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Abstract: It is the objective to provide a mathematical treatment of a model to predict the behaviour
of an invasive specie proliferating in a domain, but with a certain hostile zone. The behaviour of
the invasive is modelled in the frame of a non-linear diffusion (of Porous Medium type) equation
with non-Lipschitz and heterogeneous reaction. First of all, the paper examines the existence and
uniqueness of solutions together with a comparison principle. Once the regularity principles are shown,
the solutions are studied within the Travelling Waves (TW) domain together with stability analysis in
the frame of the Geometric Perturbation Theory (GPT). As a remarkable finding, the obtained TW
profile follows a potential law in the stable connection that converges to the stationary solution. Such
potential law suggests that the pressure induced by the invasive over the hostile area increases over
time. Nonetheless, the finite speed, induced by the non-linear diffusion, slows down a possible violent
invasion.
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1. Introduction

Biological invasion has been precisely defined by the Convection of Biological Diversity [19] as
those species capable of threaten other species living peacefully in their ecosystem.

The invaded-invasive interaction between species has been discussed with an advection, that
elucidates a non-linear diffusion, in [21]. The system derived in such reference was intended to describe
the haptotactic cell invasion in a model for melanoma. In addition, [14] examines the spectral stability
of travelling waves of the haptotaxis model studied in cancer invasion. The model has been analyzed
making use of Evans function to a linearised operator. In [11], an invasive propagating front, driven by

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2022319


5769

diffusion, is characterized together with the dynamics of the invaded specie. In these last cited cases,
the proposed models interpreted the advection as part of the complete random movement (no preferred
direction) induced by the haptotactic evolution, as well as (see [11]) a pure advection to model the
dynamic spatial preferred direction of motion.

Note that even when invasive-invaded systems are not precisely speaking predator-prey models, it
is worth mentioning that once and invasive occupies a domain (for example a biological organ) the
invaded specie extinguishes. Such extinguishing may lead the invasive to vanish (or even die if the
organ fails) as there is not further specie to invade. This a-priori dynamic constitutes a link between
invasive-invaded dynamic and predator-prey. In [22], the authors study the existence of invasion waves
of a diffusive predator–prey model with two preys and one predator using the Schauder’s fixed-point
theorem together with LaSalle‘s invariant theorem to prove the existence of solutions between two
equilibrium conditions. Recently the Hopf bifurcation method has been employed in [3] to study
the harvesting effect in the predator and the density-dependent mortality in the prey. Additionally,
[15] proposes a Hopf bifurcation to study a delayed density-dependent predator-prey system with
Beddington-DeAngelis functional response. Stability and bifurcation methods have been employed
as well in [16, 20, 27] for different functional responses.

There exists a mathematical connection among the different bifurcation and stability methods
mentioned and the geometric perturbation theory employed in this paper, as such theories are intended
to search for stable solutions, for example in the form of Travelling Waves (TW), connecting stationary
conditions.

As it will be shown, the non-linear diffusion drives the mathematical methods employed in this
paper. Within the mathematical applications to biology, Keller and Segel [18] proposed a non-linear
diffusion to study the cells movement by chemotaxis:

ut = ∇ · (d(u)u − χ(v)u∇u) x ∈ Ω, t > 0
vt = dv∆v − uv x ∈ Ω, t > 0,

(1.1)

where u represents the cell density and v the chemical concentration. Note that d(u) is the media
diffusivity and χ(v) the distribution of chemical agent to which the cells are sensitive. The Keller and
Segel model has been extended to account for certain regular reaction-absorption dynamics [1,7,23,26].

In other research areas, the non-linear diffusion in the form of Porous Medium Equation has
been used to model the coagulation effect in an electromagnetic blood flow with annular vessel
geometries [5] or to simulate the effect of porosity in a peristaltic transport in a Jeffrey fluid [12].

2. Model description and methods

The analyzed problem P is:

vt = ∆vm + |x|σvq(1 − v),
m > 1, 0 < q < 1, 0 ≤ v0(x) ∈ L1

loc(R
d) ∩ L∞(Rd).

(2.1)

The problem P justification is based on studying the invasive dynamic as a single specie and
the mathematical properties introduced by the spatial operator and the heterogeneous reaction term.
Typically, the behaviour of an invasive specie has been modelled together with the specie to be invaded.
In [22], the authors study the existence of invasion waves to a linear diffusion predator–prey model
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with two preys and one predator. The existence of travelling semi-fronts connecting invasion-free
equilibrium are shown based on the Schauder’s fixed-point theorem for certain travelling waves speeds
above one critical. In [25], the authors are concerned with the existence and asymptotic behavior
of invasion wave solutions and non-quasimonotone conditions to an upper solution. To this end, the
Schauder’s fixed point theorem is employed. Further, in [24], the invasion traveling waves are shown
to state exponentially stable for an exponentially weighted space by using the weighted energy. Along
the presented, the invasive specie is modeled along its conquering state, for this purpose:

Consider that for |x| < γ → 0+, the invasive growing rate vt ∼ 0, in other words, the small area
given by |x| < γ represents a hostile zone in which the invasive accounts for difficulties to get into.
Nonetheless, the fact of having vt ∼ 0 with quasi-null initial data in |x| < γ indicates the slow motion
on the invasive in such spatial domain. This slow motion is associated with the property known as finite
propagation in the Porous Medium Equation theory. Therefore, the intention is to model two different
domains:

• |x| < γ → 0+: The invasive specie has difficulties to get into the hostile domain. Nonetheless, the
quasi-null initial data indicates the existence of a finite propagation that is kept along the invasive
excursion in such domain. The fact of modelling with a non-linear diffusion permits to avoid
the positivity condition typical in the gaussian-fickian diffusion. In addition, the non-Lipschitz
condition introduces the existence of a null minimal solution that represents the impossibility of
the invasive to invade the hostile zone. Nonetheless and in case the invasive penetrates the hostile
area, the initial population growth is relatively high in accordance with the derivative of vq, q < 1.
• |x| >> γ: The invasive reproduction rate is high as the environment can feed the invasive until

it reaches the maximum concentration or saturation at equilibrium established at v = 1. This
behaviour is introduced by a weak Allee effect (1 − v).

