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correlations analysis between variables. Finally, we made some predictions to assess the accuracy of 

the method using functional linear regression models. 
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1. Introduction 

1.1. Historical sketch 

Daniel Bernoulli described in his 1760’ article [1] the three dynamical modes of a contagious 

disease, namely the endemic, epidemic and eradicated behaviors and he took as an example a 

contagious disease very common at the time, the smallpox. Eradication corresponds to the 

disappearance of the disease in the human species. This was the case for smallpox, which disappeared 

permanently 40 years ago, according to the World Health Organization (WHO) which certified the 

global eradication of the disease in 1980, the last major European outbreak of smallpox having been 

observed in 1972 in Yugoslavia and the last naturally occurring case having been diagnosed in October 

1977 [2]. 

In the past, smallpox had been the subject of measures similar to those implemented today for 

COVID-19: 

1) The inoculation was a vaccination scheme, implemented in the Ottoman Empire during the 

16th century. The original idea is probably originated in India, because some ancient Sanskrit medical 

texts described the process of inoculation [3], then the first practice of inoculation is documented in 

China as the late 10th century, and reached a wide practice by the 16th century, during the Ming 

dynasty [4]. Reports on the Chinese practice of inoculation were received by the Royal Society in 

London in 1700 and Lady Mary Wortley Montagu, spouse of the British ambassador in Turkey 

observed smallpox inoculation during her stay in the Ottoman Empire and promoted it in England 

upon her return in 1718 [5]. 

2) In 1796, Edward Jenner, a doctor in Berkeley (England,) discovered that an immunity to 

smallpox was produced by inoculating a person with material from a cowpox lesion in cow (an animal 

disease similar to small pox). He called the living material used for this new type of inoculation vaccine 

(from Latin word vacca, the cow). 

3) Before the vaccination, many countries adopted quarantine measures during the epidemic 

waves of variola. 

Daniel Bernoulli proposed his famous mathematical model to describe the smallpox epidemic 

waves, using the first the logistic model as a phenomenological approach to fit data corresponding to 

the succession of the new daily cases of the disease. He described the endemic state of the disease after 

a wave, but did not propose a model for describing the endemic dynamic (now considered as a 

stationary stochastic process with constant average and variance), nor used a precise method to detect 

the critical boundary times corresponding to ruptures between epidemic and endemic phases. However, 

we can consider that with his SI (susceptible-infected) model: 

dS/dt=-ßSI-µS+f+I, 

dI/dt=ßSI–I-I,          (1) 

with S(0)=S0, I(0)=I0 and where S(t) (resp. I(t)) is the size of susceptible (resp. infected) at time t, ß the 

transmission rate, µ  (resp. ) the natural (resp. viral) death rate, f the fecundity,  (resp. ) the post-

infected non immunized (resp. immunized) rate. If f=µ====0, the solution of Eq (1) is given by: 

S(t)=S0/(1+eß(t+to)), 

I(t)=S0e
ß(t+to)/(1+eß(t+to)),        (2) 
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with S+I=S0. If I(0)=1, then if t0=-Log(S0-1)/ß, S(0)=S0/(1+eßto)≈S0-1. If S0 is large, then during the 

time lapse at which S(t) remains close to S0, if µS0=f, then Eq (1) becomes close to the linear system: 

dS/dt=(-ßS0+)I, 

dI/dt=(ßS0–-)I,         (3) 

with the solution: 

S(t)=(-ßS0+)e(ßSo–-)t/(ßS0–-), 

I(t)=e(ßSo--)t,            (4) 

where ßS0 represents the basic reproduction number of the epidemic disease, usually denoted R0. 

The Bernoulli model has been improved for modelling malaria first by Ross, who added the 

animal vector [6] and after by McKendrick [7], who considered a latency period between the moment 

of the mosquito’s contamination and the one when it actually becomes infectious. More recently, 

models taking into account the spatial diffusion of infected and infectious agents are proposed [8–11] 

as well as some models including not reported and vaccinated patients [12–16]. 

