⊆ LA(Q). Moreover, if x ∈ V2 ∩ LA(Q), for some x ∈ V, then,
again by Theorem 1.0.1 and definition of the lower approximation, we get V2 = OA(x) ⊆ Q.
Because V1|V2 are set partition for V, so last inclusion implies Q = V, a contradiction to our
assumption. Thus, V1 ⊆ LA(Q) and V2 ∩ LA(Q) = ∅. Similarly, if V2 ⊆ Q then LA(Q) = V2.
Hence let V1 ⊈ Q and V2 ⊈ Q. but each vertex x ∈ V is either in V1 or V2. Therefore, by
Theorem 1.0.1, we have OA(x) = V1 ⊈ Q and OA(x) = V2 ⊈ Q, i.e., x < LA(Q). Hence
LA(Q) = ∅.

(2) Let Q ⊆ V1. If x ∈ V1, then it follow by Theorem 3.1 that OA(x) = V1 ∩ Q , ∅, because Q
is non-empty subset of Q1. Hence x ∈ UA(Q). Moreover, if x ∈ UA(Q) then by definition of
upper approximation we get OA(x) ∩ Q , ∅. Let y ∈ OA(x) ∩ Q. Since y ∈ Q ⊆ V1, thus by
Theorem 1.0.1 we have V1 = OA(x) = OA(y), therefore again by Theorem 3.1, we deduce that
x ∈ V1. Hence UA(Q) = V1. The case of Q ⊆ V2 is similar. Finally, Q ⊈ V1 and Q ⊈ V2.
Since V1|V2 is a partition of V, which implies that V1 ∩ Q , ∅ and V2 ∩ Q , ∅. Now select
arbitrary a vertex x ∈ V, then either x ∈ V1 or V2. If x ∈ V1, then by Theorem 3.1, it follows
that OA(x) ∩ Q = V1 ∩ Q , ∅. Thus, x ∈ UA(Q). Analogously, if x ∈ V2. Then it shows that
V ⊆ UA(Q). i.e.,V = UA(Q).

(3) This follow from the definition of exactness and Theorem 3.1.

□
In Proposition 4.3, we provide complete description for the lower approximations of graph G.
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Proposition 4.3. For a graph G, letA,Q ⊆ V. Then

LA(Q) =
{
O(A) where x ∈ A ∧ (O(x) \ Q) = ∅
∅ otherwise.

Proof. Let a vertex x ∈ A such that OA(x) \ Q = ∅, which give OA(x) ⊆ Q, implies that OA(x) ∈
LA(Q). Since x is chosen arbitrary, hence LA(Q) = O(A).

For OA(x) \ Q , ∅, OA(x) ⊈ Q giving that OA(x) < LA(Q) implies that LA(Q) = ∅. □
In Proposition 4.4, we provide a necessary and sufficient condition for a subset Q ⊆ V to be exact.

Proposition 4.4. For a graph G, let A,Q ⊆ V. Then Q is exact with respect to A, if and only if
Q = ∪x∈QOA(x).

Proof. Suppose Q is exact then for x ∈ Q, OA(x) ⊆ Q. As x is arbitrary, ∪x∈QOA(x) ⊆ Q. For each
x ∈ Q, x ∈ OA(x) which yields that Q ⊆ ∪x∈QOA(x). Hence Q = ∪x∈QOA(x). Conversely, suppose
Q = ∪x∈QOA(x) which clearly implies LA(Q) = UA(Q) giving that Q is exact. □

Proposition 4.4 illustrates the criterion for exactness of any subset Q of given graph G. Note that
for a rigid graph G, in which no two vertices are similar, γA(G) consists of blocks having singleton
elements only, which implies LA(Q) = UA(Q). Hence every subset of the vertex set of a rigid graph is
exact.

Rough membership function and dependency

Now, we introduce and present results on rough membership function, positive region and degree
of dependency of graphs using orbits of the graphs.

