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1. Introduction

It is evidenced in the literature that one can use conjugacy classes to investigate structures of finite
groups, see [1–6, 8, 11, 12, 14], to name a few. In fact, the number of distinct conjugacy classes of a
finite group is an important numerical property; it is indeed the number of non-equivalent irreducible
representations of that group over the complex numbers. Among other things, the class equation,

|G| = |Z(G)| +
n∑

i=1

[G : CG(gi)], (1.1)

where g1, g2, . . . , gn are representatives of the distinct conjugacy classes of G not contained in the
center Z(G), is a fundamental tool in studying structures of finite groups and has several applications

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2022304


5481

in mathematics. In [1], the authors use the equivalence relation on a finite group G defined by x ∼ y if
and only if |K(x)| = |K(y)| for all x, y ∈ G to study the structure of G, where K(g) denotes the conjugacy
class of g. The set of sizes of equivalence classes with respect to this relation is called the same-size
conjugate set of G, denoted by U(G). In this article, we focus on the study of finite groups G with
|U(G)| = 2 from a graph-theoretic point of view.

In [10], the authors introduce the notion of a conjugate graph associated to a finite non-abelian
group. If G is a finite non-abelian group, the conjugate graph of G, denoted by Γc

G, is defined as an
undirected graph with vertex set G \ Z(G) such that two distinct vertices joined by an edge if they
are conjugate. They show that several properties of finite groups can be studied via their conjugate
graphs. In fact, they prove that if G is a finite group such that Γc

G � Γc
S , then S � G, where S is a

finite non-abelian simple group that satisfies Thompson’s conjecture. It turns out that several algebraic
properties of finite groups can be expressed via their conjugate graphs with isolated vertices of their
centers. Therefore, we extend this definition in a natural way by introducing the notion of an extended
conjugate graph. In this work, we show that several properties of finite groups are reflected in their
extended conjugate graphs and vice versa. We also show that there is a nice relation between a graph-
theoretic property, namely regularity, and an algebraic property, namely nilpotency. We then find out
some sufficient conditions and necessary conditions for the non-central part of an extended conjugate
graph to be regular. A few concrete examples that illustrate our results are given as well.

2. Preliminaries

In this section, we collect preliminary results in group theory and graph theory for reference. For
basic knowledge of abstract algebra and graph theory, we refer the reader to [9] and [17], respectively.
The list of symbols used throughout this article is given at the end of the article.

Recall that the center of a group G is defined by Z(G) = {z ∈ G : zg = gz for all g ∈ G}. The
centralizer of an element g ∈ G is defined by CG(g) = {x ∈ G : xgx−1 = g}. For all a, b ∈ G, define a c b
if and only if b = hah−1 for some h ∈ G. Then c is an equivalence relation on G. The equivalence class
of g ∈ G is called the conjugacy class of g, which is given by K(g) = {xgx−1 : x ∈ G}.

Theorem 2.1. Let G1,G2, . . . ,Gn be groups. For any element (g1, g2, . . . , gn) ∈
n∏

i=1

Gi,

K((g1, g2, . . . , gn)) = K(g1) × K(g2) × · · · × K(gn).

Proof. This is a standard result in abstract algebra. �

Given a finite group G, define R(G) to be the probability that a pair of elements, chosen at random
in G, will commute with each other (cf. p. 200, [15]), that is,

R(G) =
|{(g, h) ∈ G ×G : gh = hg}|

|G|2
. (2.1)

The number R(G) will be referred to as the probability of commutativity in G.

Theorem 2.2. (Theorem 1, [15]) If G is a finite group with n conjugacy classes, then

R(G) =
n
|G|
. (2.2)
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Let G be a finite group. Let n1, n2, . . . , nr, where n1 > n2 > · · · > nr = 1, be all the numbers each of
which is the size of the conjugacy class of some element of G. The vector (n1, n2, . . . , nr) is called the
conjugate type vector of G. A group G with the conjugate type vector (n1, n2, . . . , nr) is called a group
of conjugate type (n1, n2, . . . , nr), see p. 17 of [14].

Theorem 2.3. (Theorem 1, [14]) Any group of conjugate type (n1, 1) is nilpotent.

Recall that an undirected simple graph is regular if every its vertex has the same degree. A graph
isomorphism is a bijection between the vertex sets of two graphs that preserves adjacency. A graph
isomorphism from a graph Γ to itself is called a graph automorphism. A graph Γ is vertex-transitive if
for each pair of two vertices u and v in Γ, there exists a graph automorphism φ of Γ such that φ(u) = v.

Theorem 2.4. (p. 221, [7]) Every complete graph is vertex-transitive.

Theorem 2.5. (Proposition 3.1, [16]) A graph is vertex-transitive if and only if its components are all
vertex-transitive and are pairwise isomorphic.

3. Main results

In this section, we introduce the definition of an extended conjugate graph associated to a finite
group and investigate properties of finite groups via their extended conjugate graphs. In Section 3.1,
we indicate that several properties of finite groups are reflected in their extended conjugate graphs
and vice versa. In particular, we show that the probability of commutativity in a finite group can be
expressed in terms of its extended conjugate graph and give a graph-theoretic proof of the well-known
class equation for finite groups. In Section 3.2, we show that there is a remarkable connection between
a graph-theoretic property, namely regularity, and an algebraic property, namely nilpotency. We then
find out some sufficient conditions and necessary conditions for the non-central part of an extended
conjugate graph to be regular. In Section 3.3, we explore extended conjugate graphs associated to
groups of order pq, p3, and p4, where p and q are distinct primes. We show that a non-abelian group
of order p3 always has a regular conjugate graph and that a non-abelian group of order p4 may have a
regular or non-regular conjugate graph. We also find their clique and domination numbers.