The present models are in general used to simulate an epidemic wave, as an excursion in the phase 

plane of an ordinary two-dimensional differential system having some excitable ability, i.e., the 

existence in his phase portrait of large return trajectories after perturbation of its stable stationary state 

or of its parameters, these trajectories returning to either an endemic or an eradicated final state. The 

difference between these two asymptotic behaviors is that in endemic case, the final value of the 

infected, back to the stationary state is non-zero and, in eradicated case, this value is zero. These 

behaviors are illustrated by simulations of the Bernoulli model in the possible final states 

corresponding to epidemic (transients in Figure 1), eradication (end state in Figure 1 top) and endemic 

(low level end in Figure 1 middle and high level in Figure 1 bottom). 

If we consider that a parameter of the Bernoulli model like the transmission rate ß is evolving in 

time due to various influences as geoclimatic factors (temperature, humidity, elevation, etc.), 

sociodemographic determinant (density and median age of the target population) and economic 

variables (GDP, Gini’s index, inequality index, etc.), the actual curve of the new infected cases 

observed during the epidemic outbreak is in fact also driven by the slow dynamics of the seasonally 

varying or linearly growing parameters. 

Then, the observed dynamics of new infected cases results from the epidemic dynamics combined 

with slow evolution of these external factors on variation surfaces mixing both epidemic variables and 

parameters dynamics. The Figure 2 shows such a surface corresponding to the variations of the 

transmission rate ß due to climate changes (transition between winter and summer times) or public 

health policies (quarantine, vaccination, etc.), and the actual (S, I) trajectory lies on the corresponding 

surface. The influence of these different factors on the variations of the trajectories (S, I) are difficult 

to take into account in a differential model of the type Eq (1), which is why the article will now 

emphasize the statistical approach providing a better understanding of the correlations between the 

exogenous determinants of the epidemic and the level of new cases of infected. 
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Figure 1. Dynamics of the variables S and I in eradication (top) and endemic behavior (bottom) (after 

https://elsenaju.eu/ Calculator/ODE-System-2x2.htm#RWD-1). (a) Eradication ß=0.6, µ=2, f=4, =4, 

=0, S(0)=40, I(0)=1; (b) Endemic behavior ß=0.5, µ=0.5, f=6, =4, =0, S(0)=40, I(0)=1. 

https://elsenaju.eu/


5351 

AIMS Mathematics  Volume 7, Issue 4, 5347–5385. 

 

Figure 2. Surface of evolution of 3 covariables, S, I and ß, the transmission rate. 

1.2. Background and literature review 

The COVID-19 pandemic is still evolving in France as there has been three waves with possibility 

of a fourth wave due to a more contagious variant (Delta variant) which may lead to another lockdown 

following three lockdowns alongside with several non-pharmaceutical measures to mitigate the spread 

of the diseases. France has a total of 7,275,149 cases as at 14/11/2021, 118,137 deaths representing 2% 

of the 5,280,894 cases which had an outcome (5,162,757 having recovered from the disease), and 

1,994,255 currently infected patients with 1,993,206 (99.9%) in mild condition and 1,049 (0.1%) in 

serious or critical condition (data from [17–19]). Modeling COVID-19 pandemic across the globe has 

been approached using different techniques in mathematics and statistics, but the use of functional data 

analysis (FDA) has been done by few scientists. 

Functional data analysis is useful in many fields such as medicine, biology, statistical analysis 

and econometrics while several books like [20–25] have treated the theoretical aspects and 

methodology and more recently, researchers have dealt with FDA application to COVID-19 

modeling [26–28], trying to propose forecasting new case counts through a framework facilitating the 

quantification of the effects of demographic covariates and social mobilities on reproduction number 

and fatality rate through time-varying regression models. Among these recent works using functional 

data analysis for the modelling of COVID-19 pandemic, we can notice: [26] applies functional data 

analysis to United States data by using FCPA (Functional Principal Component Analysis) and FCCA 