The methods employed along this article consist on showing exitence of solutions to an equivalent
Lipschitz problem via maximal and minimal monotone sequences. In addition, uniqueness and
comparison are shown based on a generalization to weak solutions and the definition of a test function
φ ∈ C∞(Rd) to account for the degenerate diffusivity in the non-linear diffusion. Finally, the Geometric
Perturbation theory is employed to show the existence and to determine Travelling Waves profiles.

3. Existence and uniqueness of solutions

3.1. Initial data growing condition

The theory developed to solve P (2.1) holds for initial data 0 ≤ v0(x) ∈ L1(Rd) ∩ L∞(Rd). A
generalization to consider functions of the form:

0 ≤ v0(x) ∈ L1
loc(R

d) ∩ L∞(Rd), (3.1)

can be considered provided a condition is set for the growing behavior in the initial data in the spirit
of [9, 10].

The baseline integrability condition requires to introduce the following Banach space:

E0 =
{
φ ∈ L1

loc(R
d) : ‖φ‖r < ∞

}
, (3.2)

AIMS Mathematics Volume 7, Issue 4, 5768–5789.



5771

where the norm ‖φ‖r(r ≥ 1) is defined as:

‖φ‖r = sup
R≥r

R−d−aσ

∫
Rd
|φ(x)| dx, (3.3)

with

aσ = max
{

σ

1 − q
,

2
m − 1

}
, (3.4)

BR = {x ∈ R; |x| < R} and ‖φ‖∗ = limr→∞ ‖φ‖r
The aσ expression in (3.4) is given as per two separated problems with different growing conditions

in Rd. The first problem is the homogeneous vt = ∆vm which provides the following growing order in
Rd:

v ∼ |x|
2

m−1 , |x| >> 1. (3.5)

The mentioned second problem is related with the forcing term solved independently to the diffusion:

vt = |x|σvq(1 − v) ≤ |x|σvq, v ≤ |x|
σ

1−p . (3.6)

Any initial data v0(x) ∈ L1
loc(R

d) ∩ L∞(Rd) shall be weighted with the exponent aσ to account for
preliminary regular solutions.

3.2. The Lipschitz problem

As part of the strategy followed to show existence of solutions, firstly the following Lipschitz
problem (P′) is analyzed:

vt = ∆vm + flip(x, v) in QT = Rd × [0,T ] ,
v (x, 0) = v0(x) ≥ 0 ∈ E0,

(3.7)

where 0 < T ≤ ∞ and flip(x, v) is a Lipschitz function flip(v) : [0,∞)→ [0,∞) with constant L.
The following truncation is defined so that certain techniques in the spirit of [8–10] are applicable:

|x|σε =

[
|x|σ when 0 ≤ |x| < ε
εσ when |x| ≥ ε

]
. (3.8)

Then, the following problem P′ε is defined accordingly:

vt = ∆vm + |x|σε f (v) ≤ ∆vm + εσ f (v) in QTε = Rd × [0,Tε] ,
v (x, 0) = v0(x) ≥ 0 ∈ E0.

(3.9)

Based on the problem P′ε , the following existence theorem holds.

Theorem 3.2.1. For a given ε > 0 and v0 ∈ E0, there exists a unique vε in QTε (existing for each ε)
continuous weak solution to the problem P′ε in a time interval (0,Tε).

Proof. Note that [9] has showed existence of solutions for the problem

vt = (vm)xx + λvq, λ > 0, m > 1, q ∈ R. (3.10)
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In P′ε the truncated term |x|σε , bounded by εσ, plays the role of the parameter λ and the independent term
is vq(1 − v) ∼ vq in the proximity of zero where the non-Lipschitz condition imposes non-regularity.
Thus, the aim is to prove the existence of solutions for the problem P′ε within the time interval (0,Tε)
to be determined and considering the loss of regularity due to the non-Lipschitz codition. For this
purpose, define the truncation in the initial data for v0 ∈ E0 and n ≥ 1 as:

v0n(x) =


v0(x) when |x| ≤ n, v0(x) < n,

n when |x| ≤ n, v0(x) ≥ n,
0 when |x| > n

 . (3.11)

The problem P′ε with a Lipschitz forcing term and with bounded initial (3.11) has existence and
uniqueness of solutions (Theorem 3.1 in [6]).

The intention is, now, to have a global bound for a subsolution (w) of P′ε so that a value for Tε is
obtained. For this purpose, the following change is defined inspired in [9]:

x→ x, t → τ = eε
σL(m−1)t−1
εσL(m−1) ,

v(x, t)→ w(x, τ).
(3.12)

Note that w is a subsolution given by an exponential decay:

vt = wττt = wτeε
σL(m−1)t, eε

σL(m−1)twτ = ∆wm,

wτ = e−ε
σL(m−1)t ∆wm︸︷︷︸

∆um

. (3.13)

The temporal evolution w is driven by the decaying exponential term. Given a particular value for ∆vm,
the evolution of the homogeneous v is given by vt = ∆vm, while the evolution of w is:

wτ = e−ε
σL(m−1)t∆vm. (3.14)

Thus, for a T >> 1, w is indeed a subsolution, i.e., wτ ≤ ∆vm. Note that to recover the original solution
for the non-linear diffusion (also called Porous Medium Equation or PME), it suffices to consider:

v(x, t) = eε
σL(m−1)tw(x, τ(t)). (3.15)

Having such exponential decrease rate in (3.14) allows the bound of w by an already known
estimation [4]:

w(x, τ) ≤ cR2/(m−1)τ−α‖w(·, 0)‖2α/dr , (3.16)

where,
α = d

d(m−1)+2 , |x| < R, 1 ≤ r ≤ R,

0 < τ = eε
σL(m−1)t−1
εσL(m−1) ≤ c‖w(·, 0)‖(1−m)

r ,
(3.17)

and c ∈ R+.
Note that the intention is to determine the existence time Tε based on the bound estimation in (3.16).
From now on, consider the solution for the PME as vεn(x, t). Indeed such solution is obtained for a

given n in the truncation of the initial data and for a given ε in the truncation for the term |x|σ.