3.1. Algebraic properties of finite groups via extended conjugate graphs

Let G be a finite non-abelian group. In [10], the authors define the conjugate graph of G, denoted
by Γc

G, to be an undirected graph with the vertex set G \ Z(G) such that two distinct vertices joined
by an edge if they are conjugate. It turns out that several algebraic properties of finite groups can be
expressed via their conjugate graphs that add isolated vertices of their centers. Therefore, we extend
this definition as follows.

Definition 3.1. (Extended conjugate graphs) Let G be a finite group. The extended conjugate graph
of G, denoted by Γe

G, is defined as an undirected graph with the vertex set G and the edge set E =

{{u, v} : u, v ∈ G, u , v, v = gug−1 for some g ∈ G}.

By definition, it is clear that if G is a finite non-abelian group, then the extended conjugate graph of
G is the union of the conjugate graph of G and the isolated vertices corresponding to the elements of
Z(G). In other words, the conjugate graph of G is simply the subgraph of Γe

G induced by G \ Z(G), that
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is, Γc
G = Γe

G[G \ Z(G)]. As is well known, z ∈ Z(G) if and only if K(z) = {z}. Hence, a finite group G is
abelian if and only if its extended conjugate graph is the empty graph with |Z(G)| vertices. Therefore,
it seems reasonable to study the extended conjugate graph of a finite non-abelian group.

Proposition 3.2. Let G and H be finite groups. If G and H are isomorphic as groups, then Γe
G and Γe

H
are isomorphic as graphs.

Proof. It is not difficult to check that if ϕ : G → H is a group isomorphism, then ϕ is a graph
isomorphism from Γe

G to Γe
H as well. �

Proposition 3.2 indicates that construction of an extended conjugate graph is an invariant of groups:
groups that are isomorphic have extended conjugate graphs that are isomorphic. We remark that the
converse to Proposition 3.2 is not true; a counterexample will be exhibited in Section 3.3.2.

Let G be a finite group. As usual, the extended conjugate graph of G induces an equivalence relation
p on G: u p v if and only if either u = v or there is a path from u to v in Γe

G. Therefore, Ξ is a component
of Γe

G if and only if there is an equivalence class C determined by p such that Ξ is the subgraph of Γe
G

induced by C, that is, Ξ = Γe
G[C]. Note that u p v if and only if u and v are in the same component

of Γe
G.

Lemma 3.3. Let G be a finite group. For all u, v ∈ G, u and v are conjugate if and only if u p v.

Proof. The direct implication is clear. To prove the reverse implication, suppose that u , v and
that there is a path from u to v, say u = u0, u1, . . . , un = v. By definition, there are elements
g1, g2, . . . , gn ∈ G such that u1 = g1u0g−1

1 , u2 = g2u1g−1
2 , . . . , and un = gnun−1g−1

n . Hence,
v = (gngn−1 · · · g1)u(gngn−1 · · · g1)−1. �

Lemma 3.4. Let G be a finite group. Then Ξ is a component of Γe
G if and only if Ξ = Γe

G[C] for some
conjugacy class C of G.

Proof. The lemma follows from Lemma 3.3. �

In view of Lemma 3.4, there is a strong relationship between the components of the extended
conjugate graph and the conjugacy classes of a finite group. In particular, we have the following
theorem.

Theorem 3.5. Let G be a finite group. Then the number of components of the extended conjugate
graph of G equals the number of conjugacy classes of G.

Proof. The theorem follows from Lemma 3.4. �

Corollary 3.6. If G is a finite group, then the number of components of the extended conjugate graph

of G equals
1
|G|

∑
g∈G

|CG(g)|.

Proof. It is a standard result in abstract algebra that the number of conjugacy classes of G is
1
|G|

∑
g∈G

|CG(g)|. �

AIMS Mathematics Volume 7, Issue 4, 5480–5498.



5484

Recall that R(G) is the probability that a pair of elements of a finite group G, chosen at random
in G, will commute with each other. One nice result shows that R(G) ≤ 5

8 for all finite non-abelian
groups G and equality holds if and only if |G/Z(G)| = 4; see, for instance, Theorem 2 of [15]. As a
consequence of Theorem 3.5, we obtain a formula that relates a numerical property of finite groups to
a graph-theoretic property of their extended conjugate graphs.

Theorem 3.7. If G is a finite group, then

R(G) =
the number of components of Γe

G

the number of vertices of Γe
G

. (3.1)

Proof. The theorem follows from Theorems 2.2 and 3.5. �

As an immediate consequence of Theorem 3.7, we obtain an upper bound for the number of
components of the extended conjugate graph of a finite group G in terms of the order of G.

Corollary 3.8. Let G be a finite non-abelian group. Then the number of components of Γe
G is less than

or equal to 5
8 |G| and equality holds if and only if |G/Z(G)| = 4.

Proof. The corollary follows from Theorem 2 of [15] and Theorem 3.7. �

The next theorem gives an upper bound for the number of components of the extended conjugate
graph of a finite group G in terms of the least prime that divides the order of G.

Theorem 3.9. Let G be a finite non-abelian group. If p is the least prime dividing |G|, then the number

of components of Γe
G is less than or equal to

p2 + p − 1
p3 |G|. Furthermore, equality holds if and only if

|G/Z(G)| = p2.