(Functional Canonical Correlation Analysis) tools and they finally use functional time series to fit the 

cumulative confirmed cases in the United States and make forecasts based on the dynamics of FPCA. [27] 

works on the imputation of missing data of COVID-19 hospitalized and intensive care curves in Spain 
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regions. They used function-on-function regression technique to estimate missing values and 

Canonical Correlation Analysis was performed to interpret the relationship between hospital 

occupancy rate and illness response variables. The shapes of an epidemic curve using functional data 

analysis to characterize COVID-19 in Italian regions and their association with mobility, positivity, 

socio-demographic structure and environmental covariates was worked on by [28]. The cited authors 

have used different methods of functional data analysis like function-on-function regression techniques, 

clustering methods and smoothing techniques for the functional data considered. 

A robust phenomenological approach to France COVID-19 data has been recently investigated 

by [29,30] and a new method to calculate the cumulative cases in France was proposed which 

illustrates the epidemic and endemic nature of the virus infection in France. Authors in [31] used 

methods like principal component analysis, generalized additive model and hierarchical ascendant 

classification to study the impacts of population age structure, epidemic spread and transmission 

mitigation policies on COVID-19 morbidity or mortality heterogeneity in France. Authors in [32–34] 

used ARIMA models with different parameters to forecast the spread of COVID-19 across nine 

countries in Europe, Asia and American continents and the study deduced that the method is useful for 

the prediction of the pandemic at different stages and in [35] they employed statistical methods to 

analyze the shapes of local COVID-19 incidence rate curves and statistically group them into distinct 

clusters according to their shapes. The result reveals that pandemic curves often differ substantially 

across regions of a same country, and the explanation may lie in the existence of a temperature gradient 

or of differences in other geo-climatic, socio-economic or demographic factors [36–44]. 

The main purpose of this article is to revisit the data on COVID-19 from public databases using 

methods that are still little used, such as functional data analysis (FDA), in which there is a great deal 

of theoretical work [19–25], but practical applications are still rare. In particular, the generalization at 

the FDA of classical finite-dimensional methods, such as estimation, regression and principal 

component analysis, shows that it is possible to process epidemic data obtained from a large sample 

(approximately one million data) concerning the incidence, mortality and exogenous or endogenous 

factors associated with the COVID-19 epidemic. This sampling concerns about ten variables 

(sometimes missing, in particular those concerning risk factors) and includes longitudinal (about 600 

days all over the world but in our case we considered about 469 days for French departments) and 

cross-sectional data (about 200 countries, some comprising up to a hundred documented regions while 

for France which is the main focus of this article there are 101 departments), for the monitoring and 

prediction of a pandemic whose origin and end are still uncertain, but which, by its magnitude and its 

dramatic consequences (around 5 million deaths) justifies such a descriptive statistical investment. The 

descriptive study of many factors associated with the epidemic (namely the socio-economic and 

geoclimatic ones) makes it possible to understand closely linked mechanisms, those exogenous or 

endogenous to the viral pathogeny of propagation and endogenous ones of pathogenicity [36–44]. The 

seminal paper by Bernoulli on the SI model is the origin of all future discussions about epidemic 

modelling, in particular the first by d’Alembert in his Opuscules mathématiques and Lambert until its 

last recent refinements. It contains the explicit solution of the SI model given in Eq (4), and permits to 

consider the empiric S(t) and I(t) curves as functions. We can manipulate (after smoothing) as elements 

in a functional space. The goal of the article is to apply to these elements the FDA descriptive 

techniques in order to compare these functions among different departments. This approach is 

complementary of the works estimating the parameters of the functions S and I (namely R0 and ß). 
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1.3. Time series and curve fitting 

In this section, we present the time series analysis of daily new cases in France, daily 

hospitalization in three French departments out of 101 in France, and curve fitting for two French 

departments. The Root Mean Square Error (RMSE) for other curve fittings is shown in Table 1. Figure 3a 

gives the time series of recent daily cases of COVID-19 in France which shows stationarity with rolling 

values (window=12) appearing to be varying slightly. Also, when we used the Augmented Dickey-