AIMS Mathematics Volume 7, Issue 4, 5768–5789.



5773

Based on the expression (3.16), the following estimation applies for vεn(x, t) considering that for t
sufficiently large:

v(x, t) ∼ eε
σLmtw(x, τ(t)), (3.18)

so that,
vεn(x, t) ≤ cR2/(m−1)eLmεσtτ−α‖vn(·, 0)‖2α/dr , (3.19)

which can be re-written as:

vεn(x, t) ≤ cR2/(m−1)eLmεσt

(
eLεσ(m−1)t − 1
Lεσ(m − 1)

)−α
‖vn(·, 0)‖2α/dr , (3.20)

where:
|x| < R, 1 ≤ r ≤ R, 0 < t ≤ Tr,ε . (3.21)

The time Tr,ε can be obtained operating the expression:

τ =
eε

σL(m−1)t − 1
εσL(m − 1)

≤ c‖vn(·, 0)‖(1−m)
r . (3.22)

And upon operation:

Tr,ε =
1

Lεσ(m − 1)
log

(
1 + cLεσ(m − 1)‖v0,n‖

1−m
r

)
. (3.23)

For a given ε, consider the limit n → ∞ to account for the whole initial data that is controlled by the
norm ‖v0,n‖r. Thus:

0 < t ≤ Tε =
1

Lεσ(m − 1)
log

(
1 + cLεσ(m − 1)‖v0‖

1−m
∗

)
, (3.24)

where r → ∞ .
Finally, solutions exist for 0 < t ≤ Tε as the problem is Lipschitz with spacial-bounded forcing

term (3.8) and with initial data increasing rate controlled by the norm ‖v0‖∗ (see (3.3) together with the
‖ · ‖∗ definition) .

�

Based on (3.24), two cases of existence shall be distinguished:

• ε → 0⇒ cLεσ(m−1)‖v0‖
1−m
∗

Lεσ(m−1) = c‖v0‖
1−m
∗ .

This case corresponds to a finite existence time given by the weighted norm in the initial data
(3.3).
• ε → ∞⇒

log(cLεσ(m−1)‖v0‖
1−m
∗ )

Lεσ(m−1) → 0.
This case does not provide information about the existence time due to the globally not bounded
evolution of |x|σ. In this case, given |x| = ε, it is possible to ensure existence of solutions, as the
expression (3.24) provides a finite value for Tε . Then and at least, there exists local solutions for
finite values of |x| in the proximity of ε. Note that the fact of losing a existence criteria when
ε → ∞ can be considered as a condition in which blow-up may be given. The blow-up behaviour
is characterized in Section. 3.3.2.
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3.3. The non-Lipschitz problem

Consider the following non-Lipschitz problem, named as Pε:

vt = ∆vm + |x|σε vq(1 − v) ≤ ∆vm + |x|σε vq ≤ ∆vm + εσvq,

QTε = Rd × [0,Tε] ,
v (x, 0) = v0(x),
v0(x) ≥ 0 ∈ E0,

q < 1; m > 1 N ≥ 1

(3.25)

The non-Lipschitz reaction term makes the problem non regular as it is not possible to show uniqueness
for any value of v, particularly when v = 0 or when v increases from zero to positivity. Our effort is,
hence, focused on determining the existence and characterizing two particular solutions, the maximal
and the minimal, so that any other solution exists between them.

Theorem 3.3.1. There exist one maximal solution (vM) to Pε and one minimal (vm) existing in [0,Tε]
with Tε(ε, ‖v0‖∗) such that any solution existing between them vm ≤ vε ≤ vM.

Proof. With the objective of applying Theorem 3.2.1, the following Lipschitz function is defined:

fδ(s) =

[
εσδ(q−1)s f or 0 ≤ s < δ

εσsq f or s ≥ δ

]
, (3.26)

so that in the limit for δ→ 0, the original term vq (q < 1) is recovered.
For building the maximal solution, consider the following problem PM

ε :

vt = ∆vm + fδ(v) in QTε,δ = Rd ×
[
0,Tε,δ

]
,

v (x, 0) = v0(x) + ν f or x ∈ Rd , ν > 0.
(3.27)

ν is selected such that:
fδ(v0 + ν) > f (v0), (3.28)

which gives:
ν > | f −1

δ f (v0) − v0|. (3.29)

The Lipschitz constant for the expression fδ(s) is:

εσ(sq
1 − sq

2) ≤ εσL(s1 − s2) ≤ εσδ(q−1)L(s1 − s2).

With q < 1. Therefore the last inequality holds for |δ| < 1. The Lipschitz constant is then εσLδ(q−1).
The problem PM

ε has a unique solution, in virtue of Theorem 3.2.1, existing for a time interval Tε,δ

given by:

Tε,δ ≥
1

Lδ(q−1)εσ(m − 1)
log

(
1 + Lcδ(q−1)εσ(m − 1)‖v0 + ν‖1−m

∗

)
. (3.30)

The problem has, now, three different parameters: ε used to bound the forcing term, δ used to
approximate the non-Lipschitz problem by a Lipschitz one and the paremeter ν that shall be chosen to
ensure the maximality of vM.

For a given ε and δ → 0 the non-Lipschitz problem is recovered. Then, it is possible to determine
the following condition for the existence time:

Tε,δ→0 ≥ 0. (3.31)
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Or explicitly with δ:

Tε,δ→0 ≥
1

Lεσ(m − 1)
δ1−q. (3.32)

This condition means that the existence time is given in the proximity of any δ.
To recover the forcing term |x|σ, make ε → ∞ ,while to recover the non-Lipschitz problem impose

δ→ 0. To account for both effects simultaneously, consider:

ε =
1
δa , a > 0. (3.33)

Previously and first of all, make δ→ ∞ and ε → 0. In this case, the result obtained in the Lipschitz
case (with σ > 0) applies.