Proof. By Theorem 3 of [15], R(G) ≤
p2 + p − 1

p3 . By Theorem 3.7, the number of components of Γe
G is

R(G)|G|. Hence, the number of components of Γe
G is less than or equal to

p2 + p − 1
p3 |G|. By Theorem 3

of [15], R(G) =
p2 + p − 1

p3 if and only if |G/Z(G)| = p2, which completes the proof. �

Recall a useful formula in the theory of finite groups: if G is a finite group, then |G| = |K(g)||CG(g)|
for all g ∈ G; see, for instance, Proposition 6 in p. 123 of [9]. We express this result via the notion of
an extended conjugate graph, as shown in the following proposition.

Proposition 3.10. Let G be a finite group and let g ∈ G. If Ξ is a component of Γe
G containing vertex

g, then V(Ξ) = K(g) and |V(Ξ)| = [G : CG(g)].

Proof. By Lemma 3.4, Ξ = Γe
G[C], where C is a conjugacy class of G. Since g ∈ V(Ξ), we have g ∈ C

and so C = K(g). Hence, V(Ξ) = C = K(g). As mentioned above, |V(Ξ)| = |K(g)| =
|G|
|CG(g)|

=

[G : CG(g)]. �
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It is remarkable that Proposition 3.10 can be utilized to give a graph-theoretic proof of the class
equation as follows. Let G be a finite group and consider the extended conjugate graph of G. Suppose
that Θ1,Θ2, . . . ,Θm,Ξ1,Ξ2, . . . ,Ξn are the distinct components of Γe

G, where Θi has one vertex and Ξ j

has at least two vertices for all i = 1, 2, . . . ,m, j = 1, 2, . . . , n. Thus, m = |Z(G)|. Let g j be a vertex in
Ξ j for all j = 1, 2, . . . , n. Then, by counting the number of vertices of Γe

G,

|G| = |V(Γe
G)|

= |V(Θ1)| + |V(Θ2)| + · · · + |V(Θm)| + |V(Ξ1)| + |V(Ξ2)| + · · · + |V(Ξn)|
= m + [G : CG(g1)] + [G : CG(g2)] + · · · + [G : CG(gn)]

= |Z(G)| +
n∑

j=1

[G : CG(g j)].

We clarify the structure of extended conjugate graphs in the following proposition. In fact, the
extended conjugate graph of any finite group is a union of complete graphs.

Proposition 3.11. Let G be a finite group. If Ξ is a component of Γe
G ,then Ξ is a complete graph.

Proof. Let a, b ∈ V(Ξ) with a , b. By Lemma 3.4, Ξ = Γe
G[C] for some conjugacy class C of G.

Hence, a and b are conjugate and so there is an edge between a and b. �

Recall that a subset C of vertices of a graph Γ is called a clique if the induced subgraph Γ[C] is a
complete graph. The maximum cardinality of a clique is called the clique number of Γ, denoted by
ω(Γ). In light of Proposition 3.11, if g and h are not in the same conjugacy class of a finite group G,
then any subset of G that contains both g and h is never a clique. In fact, C is a clique if and only if
C ⊆ K(g) for some g ∈ G. Therefore, by Propositions 3.10 and 3.11, if G is a finite group, then the
clique number of the extended conjugate graph of G is given by

ω(Γe
G) = max {|K(g)| : g ∈ G}. (3.2)

The next proposition gives an upper bound for the clique number of the extended conjugate graph of a
finite group G in terms of the order of the quotient group G/Z(G).

Proposition 3.12. For any finite group G, the clique number of the extended conjugate graph of G is
less than or equal to the order of G/Z(G), that is, ω(Γe

G) ≤ |G/Z(G)|.

Proof. Let g ∈ G. Since Z(G) ⊆ CG(g), it follows that |Z(G)| ≤ |CG(g)|. Thus,

|K(g)| =
|G|
|CG(g)|

≤
|G|
|Z(G)|

= |G/Z(G)|.

Since g is arbitrary, ω(Γe
G) ≤ |G/Z(G)|, as required. �

Recall that a dominating set for a graph Γ is a subset D of V(Γ) such that every vertex not in D
is adjacent to at least one vertex in D. The domination number, denoted by γ(G), is defined as the
minimum cardinality of a dominating set of Γ. By Proposition 3.11, every component of an extended
conjugate graph is a complete graph. Hence, we obtain the following proposition immediately.
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Proposition 3.13. For any finite group G, the domination number of the extended conjugate graph of
G equals the number of the components of the extended conjugate graph of G.

We close this section with the relationship that relates the domination numbers of a finite group G,
its normal subgroup N, and its quotient group G/N.

Theorem 3.14. Let G be a finite group and let N be a normal subgroup of G. Then

γ(Γe
G) ≤ γ(Γe

G/N)γ(Γe
N). (3.3)

Proof. As proved in [11], k(G) ≤ k(G/N)k(N). Hence, γ(Γe
G) ≤ γ(Γe

G/N)γ(Γe
N) because k(H) = γ(Γe

H)
for any finite group H by Theorem 3.5 and Proposition 3.13. �

3.2. Regularity of the non-central part of extended conjugate graphs

Observe that if G is a finite non-abelian group, then there are at least two conjugacy classes of
G such that one is the singleton {e} and the other has at least two elements. This implies that the
whole extended conjugate graph of G is never regular. Moreover, it is never vertex-transitive by
Theorem 2.5. Therefore, it makes sense to restrict attention to regularity and vertex-transitivity of the
induced subgraph of Γe

G by G\Z(G). Throughout the remainder of this article, by the non-central part of
the extended conjugate graph of G we mean the induced subgraph Γe

G[G \ Z(G)], which coincides with
the conjugate graph of G. In this section, we focus on sufficient conditions and necessary conditions
for the non-central part of an extended conjugate graph to regular.