Fuller Test to test for stationarity of the time series by accepting the alternative hypothesis, we got a 

p-value less than the 5% (p-value=0.02) critical value, so we can say with 95 percent certainty that this 

is a stationary series. Also, in Figure 3c we plotted three French departments (Nord, Paris and Essonne) 

with more prevalent COVID-19 hospitalization cases and Figure 3d shows the fitted curve of two of 

the French departments (Paris and Seine-Maritime) while all departments have root mean square error 

in the interval 0.51 ≤ 𝑅𝑀𝑆𝐸 ≤ 17.38  with Essonne department having the highest Root Mean 

Square Error (RMSE) and Lozère department having the lowest RMSE. We present other RMSE 

values in Table 1. We present also (Figure 3b) a deep learning forecasting result using Gated Recurrent 

Units (GRU) for France data between the beginning of the pandemic in France till September 3 2021 

by training 80% of the data and testing 20%. The predicted cases curve values decline over the whole-

time. The RMSE was computed using: 

RMSE=√
1

n
∑ (Yi − yi)2n

i=1  

where for i = 1, 2, … , n, Yi′s are the observed values, n is the number of data points and yi′s are 

the predicted values. 

The aim of this paper is to model the prevalence of the virus in France by using several functional 

techniques like FCCA, K-means clustering and FPCA and to finally make some predictions about the 

evolution of the disease in France. The analysis was done using both Python and R packages. We 

considered as functional variables numbers of ICU cases, daily deceased, daily return home and 

hospitalization which are given as 𝑋1–𝑋4. Our response variables given as 𝑌1–𝑌6 are numbers of 

recovery, deaths, infected, vaccination, vaccination per 1000 population and number of tests. We used 

data from [17–19]. The paper is divided as follows: Section 2 describes the various smoothing methods 

used in the analysis of the shapes of the functional data used, Section 3 presents the functional principal 

components analysis results and their interpretation to the dynamics of COVID-19 prevalence in 

French departments, and Section 4 is dedicated to the results of canonical correlation of the variables. 

Section 5 shows the clustering result using the K-means method and how it appears on a map of France. 

In Section 6, we made some predictions for some response variables and also performed function-on-

function linear regression, and in Section 7, we opened up some perspectives and presented the results 

of the analysis. 
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Figure 3. (a) Time series modelling of daily new cases between 01/05/2021–15/07/2021 in France. (b) 

GRU deep learning forecasting method for daily new cases between 25/02/2020–03/09/2021 in France. 

(c) Daily hospitalization cases in three French departments: Nord, Paris and Essonne. (d) Fit curve for 

hospitalization cases in Paris and Seine-Maritime. 

Table 1. RMSE confidence interval for all French departments for the fitness curve of the four 

functional data. 

 RMSE before vaccination started RMSE after vaccination has started 

Hospitalized 0.51≤RMSE≤17.38 1.00≤RMSE≤18.00 

ICU 0.05≤RMSE≤2.60 0.35≤RMSE≤5.20 

Daily return home 0.25≤RMSE≤12.40 1.10≤RMSE≤17.50 

Daily deceased 0.04≤RMSE≤4.52 0.32≤RMSE≤4.10 

2. Data smoothing 

The first step in analyzing functional data is to smooth the curves. In this section we use different 

smoothing techniques which we shall illustrate and give some basic explanation of the techniques we 

deployed for smoothing our functional data. We plotted the mean of the data set and the cross-sectional 

mean, which corresponds to the karcher-mean under the L2 distance. The karcher-mean has an 
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important role in the warping framework and is used to align the functions in order to improve the 

matching of features (peaks) across functions for a given set of warping functions 𝜕1, 𝜕2, … , 𝜕𝑛 ∈  ∆ as 

𝜕�̆� = 𝑎𝑟𝑔𝑚𝑖𝑛𝜕∈L2=S∆ ∑ 𝑑𝑖𝑠𝑡(𝜕, 𝜕𝑖)
2𝑛

𝑖=1 . 