Let G = (V,E) andA,Q ⊆ V. The rough membership function on the vertex setV is defined by:

µA
Q

(x) = |{y∈Q:O(x)∩A=O(y)∩A}|
|{y∈V:O(x)∩A=O(y)∩A}| .

ForA,Q ⊆ V, POSA(Q) = {x ∈ V : (y ∈ V∧O(x)∩A = O(y)∩A)⇒ (O(x)∩Q = O(y)∩Q)}. The
number degA(Q) = |POSA(Q)|

|V|
is referred to asA-degree dependency of Q. It is easy to note that for two

different attribute setsA and Q which yield the same partition, degA(Q) = 1. Further, if G has k orbits
andA has non-empty intersection with k or k − 1 orbits of G, degA(V) = 1.

In Proposition 4.5, we examine the rough membership function of complete bipartite graph Km,n

and computeA-positive region of Q and the degree of dependency.

Proposition 4.5. For a complete bipartite graph Km,n with bipartition (V1|V2), let A and Q are two
subset ofV(Km,n). Then

(i) µA
Q

(x) =
{
|V1 ∩ Q|/|V1| if x ∈ V1

|V2 ∩ Q|/|V2| if x ∈ V2

(ii) POSA(Q) =
{
∅ if A = ∅ ∧ Q , ∅
V otherwise

(iii) degA(Q) =
{

0 if A = ∅ ∧ Q , ∅
1 otherwise

.

Proof. (i) According to Proposition 4.2, we know that OA(x) = Vi, if and only if x ∈ Vi, for i=1,2,
therefore,
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OA(x) ∩ Q =
{
|V1 ∩ Q| if x ∈ V1,

|V2 ∩ Q| if x ∈ V2.

Hence the proof follow directly by definition of rough membership.
(ii). If A = ∅ and Q , ∅ then γA(Km,n) = V. As γQ(Km,n) = V1|V2. Therefore, OA(x) = V and
OQ(x) = Vi for some i = 1, 2 which implies that OA(x) ⊈ OQ(x) ∀x ∈ V, hence POSA(Q) = ∅ if
A = Q = ∅ then γA(Km,n) = γQ(Km,n) = V, therefore OA(x) = V ⊆ OQ(x) = V ∀ x ∈ V. Hence
POSA(Q) = V. If A , ∅ and Q = ∅ then γA(Km,n) = V1|V2 by Proposition 4.2, and γQ(Km,n) = V.
Which implies that OA(x) = Vi for some i = 1, 2 and OQ(x) = V for all x ∈ V. Hence POSA(Q) = V.
Finally, if A , ∅ and also Q , ∅ then by Proposition 4.2, we have γA(Km,n) = γQ(Km,n) = V1|V2.
This implies that OA(x) = OQ(x) = Vi for all x ∈ V and for some i=1,2. Thus in this case we have
POSA(Q) = V.
(iii). It is following directly from definition and (ii). □

Note that, for complete graphs Kn and cycle graphs Cn, |POSA(Q)| = |V| yields that degA(Q) = 1.
It is observed that for Kn, Cn, we have γV = O1 and for complete bipartite graphs Km,n, we have
γV = Om|On. Therefore, degA(Q) = 1 when m = n and degA(Q) < 1 when m , n. For a path graph
Pn, with k orbits andA,Q ⊆ V such thatA ⊆ Q andA∩Ok−i and Q∩Ok−1 is non-empty ∀ i > 1 then
degA(Q) < 1 and degQ(A) = 1.

It is easy to see that for a graph G with A,Q ⊆ V, µA
Q

(x) = 0 if γ(x) ∩ Q = ∅, µA
Q

(x) < 1 if
γ(x) ∩ Q , ∅ and µA

Q
(x) = 1 if γ(x) ⊂ Q where γ(x) is the block of partition γ containing x.

5. Essential sets and discernibility matrix of graphs

In this section, we will introduce essential sets as well as discernibility matrices of graphs. We will
also study the relationship between these two important concepts.