Theorem 3.15. Let G be a finite non-abelian group. Then the following statements are equivalent:

(i) the non-central part of the extended conjugate graph of G is a union of Km’s;

(ii) the non-central part of the extended conjugate graph of G is regular;

(iii) the non-central part of the extended conjugate graph of G is vertex-transitive.

Proof. That (i) implies (ii) is trivial. Suppose that the non-central part of Γe
G is regular. Let Ξ1 and Ξ2

be two components of the non-central part of Γe
G. Pick u ∈ V(Ξ1) and v ∈ V(Ξ2). By Proposition 3.11,

Ξ1 and Ξ2 are complete graphs. Hence, deg u = |V(Ξ1)| − 1 and deg v = |V(Ξ2)| − 1. By assumption,
deg u = deg v and so |V(Ξ1)| = |V(Ξ2)|. By Theorems 2.4 and 2.5, the non-central part of Γe

G is vertex-
transitive. This proves that (ii) implies (iii). Suppose that the non-central part of Γe

G is vertex-transitive
and assume that it is the union of Km1 ,Km2 , . . . ,Kmr . By Theorem 2.5, Kmi and Km j must be isomorphic
for all i, j and so mi = |V(Kmi)| = |V(Km j)| = m j for all i, j. This proves that (iii) implies (i). �

In [14], Itô investigates the structure of finite groups of conjugate type (n1, 1) from an algebraic
point of view. By definition, if G is a finite group of conjugate type (n1, 1), then G is non-abelian and
every conjugacy class not in the center of G has the same size n1. Hence, the non-central part of the
extended conjugate graph of G is regular. This allows us to formulate a graph-theoretic version of Itô’s
result as follows.
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Theorem 3.16. Let G be a finite non-abelian group. If the non-central part of the extended conjugate
graph of G is regular, then G is nilpotent.

Proof. By Theorem 3.15, the non-central part of Γe
G is a union of Km’s. This implies that all conjugacy

classes not contained in Z(G) have the same size m and so G is of conjugate type (m, 1). By Itô’s result
(see Theorem 2.3), G is nilpotent. �

We remark that the converse to Theorem 3.16 is not true. The dihedral group D16 is nilpotent since
it is a 2-group. However, the non-central part of the extended conjugate graph of D16 is not regular. In
fact, it consists precisely of three copies of K2 and two copies of K4, see Figure 1. As a consequence
of Theorem 3.16, we obtain a simple condition to confirm the non-regularity of the non-central part of
an extended conjugate graph.

Figure 1. Graphical presentation of Γe
D16

.

Theorem 3.17. If G is a non-trivial finite group having a trivial center, then the non-central part of the
extended conjugate graph of G is not regular.

Proof. Suppose that G , {e} and that Z(G) = {e}. Then the upper central series of G never reaches G
and so G is not nilpotent. By Theorem 3.16, the non-central part of Γe

G is not regular. �

As an application of Theorem 3.17, the non-central part of the extended conjugate graph of the
following group is not regular:

(1) the symmetric group S n for all n ≥ 3;

(2) the dihedral group D2n for all odd integers n ≥ 3;

(3) any non-abelian finite simple group;

(4) any Frobenius group,

because its center is trivial. In particular, we have the following theorem, which states that the regularity
of the non-central part of an extended conjugate graph can be used to test non-simplicity of finite non-
abelian groups.

Theorem 3.18. Let G be a finite non-abelian group. If the non-central part of the extended conjugate
graph of G is regular, then G is not simple.

Proof. We prove the contrapositive. Suppose that G is simple. Then G , {e}. Since G is not abelian,
Z(G) , G. By definition, Z(G) = {e} because Z(G) EG. By Theorem 3.17, the non-central part of Γe

G
is not regular. �
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Lemma 3.19. Let G1,G2, . . . ,Gn be finite groups such that at least one of them is non-abelian and set

J = { j : 1 ≤ j ≤ n,G j is non-abelian}. If the non-central part of the extended conjugate graph of
n∏

i=1

Gi

is regular, then |J| = 1 and the non-central part of the extended conjugate graph of G j with j ∈ J is
regular.

Proof. Note that
n∏

i=1

Gi is not abelian because J , ∅. Denote by ek the identity of Gk for all k =

1, 2, . . . , n.
We first prove that |J| = 1. Assume to the contrary that |J| ≥ 2. Thus, we can pick i, j ∈ J with i , j

so that Gi and G j are non-abelian. Let g ∈ Gi \ Z(Gi) and let h ∈ G j \ Z(G j). Set

x = (e1, . . . , ei−1, g, ei+1, . . . , en) and y = (e1, . . . , e j−1, h, e j+1, . . . , en).

Since Z

 n∏
i=1

Gi

 =

n∏
i=1

Z(Gi), x and xy do not lie in Z

 n∏
i=1

Gi

. Using Theorem 2.1, we obtain that

|K(x)| = |K(g)| and |K(xy)| = |K(g)||K(h)|. Since |K(h)| > 1, it follows that |K(x)| , |K(xy)|, contrary to
the assumption. This implies |J| = 1.

Fix j ∈ J and let g, h ∈ G j \ Z(G j). Note that (e1, . . . , e j−1, g, e j+1, . . . , en) and

(e1, . . . , e j−1, h, e j+1, . . . , en) do not lie in Z

 n∏
i=1

Gi

. By Theorem 2.1,

K((e1, . . . , e j−1, g, e j+1, . . . , en)) = K(e1) × · · · × K(e j−1) × K(g) × K(e j+1) × · · · × K(en)

and

K((e1, . . . , e j−1, h, e j+1, . . . , en)) = K(e1) × · · · × K(e j−1) × K(h) × K(e j+1) × · · · × K(en).