S is a quotient space, ∆ be the differential geometry, ∂ ∈ ∆, 𝜕𝑖 is the set of warpings functions [24]. 

We used the elastic_mean(fd) and fd.mean tool in Python to do the plotting of Figure A1 (supplementary 

material). 

B-spline technique is one of the tools used in smoothing a functional data and this can be done 

by changing the number of elements (n=2,3,4,…,p) in the basis functions [25]. Sometimes one can use 

the Fourier basis for the functions to further see the variations in the curves. We give a mathematical 

expression for the basis representation for the curve of the functional data set of the form: 

𝑓(𝑡) = ∑ 𝑏𝑗 ∝𝑗 (𝑡)𝑛
𝑗=1          (5) 

where 𝑏𝑗′s are basis coefficients and ∝𝑗 ′𝑠 are the basis functions. For this analysis we choose n=7 

which we discovered best suit for the modelling of our data as our number of elements and the tool in 

Python named basis.BSpline was used to perform the plotting of the functional data. The result of this 

smoothing technique can be seen in Figure 4. 

In Figure A2 (supplementary material), we present the correlation coefficient between all the 

departments in France based on the functional data in consideration, in order to see how well our data 

is well correlated between the departments and it was observed that there is a high correlation between 

various departments with except in few cases where we observed low correlation as we can see in the 

contour plots presented in Figure A2a–h (supplementary material). 

We used spline interpolation of order 3 and then smooth the interpolation using the smoothness 

parameter equal to 1.5 in the cubic spline smoothing. This technique is implemented using 

interpolation and smoothness_parameter package in Python. We also use the monotone technique and 

a piecewise cubic Hermite interpolating polynomial (PCHIP) using a Python package called monotone. 

We present some of the results on Figure A3 (supplementary material). 

We also performed Kernel smoothing to show how cross validation score varies over a range of 

different parameters used in smoothing methods. The essence of this section is to estimate the 

smoothing parameter h that better represents functional data. It has been selected by generalised 

crossvalidation criteria (GCV). The non-parametric method of smoothing for functional data is based 

on the smoothing matrix M given: 

𝑚𝑖𝑗 =
1

ℎ
𝐾(

𝑡𝑖−𝑡𝑗

ℎ
),          (6) 

𝑀(ℎ) = (𝑠𝑗(𝑡𝑖)) =
𝐾(

𝑡𝑖−𝑡𝑗

ℎ
)

∑ 𝐾(
𝑡𝑘−𝑡𝑗

ℎ
)𝑇

𝑘=1

,        (7) 

where K(.) is the Kernel function. We plotted on Figure A4 (supplementary material) the smoothed 

curves of the functional data set for three different smoothing methods and show the scores through 

generalised cross-validation for these different methods. The results show a comparable behavior of 

these scores by varying the smoothing parameter h. 
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Figure 4. Smoothed curves for the shape of COVID-19 epidemic in all departments in France: (a) 

hospitalized cases, (b) hospitalized when vaccination has started, (c) daily deceased, (d) daily deceased 

when vaccination has started, (e) daily return home, (f) daily return home when vaccination has started, 

(g) ICU cases and (h) ICU cases when vaccination has started. 
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3. Functional principal component analysis (FPCA) 

Principal component analysis is a dimension reduction analysis tool in multivariate statistics 

while functional principal component analysis (FPCA) is a dimension reduction with high correlation 

in functional data analysis which completes the statistical tools used in the modelling of biomedical 

data especially epidemiologic ones [45–54]. Let {𝑥𝑖(𝑡)}𝑖=1,𝑚 be a given set of functions, in our case 

m=101 and let 𝛼 be a weight, FPCA is computed as follows: 