5.1. Essential sets of graphs

Chiaselotti et al. [8] presented classical model of Pawlak’s core in a more general way. The core
of an information system I associated to G is the intersection of all reducts, represented by CORE(G).
Hence removal of any attribute belonging to core of a graph leads to change in the indiscernibility
partition. In case, core is empty, this extension becomes important because it provides with a set on
minimum number of vertices whose removal yields a partition different from the one yielded by all
attributes. Concepts of Definition 5.1 were introduced by Chiaselotti et al. in [8].

Definition 5.1. A subset S ⊆ A, is called I-essential of G, if γA\S(G) , γA(G) and ∀Q ⊊ S we have
γA\Q(G) = γA(G).

ESS(I) represents the collection of all I-essential subsets of G. For l ∈ {1, 2, . . . , n}, set

ESSl(I) = {S ∈ ESS(I) : |S| = l}

and essential numerical sequence of I is defined by

ens(I) = (|ESS1(I)|, |ESS2(I)|, . . . , |ESSn(I)|).

Finally, essential dimension of I is defined as the positive integer
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Edim(I) = min{l : |ESSl(I)| , 0}.

Note that, for a graph with at most two orbits, ES S (I) = ∅. For complete graphs Kn, cycles Cn and
complete bipartite graphs Km,n, ES S (I) = ∅. As there exists only one orbit for Kn and Cn, but for
Km,n, there exists one orbit when m = n and two orbits when m , n. Also, it is observed that if
A ⊆ V, then there does not exist any set S for complete graphs, cycles and complete bipartite graphs
such that γA(I) , γA\S(I). Therefore, ens(Kn) = (0, 0, 0, ..., 0) ∀ n, ens(Cn) = (0, 0, 0, ..., 0) ∀ n and
ens(Km,n) = (0, 0, 0, ..., 0) ∀m, n.

For a path Pn on n ≥ 5 vertices with vertex setV = {x1, x2, . . . , xn} and edge set E = {xixi+1|1 ≤ i ≤
n − 1}. It is observed that {{xi, xn−i+1}|1 ≤ i ≤ ⌊n

2⌋} is the set of orbits of Pn. Note that each orbit has at
most two elements. It can be easily seen that ES S l(I) = ∅ for l < 3. For odd n, {x n+1

2
} forms an orbit

on one vertex and ES S 3(I) is the union of orbit {x n+1
2
} with any other orbit of Pn. Also, ES S 4(I) is the

union of any two orbits of Pn. Further, observe that if n = 2k for k > 2, then each orbit of path graph Pn

will consist of exactly two vertices. Therefore, Edim(Pn) = 4. Similarly, if n = 2k + 1 for k ≥ 2, then
Pn will contain exactly one orbit of order one and all other orbits of order two. Then Edim(Pn) = 3.
Also note that, for a rigid graph, Edim(G) = 2 as the cardinality of each orbit of a rigid graph is one.

Hence, we have the following straightforward proposition for path graphs Pn.

Proposition 5.1. If G is a path graph then we have the following:
(i) ES S (Pn) = ∅ for n ≤ 4.
(ii) |ES S 3(P2k+1)| = k; k ≥ 2 and |ES S 3(P2k)| = 0; k ≥ 2.
(iii) |ES S 4(P2k)| =

(
k
2

)
; n ≥ 4

(iv) ens(P2k+1) = (0, 0, k,
(

k
2

)
, 0, ...) if k ≥ 2 and ens(P2k) = (0, 0, 0,

(
k
2

)
, 0, ...) if k ≥ 3.

In the next proposition, we prove that essential set S for any graph G is exactly union of two orbits
which also suggest a criterion to identify essentials for a given graph G.

Proposition 5.2. I − essential set S is always union of two orbits of graph G.