By assumption, |K((e1, . . . , e j−1, g, e j+1, . . . , en))| = |K((e1, . . . , e j−1, h, e j+1, . . . , en))|, which implies that
|K(g)| = |K(h)|. This shows that any two components of the non-central part of Γe

G j
have the same

number of vertices, which completes the proof. �

We remark that the converse to Lemma 3.19 is in general not true. It is trivially true when n = 1.
However, there is a counterexample when n ≥ 2. In fact, consider the direct product D8 × D8. Using
the presentation D8 = 〈r, s : r4 = s2 = e, rs = sr−1〉, we obtain that the conjugacy classes of D8 are

{e}, {r2}, {r, r3}, {s, sr2}, {sr, sr3}. (3.4)

Therefore, the component of Γe
D8×D8

containing (e, r) has two vertices, whereas the component of Γe
D8×D8

containing (r, s) has four vertices, see Figure 2.
We are now in a position to give a sufficient and necessary condition for the non-central part of an

extended conjugate graph to be regular.
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Figure 2. Graphical presentation of Γe
D8×D8

.

Theorem 3.20. Let G be a finite non-abelian group. Then the non-central part of the extended
conjugate graph of G is regular if and only if G � P × A, where P is a finite p-group such that
the non-central part of its extended conjugate graph is regular and A is a finite abelian group.

Proof. Suppose that the non-central part of Γe
G is regular. By Theorem 3.16, G is nilpotent. As a

standard result in the theory of finite groups, G � P1×P2×· · ·×Pn, where P1, P2, . . . , Pn are the Sylow
subgroups of G corresponding to each prime dividing |G|. By Proposition 3.2, Γe

G � Γe
P1×P2×···×Pn

. Since

P1 × P2 × · · · × Pn � Pσ(1) × Pσ(2) × · · · × Pσ(n)

for all σ ∈ S n, we can rearrange the factors Pi’s so that P1, P2, . . . , Pr are non-abelian and
Pr+1, Pr+2, . . . , Pn are abelian. Since G is non-abelian, P1, P2, . . . , Pr exist. In the case when
Pr+1, Pr+2, . . . , Pn do not exist, we define A = {e}; otherwise, we define A = Pr+1 × Pr+2 × · · · × Pn. A
similar argument as in the proof of Lemma 3.19 shows that r = 1. Define P = P1. Since P is a Sylow
subgroup of G, it is indeed a finite p-group. By Lemma 3.19, the non-central part of Γe

P is regular. The
converse can be proved by using Theorem 2.1. �

We remark that the group P mentioned in Theorem 3.20 is of conjugate type (pk, 1) for some prime
p and for some k ∈ N. In fact, for each x ∈ P \ Z(P), |K(x)| > 1 and |K(x)| divides |P|. Hence,
|K(x)| = pk, where p is a unique prime factor of |P| and k ∈ N. Next, define two classes of finite
non-abelian groups:

S = {G : G is a finite non-abelian group and Γe
G[G \ Z(G)] is regular} (3.5)
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and

T = {G : G is a finite non-abelian p-group and Γe
G[G \ Z(G)] is regular}. (3.6)

Theorem 3.16 asserts that S is (properly) contained in the class of finite nilpotent groups. Theorem 3.20
asserts that S will be completely determined once T is completely determined. In other words, the
study of finite non-abelian groups whose conjugate graphs are regular reduces to the case of finite
p-groups. This will be partially done in Section 3.3 in the case of p3 and p4.

For any finite group G, let π(G) be the set of prime divisors of |G|. Define a set ρ(G) ⊆ π(G) by the
condition that p ∈ ρ(G) if and only if a Sylow p-subgroup of G is non-abelian. In view of Lemma 3.19
and Theorem 3.20, we obtain the following theorem.

Theorem 3.21. Let G be a finite nilpotent group that is non-abelian. Then the non-central part of
the extended conjugate graph of G is regular if and only if |ρ(G)| = 1 and the non-central part of the
extended conjugate graph of a Sylow subgroup of G corresponding to a unique prime in ρ(G) is regular.

Corollary 3.22. If G is a finite nilpotent group with |ρ(G)| ≥ 2, then the non-central part of the extended
conjugate graph of G is not regular.

It is easy to see that any direct product of non-abelian groups of prime power order satisfies the
condition of Corollary 3.22. In [18], the authors show that two specific non-abelian groups of order 16
and 81 have regular conjugate graphs. We generalize this result to a general case, as shown in the
following theorem.

Theorem 3.23. Let G be a finite non-abelian group. If |G/Z(G)| = p2, where p is a prime, then the non-

central part of the extended conjugate graph of G is the union of n copies of Kp, where n =
|G| − |Z(G)|

p
.

Proof. Let g ∈ G \ Z(G). Then |K(g)| ≥ 2. Note that Z(G) 6 CG(g) 6 G, which implies p2 =

[G : Z(G)] = [G : CG(g)][CG(g) : Z(G)] = |K(g)|[CG(g) : Z(G)]. Thus, |K(g)| divides p2 and so |K(g)| =
p or |K(g)| = p2. If |K(g)| = p2, we would have [CG(g) : Z(G)] = 1 and would have Z(G) = CG(g),
which would imply g ∈ Z(G), a contradition. Hence, |K(g)| = p. Therefore, the component containing
g, which is a complete graph by Proposition 3.11, has p vertices. Since the non-central part of Γe

G has

|G| − |Z(G)| vertices, the number of copies of Kp equals
|G| − |Z(G)|

p
. �

Corollary 3.24. Let G be a finite non-abelian group. If |G/Z(G)| = p2, where p is a prime, then the
non-central part of the extended conjugate graph of G is regular.