Tε,δ ≥
δ(1−q)δaσ

L(m − 1)
log

(
1 + c

1
δ(1−q)δaσ L(m − 1)‖v0 + ν‖1−m

∗

)
, (3.34)

Tε→0,δ→∞ ≥ c‖v0 + ν‖1−m
∗ , (3.35)

for any a > 0.
Even when the value for Tε,δ has been obtained in the limit for ε → 0, it can be applied for any

positive ε and by extension for any local single point in x ∈ Rd as the function |x|σ ∈ L∞loc.
Nonetheless, to recover the original problem δ→ 0 and ε → ∞. Operating with the term δ→ 0:

Tε,δ ≥
δ(1−q)δaσ

L(m − 1)
log

(
c

1
δ(1−q)δaσ L(m − 1)‖v0 + ν‖1−m

∗

)
, Tε,δ ≥ 0. (3.36)

Or explicitly with δ:

Tε,δ→0 ≥
1

L(m − 1)
δ1−q+aσ. (3.37)

for any a > 0.
Given a value for δ small and other one for ε large, a value for Tε,δ is determined so that a maximal

local solution exists.
For building the minimal solution, consider the following problem Pm

ε :

vt = ∆vm + fδ(v) QTε,δ = Rd ×
[
0,Tε,δ

]
,

v (x, 0) = v0(x) f or x ∈ Rd, δ > 0.
(3.38)

The problem Pm
ε has a unique solution (Theorem 3.2.1) existing for a time interval (0, Tε,δ). Any

solution, vm,δ, to the problem Pm
ε is a subsolution to the problem Pε and to the original problem P. In

the proximity of v null the non-Lipschitz reaction satisfies

fδ(v) ≤ εσvq(1 − v) ≤ εσvq ≤ |x|σvq,

vm,δ ≤ v.
(3.39)

Given δ1 > δ2, fδ1(v) < fδ2(v). For an arbitrary decreasing sequence of δ‘s, vm,δ is a non-decreasing
sequence that satisfies vm,δ ≤ v. Then, in the limit with δ→ 0:

vm = lim
δ→0

vm,δ. (3.40)

Each vm,δ does exist (Theorem 3.2.1), therefore, vm is a minimal solution to the problem Pε and to
the problem P as vm has been obtained under the change of the reaction original term vq(1 − v) by a
Lipschitz function from below fδ(v) in the proximity of v null. �
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A sharp estimation of each maximal and minimal solution, with a classification in accordance with
the problem data, is done in the following section.

3.3.1. Assessments on minimal and maximal solutions

Admit quasi-null initial data: v0 = 0, a.e. in BR = {|x− x0| < R}, such that the non-Lipschitz imposes
non-uniqueness. An elementary minimal solution to P is vm = 0 while a maximal solution, influenced
by the reaction term, adopts the general form:

vM
T = |x|

σ
1−q (1 − q)

1
1−q (t − T )

1
1−q , (3.41)

T > 0. To show this, consider:
vM

T = |x|θA(t − T )α. (3.42)

Replacing into P in the proximity of null v such that vq(1 − v) ∼ vq:

|x|θAα(t − T )α−1 = mθ(mθ − 1)|x|mθ−2Am(t − T )mα + |x|qθ+σAq(t − T )qα. (3.43)

With a predominant reaction:

θ =
σ

1 − q
, α =

1
1 − q

, A = (1 − q)
1

1−q . (3.44)

vM
T→0+ = |x|

σ
1−q (1 − q)

1
1−q (t)1/(1−q). (3.45)

The reaction shall be relevant in the proximity of v = 0. For this purpose, t → T → 0+ so that qα < mα,
in the right hand term of (3.43), i.e., q < m, which leads to recover the original data 0 < q < m.

The local time evolution provides a positive and growing solution departing from the positive
set supplementary to BR . The spatial term shall not contradict such evolution when the reaction
predominates over the diffusion, then returning to (3.43):

qθ + σ > mθ − 2→ mσ + 2(1 − σ)q + σ < 2, (3.46)

which shall be considered as a parameter condition to account for a maximal solution as expressed
in (3.45). As a consequence of (3.46) the following behaviour is expected in accordance with the
parameters data: If mσ + 2(1 − σ)q + σ ≥ 2 , the diffusion influences further compare to the reaction
and finite speed of propagation shall be considered whenever the solution is null in a certain ball BR

or in the proximity of |x| << γ. Nontheless, if mσ + 2(1 − σ)q + σ < 2 , the reaction predominates,
and the non-Lipschtiz condition provides non-uniqueness so that the obtained minimal and maximal
solutions obtained apply.

3.3.2. Blow up analysis

The next intention is to provide a condition to distinguish between the existence of global in time
solutions and the explosion in finite time. For this purpose, a critical exponent q∗ is proved to exist. If
the solution blows-up, the invasive specie proliferates in the domain inducing pressure over the hostile
region |x| < γ → 0+.
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Theorem 3.3.2. Consider the critical exponent 0 ≤ q∗ < 1 defined as:

q∗ = sign+

(
1 −

σ(m − 1)
2

)
, (3.47)

For:
q > q∗, (3.48)

blow up or explosion in finite time exists, while for:

q ≤ q∗, (3.49)

a global solution exists.