Proof. Assume contrary that set S ⊆ A is a union of more than two orbits of G then there exists
Q ⊂ S such that γA\Q(G) , γA(G), i.e., there exists x, x′ ∈ A \ Q such that x ≡A\Q x′ and ⌝(x ≡A x′)
which does not satisfy the minimality condition for S to be essential. Hence, S is a union of two orbits
of a graph G. □

5.2. Discernibility matrix of graph

In rough set theory, discernibility matrix is a tool to study information system. Here, we concentrate
on the structural concept of discernibility matrix in the context of graph theory.

Let I = ⟨V,V,Val,F ⟩ is an information system with V = {x1, x2, , . . . , xn}. The discernibility
matrix ∆[I] of I is an n × n matrix with i jth entry, ∆G(xi, x j), of the matrix is the attribute subset
corresponding to the pair (xi, y j) given as:

∆G(xi, x j) = {a ∈ A : F (xi, a) , F (x j, a)}.

Note that in context of granular referencing system, A serves as reference set and helps in
identification whether given two vertices are identical. Two elements in an orbit are similar for any
choice of A. Therefore, two vertices in different orbits are discernible by any of the vertices in those
orbits. We define the entries of the discernibility matrix in the following way.
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For a graph G, if xi, x j ∈ V, then

∆G(xi, x j) =
{
O(xi) ∪ O(x j) if xi < O(x j),
∅ if xi ∈ O(x j).

Note that isomorphic graphs have same discernibility matrices. However, for a given discernibility
matrix, there may exist more than one non-isomorphic graphs which have the same discernibility
matrix. For example, C4 and K4 have same discernibility matrix but they are not isomorphic.

Please note that rows and columns of discernibility matrix corresponding to similar vertices are
equal. Hence instead of considering individual elements, their orbits can be considered. Therefore, we
first evaluate the classes of orbits of graphs and then consider the rows and columns of discernibility
matrix in terms of the orbits of graphs. We name the discernibility matrix obtained by considering
orbits instead of vertices as Quotient Discernibility Matrix (QDM). QDM has order equal to the number
of orbits of the graphs. Rows and columns of QDM are labeled by orbits of the graph and entries of
QDM are defined as follows: For a graph G, with two arbitrary orbits Oi and O j.

∆G(Oi,O j) =
{
Oi ∪ O j if i , j
∅ if i = j.

Next, we represent by EQDM(I(G)), the collection of all distinct entries of ∆[I].
In Proposition 5.3, we describe a relationship between EQDM(I(G)) and ES S (I(G)), the family

of I-essential subsets.

Proposition 5.3. Let G be a graph then EQDM(I(G)) = ES S (I(G)).

Proof. Let S ∈ ES S (I(G)) then by Proposition 5.2, S = Oi ∪ O j. Note that ∆G(Oi,O j) = Oi ∪ O j

hence S ⊆ EQDM(I(G)) and ES S (I(G)) ⊆ EQDM(I(G)). Conversely, suppose that
S ∈ EQDM(I(G)) then there exist Oi and O j such that ∆G(Oi,O j) = Oi ∪ O j. Note that
γV\{Oi∪O j} , γV which satisfies first condition for S to be an essential set. Let T ⊂ Oi ∪ O j then we
have three possibilities. (i). T ⊆ Oi, (ii). T ⊆ O j, (iii). T ∩ Oi , ∅ and T ∩ O j , ∅. It is easy to see in
all these three cases that γV\T (G) = γV(G) which satisfies the second condition for S to be an essential
set. Hence S ∈ EES (I(G)) and EQDM(I(G)) ⊆ ES S (I(G)) which gives required result. □

Proposition 5.3 illustrates that the collection of distinct entries of discernibility matrix and collection
of all essential subsets of any graph G under an information system I remain same.

Example 5.1. Consider the graph G shown in Figure 1 and its discernibility matrix is given in the
following Table 1:

Table 1. Discernibility matrix ∆[I].