The converse to Corollary 3.24 is not true; a counterexample is the inner holomorph of the dihedral
group D8, denoted by IHol(D8). The conjugacy classes of IHol(D8) is computed in the Appendix. In
fact, |Z(IHol(D8)|) = 2 and the non-central part of the extended conjugate graph of IHol(D8) is the
union of 15 copies of K2, see Figure 3. However, |IHol(D8)/Z(IHol(D8))| = 16 is not the square of a
prime. As an application of Theorem 3.23, we obtain a formula for determining the clique number
as well as the domination number of a finite non-abelian group G such that G/Z(G) has a prime
squared order.
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Figure 3. Graphical presentation of Γe
IHol(D8).

Corollary 3.25. Let G be a finite non-abelian group. If |G/Z(G)| = p2, where p is a prime, then
ω(Γe

G) = p.

Proof. Note that |K(g)| = 1 for all g ∈ Z(G). By Theorem 3.23, |K(g)| = p for all g ∈ G \ Z(G). Hence,
ω(Γe

G) = p by Eq (3.2). �

Corollary 3.26. Let G be a finite non-abelian group. If |G/Z(G)| = p2, where p is a prime, then

γ(Γe
G) =

(p − 1)|Z(G)| + |G|
p

.

Proof. By Theorem 3.23, the number of components of Γe
G equals |Z(G)| +

|G| − |Z(G)|
p

. Then the

corollary follows from Proposition 3.13. �

3.3. Extended conjugate graphs of finite groups of particular order

In light of Theorem 3.20, it suffices to study regularity of the extended conjugate graph of a finite
p-group. Therefore, in this section, we examine the extended conjugate graph of a group of order pq,
p3 and p4, where p and q are distinct primes. We emphasize that groups of order p and p2 are always
abelian for any prime p.

Suppose that G is a non-abelian group of order pq, where p and q are primes. We remark that p and
q are necessarily distinct since any group of prime squared order is abelian. Furthermore, p | (q − 1)
since if p - (q − 1), then G � Zpq (cf. p. 143 of [9]) and so G is abelian. Note that, as mentioned in
p. 179 of [9], if p and q are distinct primes such that p | (q − 1), then there is a unique non-abelian
group of order pq, up to isomorphism.

Proposition 3.27. If G is a non-abelian group of order pq, where p and q are distinct primes, then the
non-central part of the extended conjugate graph of G is not regular.

Proof. By Lagrange’s theorem, |Z(G)| ∈ {1, p, q, pq}. Since G is not abelian, it follows that |Z(G)| , pq.
If |Z(G)| ∈ {p, q}, then |G/Z(G)| would be a prime and G/Z(G) would be a cyclic group, which would
imply that G is abelian, a contradiction. Hence, |Z(G)| = 1. By Theorem 3.17, the non-central part of
Γe

G is not regular. �
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3.3.1. Non-abelian groups of order p3

In this section , we prove that an arbitrary non-abelian group of order p3, where p is a prime, always
has a regular conjugate graph. This enables us to compute the clique and domination numbers of the
extended conjugate graph associated to a non-abelian group of order p3 explicitly.

Theorem 3.28. Let p be a prime. The non-central part of the extended conjugate graph of any non-
abelian group of order p3 is the union of p2 − 1 copies of Kp and hence is a regular graph.

Proof. Let G be a non-abelian group of order p3. By Lagrange’s theorem, |Z(G)| ∈ {1, p, p2, p3}. A
similar argument as in the proof of Proposition 3.27 shows that |Z(G)| < {p2, p3}. Since G is a non-
trivial finite p-group, Z(G) , {e} and so |Z(G)| , 1. This forces |Z(G)| = p. Hence, |G/Z(G)| = p2.

By Theorem 3.23, the non-central part of Γe
G is the union of n copies of Kp, where n =

|G| − |Z(G)|
p

=

p2 − 1. �

Corollary 3.29. Let p be a prime. If G is a direct product of a non-abelian group of order p3 and a
finite abelian group, then the non-central part of the extended conjugate graph of G is regular.

Proof. The corollary follows from Theorems 3.20 and 3.28. �

It is not difficult to check that any nilpotent non-abelian group of order p3q or p3q2, where p and q
are distinct primes, satisfies the condition of Corollary 3.29.

Corollary 3.30. If G is a non-abelian group of order p3, where p is a prime, then ω(Γe
G) = p.

Theorem 3.31. If G is a non-abelian group of order p3, where p is a prime, then γ(Γe
G) = p2 + p − 1

and R(G) =
p2 + p − 1

p3 .

Proof. As in the proof of Theorem 3.28, |Z(G)| = p and |G/Z(G)| = p2. It then follows by

Corollary 3.26 that γ(Γe
G) =

(p − 1)|Z(G)| + |G|
p

= p2 + p − 1. That R(G) =
p2 + p − 1

p3 follows

from Theorem 3.7 and Proposition 3.13. �

3.3.2. Non-abelian groups of order p4

In this section, we show that the non-central part of the extended conjugate graph associated to a
non-abelian group of order p4, where p is a prime, may be regular or non-regular. Furthermore, in the
case when it is regular, it must be a union of complete graphs Kp.

Theorem 3.32. Let p be a prime. If G is a non-abelian group of order p4, then either

(1) the non-central part of the extended conjugate graph of G is not regular or

(2) the non-central part of the extended conjugate graph of G is a union of Kp’s.