Proof. Consider the self-similar profile:

G(x, t) = t−α f (|x|tβ), ξ = |x|tβ. (3.50)

With d = 1 in the sake of simplicity. Upon substitution into P:

− αt−α−1 f + β |x|tβ︸︷︷︸
ξ

t−α−1 f ′ = t−αmt2β f m
xx + ξσt−σβ−αq f q. (3.51)

Making the following equalities in (3.51):

− α − 1 = −αm + 2β, αm − 2β = αq + βσ. (3.52)

So that:

α =
σ + 2

σ(m − 1) + 2(q − 1)
, β =

m − p
σ(m − 1) + 2(q − 1)

. (3.53)

As the time exponent in (3.50) is given by −α, the previous α expression in (3.53) shall be positive for
the existence of finite time blow up, then:

σ(m − 1) + 2(q − 1) > 0, (3.54)

so that, the critical exponent is defined as:

q∗ = sign+

(
1 −

σ(m − 1)
2

)
, (3.55)

and blow up exists if q > q∗ while global solutions exists if q ≤ q∗.
�

3.3.3. Uniqueness

Uniqueness of solutions leads to consider only positive initial data v0 ≥ φ > 0, so that the reaction
term, R(x, v) = |x|σvq(1 − v), is Lipschitz in the interval

[
φ,∞). The following lemma holds:
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Theorem 3.3.3. Consider:
v0 ≥ φ > 0, (3.56)

such that the reaction term is Lipschitz with constant q
φ1−q , then uniqueness of solutions holds in QT =

Rd × [0,T ].

Proof. The non-linear diffusion term is associated to a degenerate diffusivity (D(v) = mvm−1). In
case v → 0, for example if φ → 0, the degeneracy does not lead to positivity, and thus, solutions
cannot be classical locally in time as v(x, t → 0) → 0. Then, uniqueness is shown for weak solutions
defined in accordance with a test function ψ(x, t) ∈ C∞(QT ). For this purpose, consider the existence
of two solutions v1(x, t) and v2(x, t). By initial assumption, and without loss of generality, consider that
v1 ≥ v2. Both solutions have the same initial positive data:

v1(x, 0) = v2(x, 0) = v0(x) ≥ φ > 0. (3.57)

A weak solutions is defined as:∫
Rd

v1(t)ψ(t)dx =

∫
Rd

v(0)ψ(0)dx +

∫ t

0

∫
Rd

[v1 ψt + vm
1 ∆ψ + |x|σvq

1(1 − v1)ψ]dxds, (3.58)

∫
Rd

v2(t)ψ(t)dx =

∫
Rd

v(0)ψ(0)dx +

∫ t

0

∫
Rd

[v2 ψt + vm
2 ∆ψ + |x|σvq

2(1 − v2)ψ]dxds, (3.59)

and making the substraction:∫
Rd

(v1−v2)(t)ψ(t)dx =

∫ t

0

∫
Rs

[(v1−v2)ψt + (vm
1 −vm

2 ) ∆ψ+ |x|σ(vq
1(1−v1)−vq

2(1−v2)ψ]dxds. (3.60)

Under the Lipschitz condition and v1 ≥ v2:

(vq
1(1 − v1) − vq

2(1 − v2)) ≤ |vq
1 − vq

2| ≤
q
φ1−q |v1 − v2|. (3.61)

Where the Lipschitz constant is obtained as Kl = qvq−1 = q 1
v1−q ≤

q
φ1−q . Now:

(vm
1 − vm

2 ) ≤ mvm−1
1 |v1 − v2| ≤ κ

m−1|v1 − v2|. (3.62)

Where: κ = max(x,t)∈QT {v1}.
Consider the test function ψ(x, t) ∈ C∞(QT ):

ψ(x, s) =
e−ls

(1 + |x|2)γ
, (3.63)

where γ is such that:

els
∫
Rd
|x|σψ(x, s)dx < ∞. (3.64)

Consider for simplicity and without loss of generality:

els
∫
Rd
|x|σψ(x, s)dx = 1. (3.65)
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For this purpose, the mass shall be null when |x| → ∞. This can be expressed considering that for
R >> 1: ∫

|(|x|−R)|→∞
|x|σψ(x, s)dx = 0. (3.66)

In the asymptotic |x| → ∞:
|x|−2γ |x|σ |x|d → 0. (3.67)

Then:
− 2γ + σ + d < 0, γ >

σ + d
2

> 0. (3.68)

Define: ∫
Rd
ψ(x, s)dx = e−ls

∫
Rd

1
(1 + |x|2)γ

dx = e−lsΨ(x), (3.69)

where:
Ψ(x) =

∫
x→∞

1
(1 + |β|2)γ

dβ. (3.70)

The integral (3.70) is finite in virtue of the condition for γ in (3.68).
In the same way: ∫

Rd
∆ψ(x, s)dx ≤

∫
Rd

K1(γ)ψ(x, s)dx = K1(γ)e−lsΨ(x). (3.71)

Where K1(γ) is obtained as:

e−ls∆ψ = e−lsγ(γ + 1)4x2 1
(1 + |x|2)γ+2 − 2γ

1
(1 + |x|2)γ+1

≤ e−lsγ(γ + 1)4x2 1
(1 + |x|2)γ+2 .

(3.72)

In the limit with |x| → ∞:

e−lsγ(γ + 1)4x2 1
(1 + |x|2)γ+2 ∼ e−ls γ(γ + 1)4

(1 + |x|2)γ
1
|x|2

≤ e−ls γ(γ + 1)4
(1 + |x|2)γ

= γ(γ + 1)4ψ(x).
(3.73)

Then K1 = γ(γ + 1)4. Assessing each integral in (3.60):∫ t

0

∫
Rd

(v1 − v2)ψtdxds =

∫ t

0

∫
Rd
−l(v1 − v2)ψdxds

=

∫ t

0

∫
Rd

l(v2 − v1)ψdxds ≤ l sup|v2 − v1|Ψ(x)
∫ t

0
e−lsds

= l sup|v2 − v1|Ψ(x)
(
1
l

)
(1 − e−lt).

(3.74)

∫ t

0

∫
Rd

(vm
1 − vm

2 ) ∆ψdxds ≤ sup|v1 − v2|

∫ t

0
κm−1K1(γ)

∫
R

ψ(x, s)dxds

= sup|v1 − v2|

∫ t

0
κm−1K1(γ)e−lsΨ(x) sup|v1 − v2|κ

m−1K1(γ)(1 − e−lt).
(3.75)
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0

∫
Rd
|x|σ(vq

1(1 − v1) − vq
2(1 − v2))ψ(x, s)dxds ≤

q
φ1−q sup|v1 − v2|

∫ t

0
e−ls

∫
R

els|x|σψ(x, s)dxds

=
q
φ1−q sup|v1 − v2|(1 − e−lt).