O(0) O(2) O(3)
O(0) ∅ ∗ ∗

O(2) O(0) ∪ O(2) ∅ ∗

O(3) O(0) ∪ O(3) O(2) ∪ O(3) ∅

ES S (I(G)) = EQDM(I(G)) = {O(1)O(2),O(1)O(3),O(2)O(3)}.

AIMS Mathematics Volume 7, Issue 4, 5790–5807.



5803

We remark the limitations associated with this approach of indiscernibility O(u) ∩ A = O(v) ∩ A,
using orbits. Note that all vertices in one orbit behave alike, which may be thought of as a loss of
information about those vertices in the graph G. Also, note that the discernibility matrices with entries
as given by ∆G(Oi,O j) do not provide information about vertices but about orbits.

Chiaselotti et al. [6–8] marked two vertices as indiscernible if N(u) ∩ A = N(v) ∩ A whereas we
defined indiscernibility of the vertices u and v in terms of orbits as O(u) ∩ A = O(v) ∩ A. It is
interesting to note that indiscernibility partitions coincide for both approaches in cases of complete
graphs and complete bipartite graphs for any choice of A, whereas indiscernibility partitions are
different for families of graphs like cycles and paths etc. Consequently, rough membership function
and essential sets remain same for both approaches in complete and complete bipartite graphs but all
other parameters are different. Discernibility matrices as defined according to Chiaselotti et al. are of
the order |V| × |V| whereas in our case, discernibility matrices are of order k × k where ‘k’ is the
number of orbit in the graph.

In the Figure 3, we show the flowchart of the proposed methodology of this paper.

Figure 3. A brief Flowchart of the proposed methodology for obtaining ES S (I(G)) and
EQDM(I(G)).
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6. Conclusions

We have used orbits of graphs to construct information systems to study graphs using rough set
theory. For a given graph G, we defined indiscernibility relation using concept of orbit of graphs and
showed that a partition consisting of orbits of the graphs is the finest partition of the vertex setV. We
also gave construction of an indiscernible partition for any given attribute setA. Vertices in classes of
a partition are called granules and identification of granules will simplify the graph structures for better
insights. We also studied lower and upper approximations of subsets of vertices of graphs, the rough
membership function and rough positive region for some well-known families of graphs like cycles,
complete and complete bipartite graphs. We also noticed that the automorphism of G preserves the
structure of reducts. IfK is a reduct for any attribute setA then for η ∈ Aut(G), η(K) is not necessarily
a reduct. Further, we studied the essential sets and the discernibility matrices of graphs using this
indiscernibility relation. We proved that essential sets for cycles, complete, complete bipartite graphs
and path graph Pn for n ≤ 4 are empty sets. For path graph Pn, n > 4, ES S l(Pn) = ϕ for l < 3. If
n = 2k + 1 for k ≥ 2, then k is the cardinality of ES S l(Pn) for l = 3 and if n = 2k for k ≥ 3, then(

k
2

)
is the cardinality of ES S l(Pn) for l = 4. Moreover, we observed that isomorphic graphs have same

discernibility matrices whereas, for a given discernibility matrix, there may exist more than one non-
isomorphic graphs which have the same discernibility matrix. We believe that the study of concept of
granularity for fuzzy environments will yield insights for better applications of those concepts. The
terminology emerging from the merger of rough set theory and graph theory will be useful for exploring
new problems associated to symmetries of graphs.

Communities in a social network are represented as vertices and connections between communities
are represented by edges. Communities with common attributes are represented by similar vertices
hence, problems associated with such communities are linked with identification of similarity. Study
of similarity and object similarity measures, as discussed in [9] are associated with the problems of
reducing attributes and for removal of inconsistencies. The idea of using orbits can be used to study
similarity measures. The extension of our approach to orbit based similarity measure will yield refined
indiscernibility relation like that of the neighbourhood based similarity measure. Our contribution will
enrich literature in this direction of study which finds enormous applications in connection with data
mining, database theory, different modeling using rough set theory, social networking and document
clustering etc.
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