Proof. Suppose that |G| = p4. If the non-central part of Γe
G is not regular, then we are done. Therefore,

we may assume that the non-central part of Γe
G is regular. By Lagrange’s theorem, |Z(G)| lies in

{1, p, p2, p3, p4}. A similar argument as in the proof of Theorem 3.28 shows that |Z(G)| < {1, p3, p4}.
Thus, |Z(G)| is p or p2. In the case when |Z(G)| = p2, we obtain that |G/Z(G)| = p2 and so the
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non-central part of Γe
G is a union of Kp’s by Theorem 3.23. Next, suppose that |Z(G)| = p. Hence,

there are p4 − p non-central elements of G. By hypothesis, these elements contribute to conjugacy
classes of the same size. Note that if g ∈ G \ Z(G), then |K(g)| > 1 and |K(g)| divides |G|. Hence,
|K(g)| ∈ {p, p2, p3, p4}. However, p2, p3, and p4 do not divide p4 − p. Hence, |K(g)| = p. This shows
that each component of the non-central part of Γe

G is Kp. �

Corollary 3.33. For any prime p, there is no non-abelian group of order p4 such that the non-central
part of its extended conjugate graph is a union of Km’s, where m ∈ {p2, p3, p4}.

Proof. Suppose that G is a non-abelian group of order p4. If the non-central part of Γe
G is not regular,

then we are done. In the case when the non-central part of Γe
G is regular, it must be a union of Kp’s by

Theorem 3.32. �

The next proposition gives a sufficient and necessary condition for the non-central part of the
extended conjugate graph associated to a group of order p4, where p is a prime, to be regular.

Proposition 3.34. Let G be a non-abelian group of order p4, where p is a prime. Then the non-central
part of the extended conjugate graph of G is regular if and only if the clique number of the extended
conjugate graph of G is p.

Proof. Suppose that the non-central part of Γe
G is regular. By Theorem 3.32, it must be a union of

Kp’s. Hence, ω(Γe
G) = p. To prove the converse, suppose that ω(Γe

G) = p. Let g ∈ G \ Z(G). Note
that |K(g)| , 1 and that |K(g)| divides p4. By assumption, |K(g)| ≤ p. Hence, |K(g)| = p and so the
non-central part of Γe

G is a union of Kp’s. �

We are now in a position to prove the main result of this section, which describes some aspects of
the extended conjugate graph associated to a non-abelian group of order p4, where p is a prime.

Theorem 3.35. Let G be a non-abelian group of order p4, where p is a prime. Then the following
statements hold:

(1) if |Z(G)| = p2, then ω(Γe
G) = p, γ(Γe

G) = p3 + p2 − p, and R(G) =
p2 + p − 1

p3 ;

(2) if |Z(G)| = p and if the non-central part of the extended conjugate graph of G is regular, then

ω(Γe
G) = p, γ(Γe

G) = p3 + p − 1, and R(G) =
p3 + p − 1

p4 ;

(3) if |Z(G)| = p and if the non-central part of the extended conjugate graph of G is not regular, then

ω(Γe
G) = p2, p − 1 < γ(Γe

G) < p3 + p − 1, and
p − 1

p4 < R(G) <
p3 + p − 1

p4 .

Proof. To prove Part (1), suppose that |Z(G)| = p2. Then |G/Z(G)| = p2 and so the non-central part
of Γe

G is regular. By Proposition 3.34, ω(Γe
G) = p. By Corollary 3.26, γ(Γe

G) = p3 + p2 − p. By

Theorem 3.7, R(G) =
γ(Γe

G)
|G|

=
p2 + p − 1

p3 .

To prove Part (2), suppose that |Z(G)| = p and that the non-central part of Γe
G is regular. By

Proposition 3.34, ω(Γe
G) = p. As in the proof of Theorem 3.32, the non-central part of Γe

G is a union of

Kp’s. Hence, γ(Γe
G) = |Z(G)| +

|G| − |Z(G)|
p

= p3 + p − 1 and so R(G) =
p3 + p − 1

p4 .
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To prove Part (3), suppose that |Z(G)| = p and that the non-central part of Γe
G is not regular. By

Proposition 3.12, ω(Γe
G) ≤ |G/Z(G)| = p3. Next, we show that no component of Γe

G is Kp3 . Assume to
the contrary that |K(g)| = p3 for some g ∈ G. Note that g < Z(G). As in the proof of Theorem 3.23,
p3 = |K(g)|[CG(g) : Z(G)], which implies Z(G) = CG(g), a contradiction. Moreover, by assumption,
not all components of Γe

G are Kp. Hence, at least one component of Γe
G is Kp2 and so ω(Γe

G) = p2.
Note that γ(Γe

G) > |Z(G)| > p − 1 because G is non-abelian. As in the proof of Theorem 3.32,
|K(g)| ∈ {p, p2, p3} for all g ∈ G \ Z(G). Assume by contradiction that γ(Γe

G) ≥ p3 + p − 1. Hence,
the non-central part of Γe

G has at least p3 − 1 components. As mentioned above, every component of
the non-central part of Γe

G has at least p vertices. By assumption, there is at least one component of the
non-central part of Γe

G having m vertices with m ∈ {p2, p3}. Hence, the non-central part of Γe
G has at

least (p3 − 2)p + m vertices. This leads to a contradiction since

p4 − 2p + m ≥ p4 − 2p + p2 = (p4 − p) + (p2 − p) > p4 − p = |G| − |Z(G)|.