(3.76)

After compilation in (3.60):∫
Rd

(v1 − v2)(t)ψ(t)dx ≤ sup|v2 − v1|Ψ(x)(1 − e−lt) + sup|v1 − v2|κ
m−1K1(γ)(1 − e−lt)

+
q
φ1−q sup|v1 − v2|(1 − e−lt).

(3.77)

For a given t > 0 such that sup|v1 − v2| → 0 and knowing that φ > 0, |Ψ(x)| < ∞:∫
Rd

(v1 − v2)(t)ψ(t)dx ≤ 0→ v1(t) ≤ v2(t). (3.78)

Initially, it was assumed u1(t) ≥ u2(t), the only compatible result is to consider:

v1(t) = v2(t), (3.79)

showing, then, the uniqueness of solutions. �

3.3.4. Comparison of solutions

Theorem 3.3.4. Let u and v be two solutions to the problem P in QT , such that 0 < u0 ≤ v0 in Rd and
u0, v0 ∈ E0, then the following comparison principle holds:

0 < u ≤ v in QT (3.80)

Proof. Considering the definition of a weak solution with a test function φ(x, t) ∈ C∞(QT ) and for
0 ≤ τ < t < T :∫

Rd
u(t) φ(t)dx =

∫
Rd

u0(τ) φ(τ)dx +

∫ t

τ

∫
Rd

[(u) φt + (um) ∆φ + |x|σ uq(1 − u) φ]dxds. (3.81)

∫
Rd

v(t) φ(t)dx =

∫
Rd

v0(τ) φ(τ)dx +

∫ t

τ

∫
Rd

[(v) φt + (vm) ∆φ + |x|σ vq(1 − v) φ]dxds, (3.82)

where u0(τ) and v0(τ) are the initial data time translation in τ.
After subtraction:∫

Rd
(u − v)(t) φ(t)dx =

∫
Rd

(u0 − v0)(τ) φ(τ)dx

+

∫ t

τ

∫
Rd

[(u − v) φt + (um − vm) ∆φ + |x|σ (uq(1 − u) − vq(1 − v)) φ]dxds.
(3.83)

Note that the functions uq, vq are positive by initial assumption.
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The intention is to assess each of the integrals involved in (3.83), making use of the norm defined
in (3.3) and using the same test function structure than in (3.63), but probably with a different exponent
γ, namely:

φ(x, s) =
e−ls

(1 + |x|2)γ
. (3.84)

Then: ∫
Rd

(u0 − v0)(τ) φ(τ)dx ≤ ‖u0 − v0‖∗ · ‖φ‖∗, (3.85)

where:

‖φ‖∗ = lim
R→∞

R−d−aσ

∫
Rd
|φ(x)| dx

∼ |x|−d−aσ

∫
Rd

e−ls

(1 + |x|2)γ
dx.

(3.86)

Assume |x| → ∞ and γ selected as:

|x|−d−aσ

∫
Rd; |x|→∞

dx
(1 + |x|2)γ

= 0. (3.87)

For this purpose:
|x|−d−aσ |x|−2γ|x|d = 0, (3.88)

when |x| → ∞.
This condition implies that:

− d − aσ − 2γ + d < 0, (3.89)

for which it suffices to consider:
γ > −

aσ
2
, (3.90)

where aσ > 0 as shown in (3.4).
With the intention of preserving the decreasing behaviour with |x| in (3.84), it is required γ > 0, so

that (3.90) is satisfied as well.
As the function φ(x) is monotone decreasing with |x|, the maximum value for φ corresponds to

|x| = 0, maxx∈Rd φ(x, s) = e−ls. And returning to the integral (3.85):∫
Rd

(u0 − v0)(τ) φ(τ)dx ≤ ‖u0 − v0‖∗ · ‖φ‖∗ = ‖u0 − v0‖∗ lim
R→∞

R−d−aσ

∫
Rd
|φ(x)| dx

≤ ‖u0 − v0‖∗ lim
R→∞

R−d−aσ max|φ(x)|Rd = ‖u0 − v0‖∗ e−lτ lim
R→∞

R−aσ ,
(3.91)

where aσ > 0.
Assessing the rest of the integrals involved on (3.83):∫ t

τ

∫
Rd

[(u − v) φtdxds =

∫ t

τ

∫
Rd

(u − v) (−l) φ ≤
∫ t

τ

|−l|‖u − v‖∗ · ‖φ‖∗ds

≤ ‖u − v‖∗(e−lτ − e−lt) lim
R→∞

R−aσ .
(3.92)
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The assessment in the integral associated to the diffusion term is based on (3.75):∫ t

τ

∫
Rd

(um − vm) ∆φ ≤

∫ t

τ

κm−1‖u − v‖∗K1(γ)‖φ‖∗ds

≤

∫ t

τ

κm−1‖u − v‖∗K1(γ)e−lsds lim
R→∞

R−aσ

= κm−1‖u − v‖∗K1(γ)
1
l
(e−lτ − e−lt) lim

R→∞
R−aσ .

(3.93)

Before proceeding with the reaction term integral, the following shall be considered:∫
Rd
|x|σφ(x)dx ≤ ‖φ‖∗

∫
Rd
|x|σdx = lim

R→∞
R−d−aσ

∫
Rd
|φ(x)| dx

∫
Rd
|x|σdx

∼ lim
R→∞

R−d−aσe−ls
∫
Rd
|x|−2γdx

∫
Rd
|x|σdx ∼ e−ls 1

σ + 1
1

(−2γ + 1)
lim
R→∞

R−d−aσR−2γ+1Rσ+1.

(3.94)

Therefore, γ needs to satisfy the following inequality for convergence:

− d − aσ + σ + 2 − 2γ < 0, (3.95)

so that,

γ >
−d − aσ + σ + 2

2
. (3.96)

Aiming a single value of γ and considering (3.90), (3.96):

γ > max
{
−d − aσ + σ + 2

2
, −

aσ
2
, 0

}
. (3.97)

The assessment in the reaction terms leads to (with Kl the Lipschitz constant (3.61)):∫ t

τ

∫
Rd

(uq(1 − u) − vq(1 − v)) φdxds ≤ Kl

∫ t

τ

‖u − v‖∗

∫
Rd
|x|σφds

≤ Kl‖u − v‖∗
1

σ + 1
1

(−2γ + 1)
lim
R→∞

R−d−aσR−2γ+1Rσ+1
∫ t

τ

e−lsds

≤ Kl‖u − v‖∗
1
l

1
σ + 1

1
|−2γ + 1|

lim
R→∞

R−d−aσR−2γ+1Rσ+1(e−lτ − e−lt).

(3.98)

Finally, and after compilation:∫
Rd

(u − v)(t) φ(t)dx ≤ ‖u0 − v0‖∗ e−lτ lim
R→∞

R−aσ + ‖u − v‖∗ (e−lτ − e−lt) lim
R→∞

R−aσ

+ κm−1‖u − v‖∗K1(γ)
1
l
(e−lτ − e−lt) lim

R→∞
R−aσ

+ Kl‖u − v‖∗
1
l

1
σ + 1

1
|−2γ + 1|

lim
R→∞

R−d−aσR−2γ+1Rσ+1(e−lτ − e−lt).

(3.99)

Note that limR→∞ R−aσ = 0 and limR→∞ R−d−aσR−2γ+1Rσ+1 = 0. Where γ is as per expression (3.97).
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In terms of the time variable with τ→ ∞ and knowing that τ→ ∞ < s < t, then s , t → ∞. Under
this condition in the time variables:∫

Rd
(u − v)(t) φ(t)dx ≤ 0 → u(t) ≤ v(t), t → ∞. (3.100)

Given a solution with positive initial data, the solution is unique (see Theorem 3.3.3). The ordered
properties expressed at the initial conditions are preserved upon evolution with t → ∞ (3.100), hence
for any finite time u(t) ≤ v(t), t > 0, in QT �

4. Travelling waves existence and regularity

The TW profiles are expressed as v(x, t) = f (ξ), ξ = x · nd − at ∈ R, where nd is a unitary vector
in Rd that defines the TW-propagation direction. a is the TW-speed and f : R → (0,∞) belongs to
L∞(Rd). Note that two TW are equivalent under translation ξ → ξ + ξ0 and symmetry ξ → −ξ. For the
sake of simplicity, the vector nd is nd = (1, 0, ..., 0), then v(x, t) = f (ξ), ξ = x − at ∈ R.

Consider v(x, t) = f (ξ), then the problem P (2.1) in the TW domain:

−a f ′ = ( f m)′ + |ξ + at|σ f q(1 − f ),

f ∈ L∞(R), f ′(ξ) > 0, f (∞) = 1.
(4.1)

Working with the density and flux variables

X = f , Y = −( f m)′, (4.2)

the following system holds:

X′ = 1
m X1−mY,

Y ′ = a
m X1−mY + |ξ + at|σXq(1 − X),

(4.3)

with the critical point (1, 0) that represents a situation in which the invasive reaches the maximum
concentration at v = f = X = 1 in the given domain. The analysis of the TW features in the proximity
of the critical point permits to ennunciate:

Lemma 1. The critical point (1, 0) is a degenerate node with:

• One null eigenvalue,
• One real eigenvalue related to the TW speed a.

Proof. In the proximity of the critical point, the system (4.3) is rewritten in the compact form:(
X′

Y ′

)
=

(
0 1

m
0 a

m

) (
X
Y

)
, (4.4)

with eigenvalues
(
0, a

m

)
. This shows the existence of monotone stable TW solutions. The null

eigenvalue corresponds to the equilibrium solution X = 1, Y = 0.
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Based on the computation of the associated monotone eigenvectors, it is possible to obtain the
following leading front behaviour in the proximity of the critical point:

X = c1 − c2 e
a
m ξ , c1 > 0, c2 > 0. (4.5)

or equivalently ξ → −ξ which shows the regularity towards convergence in the TW solutions
approaching the critical point. �

4.1. Geometric perturbation theory

The geometric perturbation theory permits to show the asymptotic evolution of a hyperbolic
manifold defined to determine a TW profile. For this purpose, consider the manifold:

M0 = {X,Y / X′ =
1
m

X1−mY ; Y ′ =
a
m

X1−mY + |ξ + at|σXq(1 − X)}, (4.6)

so that the stationary condition (1, 0) holds.

The perturbed manifold Mε close to M0 is defined as:

Mε = {X ∼ 1,Y / X′ =
1
m

Y ; Y ′ =
a
m

Y}. (4.7)

The intention is to use the Fenichel invariant manifold theorem [13] as formulated in [2] and [17].
Then, the manifold Mε shall be proved to be a normally hyperbolic manifold, i.e., the eigenvalues of
Mε close to the critical point, and transversal to the tangent space shall have non-zero real part. This is
shown based on the following system for Mε:(

X′

Y ′

)
=

(
0 1

m
0 a

m

) (
X
Y

)
, (4.8)

with eigenvalues (0 , a/m). For λ = 0, the eigenvector is [1, 0] tangent to Mε . Therefore, Mε is a
hyperbolic manifold. The next intention is to show that the manifold Mε is locally invariant under the
flow given by the set of equations (4.3). For this purpose, it is required [17] that for all R > 0, for
all open interval J with a ∈ J and for any value of i ∈ N, there exists a δ such that for ε ∈ (0, δ) the
manifold Mε is invariant. Hence, consider i ≥ 1 and the functions:

φM0
1 = 1

m X1−mY,
φM0

2 = a
m X1−mY + |ξ + at|σXq(1 − X),

φMε

1 = 1
mY,

φMε

2 = a
mY,

(4.9)

which are Ci(BR(0) × I × [0, δ]) in the proximity of the critical point (1, 0).
A value for R > 0 can be chosen considering that Mε ∩ BR(0) is large enough so as to study the

complete TW evolution along the domain. The determination of δ is based on assessing the distance
between the flows in M0 and Mε . For this purpose, assume that the involved functions in such flows
are measurable a.e. in BR(0):

‖φM0
1 − φ

Mε

1 ‖ ≤
1
m
‖Y‖ ‖X1−m − 1‖ ≤ δ1‖X1−m − 1‖, (4.10)
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In addition,

‖φM0
2 − φ

Mε

2 ‖ ≤
a
m
‖Y‖ ‖X1−m − 1‖ + |ξ + at|σ|Xq|(1 − X) ≤ δ2‖X1−m − 1‖, (4.11)

which keeps the normal hyperbolic condition for X ↗ 1 for δ = max{δ1, δ2} ∈ (0,∞).
Once Mε has been shown to remain invariant with regards to the M0 under the flow (4.3), the TW

profiles can be obtained operating in Mε .

5. Travelling waves profiles and finite propagation

Based on the normal hyperbolic condition of Mε under the flow (4.3), asymptotic TW profiles are
obtained:

Y ′ =
a
m

Y → ( f m)′′ =
a
m

( f m)′ (5.1)

The last equation can be solved with standard methods:

( f m)′ −
a
m

( f m) = K, (5.2)

where K can be solved in the stationary f = 1, so that K = 1 − a
m . Hence:

f (ξ) =

(
1 − m

m
ξ + ‖v0‖

1−m

) 1
m−1

+ B, (5.3)

where B =
(
1 − m

a

) 1
m and the norm in v0 is defined as per (3.2). The positivity evolution for f permits to

conclude on some regularity results in the quasilinear parabolic operator (see Section 3). Nonetheless,
whenever:

f → ε → 0+ in BT
R = BR(x0.R) × [T − ε,T + ε], (5.4)

for T > 0, the non-linear diffusion elucidates the existence of a finite propagation speed. Cases of f →
ε → 0+ may happen for null initial conditions or in the borders of the hostile zone. The characterization
of such finite propagation speed is the purpose of the following theorem:

Theorem 5.0.1. There exists finite propagation speed when

v→ ε → 0+ in BT
R = BR(x0.R) × [T − ε,T + ε], (5.5)

T >> 1, where finite propagation refers to the existence of a positive convergent tail approaching the
null solution.

Proof. Consider the pressure variable w:

w =
m

m − 1
vm−1, (5.6)

so that the equation v in P reads:

wt = (m − 1)w∆w + |∇w|2 + µ|x|σwδ, (5.7)
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where δ =
q+m−2

m−1 and µ = m
(

m−1
m

)δ
. Note that w→ 0 then:

wt ∼ |∇w|2 + µ|x|σwδ. (5.8)

A solution to a similar equation has been provided in [8]. For this purpose, define the following
solution:

W(x, t) = a
(
bt + r −

1
n

)
+

, r = |x|, n ∈ N, (5.9)

where each of the coefficients shall be assessed to ensure W is a maximal solution. The determination
of each of the constant involved follows a similar approach to that in [11] but with the required
modification. For 0 ≤ τ ≤ 1, impose bτ = 1

2n . Under this condition:

W(x, t) ≡ 0 f or r <
1

2n
and 0 ≤ t ≤ τ. (5.10)

Any solution to the equation (5.8) is bounded when 0 < v < 1, then:

v(x, t) ≤ K1 < 1 f or x ∈ R, 0 ≤ t ≤ τ and K1(p, ‖u0‖∞). (5.11)

W(x, t) is required to be a maximal solution:

W(x, t) ≥ v(x, t), (5.12)

then

a
(
bt + r −

1
n

)
+

≥ K1. (5.13)

For r > 1
n , consider r = 2

n and for t = 0:

a
(
2
n
−

1
n

)
+

≥ K1, a ≥ nK1. (5.14)

Note that:
W(x, t) ≥ v(x, t), (5.15)

in r = 2
n and 0 ≤ t ≤ τ. A condition for b is obtained considering that W(x, t) is a supersolution in

0 < r < 2
n , 0 ≤ t ≤ τ:

Wt ≥
m − 1

m
|∇W |2 + c · ∇W

1
m − 1

. (5.16)

In addition:
Wt = ab; Wr = a, (5.17)

then:
b ≥

m − 1
m

a + c
1

m − 1
(5.18)

For the values of a and b in expressions (5.14) and (5.18) respectively, the function W(x, t) is a
supersolution locally:

W(x, t) ≥ w(x, t), 0 < |x| <
2
n
, 0 ≤ t ≤ τ. (5.19)

The inequality (5.19) reflects the null condition of W in BT
R , then, any minimal solution w(x, t) satisfies

such null condition and, hence, it exhibits finite propagation in BT
R .

�
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The expression (5.3) provides the characteristic profile in relation with the diffusion front (note the
parameter m). The invasive TW profile follows a potential law ∼ ξ

1
m−1 (m > 1) in the convergence to the

stationary condition as a result of the invasive proliferation. Such potential law reflects the behaviour
of the invasive in the proximity of the hostile zone ξ → 0+ where the derivative is not bounded. The
invasive pressure increases in the hostile zone, nonetheless the finite propagation feature in the border
of such hostile area due to the non-linear diffusion slows down the invasive pressure and preserves the
hostile area.

6. Conclusions

The proposed problem P (2.1) has been discussed stressing existence, uniqueness, comparison of
solutions and Travelling Waves supported by the Geometric Perturbation Theory. In addition, the finite
speed of propagation, induced by the porous medium diffusion, has been shown and a characterization
of such property has been explored. The potential law in the TW profile suggests that the pressure
induced by the invasive over the hostile area increases along the evolution. Nonetheless, the finite
speed induced by the non-linear diffusion avoids a violent invasion of the specie in such hostile zone.
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