Thus, γ(Γe
G) < p3 + p − 1. This also implies that

p − 1
p4 < R(G) <

p3 + p − 1
p4 . �

We remark that the first and third cases of Theorem 3.35 occur; a few concrete examples are listed
in Table 1. Presentations of concrete groups mentioned in this article are listed in Table 2.

Table 1. Non-abelian groups of order 16.

Group Size of the center Conjugate type vector Graphical presentation
D8 × Z2 4 (2, 1) Figure 4
Q8 × Z2 4 (2, 1) Figure 4
D16 2 (4, 2, 1) Figure 1
S D16 or QD16 2 (4, 2, 1) Figure 5
Q16 or Dic4 2 (4, 2, 1) Figure 5

Table 2. Presentations of groups mentioned in the article.

Group Symbol Presentation
dihedral group of order 8 D8 〈r, s : r4 = s2 = e, rs = sr−1〉

quaternion group of order 8 Q8 〈r, s : r2 = s2 = (rs)2〉

semidihedral group of order 16 S D16 〈r, s : r8 = s2 = e, rs = sr3〉

dihedral group of order 16 D16 〈r, s : r8 = s2 = e, rs = sr−1〉

generalized quaternion group of order 16 Q16 〈r, s : r8 = s4 = e, r4 = s2, s−1rs = r−1〉

As noted before, the converse to Proposition 3.2 is not true. The extended conjugate graphs Γe
D8×Z2

and Γe
Q8×Z2

are isomorphic (see Figure 4) but the groups D8 × Z2 and Q8 × Z2 are not isomorphic since
D8 � Q8 (cf. [13]).
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Figure 4. Graphical presentation of Γe
D8×Z2

and Γe
Q8×Z2

.

Figure 5. Graphical presentation of Γe
S D16

and Γe
Q16

.

4. Conclusions

In this work, we define the extended conjugate graph of a finite group G and study several properties
of extended conjugate graphs that are related to the algebraic structure of their corresponding groups.
As an application of these results, we give a graph-theoretic proof of the class equation. We also obtain
a few conditions for the non-central part of an extended conjugate graph to be a regular graph. Finally,
we study extended conjugate graphs of groups of order pq, p3, and p4, where p and q are distinct
primes, in detail.
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Appendix

The inner holomorph of the dihedral group D8 is a group of order 32, which can be recognized as a
group of matrices over Z2:

IHol(D8) =



1 a b c
0 1 0 d
0 0 1 f
0 0 0 1

 : a, b, c, d, f ∈ Z2

 ,
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together with the usual matrix multiplication. The conjugacy classes of IHol(D8) are as follows:

K1 =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , K2 =



1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1


 , K3 =



1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

1 1 0 1
0 1 0 0
0 0 1 0
0 0 0 1


 ,

K4 =



1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

1 0 1 1
0 1 0 0
0 0 1 0
0 0 0 1


 , K5 =



1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 ,

1 0 0 1
0 1 0 1
0 0 1 0
0 0 0 1


 ,

K6 =



1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 ,

1 0 0 1
0 1 0 0
0 0 1 1
0 0 0 1


 , K7 =



1 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1


 ,

K8 =



1 1 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 ,

1 1 0 1
0 1 0 1
0 0 1 0
0 0 0 1


 , K9 =



1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 ,

1 1 0 1
0 1 0 0
0 0 1 1
0 0 0 1


 ,

K10 =



1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 ,

1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1


 , K11 =



1 0 1 0
0 1 0 0
0 0 1 1
0 0 0 1

 ,

1 0 1 1
0 1 0 0
0 0 1 1
0 0 0 1


 ,

K12 =



1 0 0 0
0 1 0 1
0 0 1 1
0 0 0 1

 ,

1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 1


 , K13 =



1 1 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 ,

1 1 1 1
0 1 0 1
0 0 1 0
0 0 0 1


 ,

K14 =



1 1 1 0
0 1 0 0
0 0 1 1
0 0 0 1

 ,

1 1 1 1
0 1 0 0
0 0 1 1
0 0 0 1


 , K15 =



1 1 0 0
0 1 0 1
0 0 1 1
0 0 0 1

 ,

1 1 0 1
0 1 0 1
0 0 1 1
0 0 0 1


 ,

K16 =



1 0 1 0
0 1 0 1
0 0 1 1
0 0 0 1

 ,

1 0 1 1
0 1 0 1
0 0 1 1
0 0 0 1


 , K17 =



1 1 1 0
0 1 0 1
0 0 1 1
0 0 0 1

 ,

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1


 .
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List of symbols

|S | cardinality of S
Z(G) center of G
CG(g) centralizer of g in G
ω(Γ) clique number of Γ

Km complete graph with m vertices
K(g) conjugacy class of g
Γc

G conjugate graph of G
(n1, n2, . . . , nr) conjugate type vector, conjugate type of a group
Dic4 dicyclic group of degree 4
D2n dihedral group of order 2n

n∏
i=1

Gi direct product group G1 ×G2 × · · · ×Gn

γ(Γ) domination number of Γ

Γe
G extended conjugate graph of G

Q16 generalized quaternion group of order 16
Zn group of integers modulo n
[G : H] index of H in G
Γ[S ] induced subgraph of Γ by S
IHol(D8) inner holomorph of the dihedral group D8

k(G) number of conjugacy classes of G
R(G) probability of commutativity in G
QD16 quasidihedral group of order 16
Q8 quaternion group of order 8
U(G) same-size conjugate set of G
S D16 semidihedral group of order 16
π(G) set of prime divisors of |G|
ρ(G) set of primes p such that a Sylow p-subgroup of G is non-abelian
S n symmetric group of degree n
deg v vertex degree of v
V(Γ) vertex set of Γ
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