1) It finds the principal component weight function 𝛼1(𝑡) for which the principal component 

score is given by 

𝑓𝑖1 = ∫𝛼1(𝑡)𝑥𝑖(𝑡)𝑑𝑡,         (8) 

while maximizing ∑ 𝑓𝑖1
2

𝑖=1,𝑚  is subjected to 

∫𝛼1
2(𝑡)𝑑𝑡 = ‖𝛼1‖

2 = 1.         (9) 

2) Next, the weight function 𝛼2(𝑡) is computed and the principal component score maximizes 

∑ 𝑓𝑖2
2

𝑖=1,𝑚 , and is subject to the constraint ‖𝛼2‖
2 = 1 and to the additional constraint 

∫𝛼2(𝑡)𝛼1(𝑡)𝑑𝑡 = 0.          (10) 

3) Then, the process is repeated for as many iterations. 

In our analysis, we used a tool called pca.fd for the principal component analysis. We present in 

this section the 4 PCs values plot throughout the days considered and the principal component scores 

plot for all the different departments providing functional data being before vaccination started and 

during vaccination. 

3.1. Functional PCs 

3.1.1. Hospitalization cases 

In Figure 5a we observed that PC 1 peaked in the early days of the pandemic between February 

and March 2020 and then there was a decline after about 50 days becoming stationary till day 150 

possibly due to mitigation measures promulgated during this period. The same phenomenon has been 

observed for PC 2. In Figure 5a, PC 4 shows a sinusoidal shape, peaked at day 100 which is around 

June 2020 with least values at day 30 and day 180 which are respectively in March and August 2020. 

Figure 5b shows the same sinusoidal shape for PC 4 and same shape for PC 3 but with a drift in the 

observation with a difference between the dynamics of hospitalization cases before and after 

vaccination has started in France. PC 1 in Figure 5b shows a decline across the infective period which 

may be due to the aggressive vaccination campaign in the country. 

3.1.2. ICU cases 

In Figure 5c we observed that from day 50 (around April 2020) till day 150 (around July 2020), 

the PC 1 value which is the major PC is stable throughout this period of various confinement measures 

in France and all PCs tend to show increasing behavior after the confinement measures have been 

relaxed and in Figure 5d, PC 1 has strictly positive values while PCs 2–4 show negative values between 

February to June 2021. 
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3.1.3. Daily return home 

In Figure 5e PC 1 peaked with a positive value at the beginning of the pandemic in France which 

validates the percentage of recovery as presented in the introduction section while PC 1 in Figure 5f 

shows a positive decline across the days considered, with a disparity between the period of vaccination 

and without vaccination. 

3.1.4. Daily deceased 

On the y-axis of Figure 5g,h, we observe that this is the only result with low values for the PCs 

because the deaths due to COVID-19 in France remain at a low level, while all PCs show almost the 

same pattern as that observed in previously for the other variables. 

In Table 2, we present the PCs variance proportion and we observe that PC 1 is the most important 

principal component. 

Table 2. PCA variance proportion for 4 PCs. 

 

 Before vaccination started After vaccination has started 

PC 1 PC 2 PC 3 PC 4 PC 1 PC 2 PC 3 PC 4 

Hospitalized 0.945 0.039 0.008 0.005 0.938 0.041 0.012 0.004 

ICU 0.960 0.028 0.009 0.001 0.962 0.023 0.008 0.004 

Daily home 0.925 0.045 0.015 0.007 0.953 0.030 0.009 0.004 

Daily deceased 0.965 0.017 0.013 0.003 0.914 0.055 0.016 0.010 
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Figure 5. Functional PCs for different functional data before the start of vaccination (19/03/2020–

29/10/2020) and when vaccination has started (27/12/2020 to 30/06/2021): (a) hospitalized cases, (b) 

hospitalized when vaccination has started, (c) ICU cases, (d) ICU cases when vaccination has started, 

(e) daily return home, (f) daily return home when vaccination has started, (g) daily deceased and (h) 

daily deceased when vaccination has started. 
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3.2. Functional principal component scores and clusters 

We will now concentrate our efforts on the departments where the pandemic is most prevalent, 

as well as on PCs 1 and 2, while ignoring the other PCs. We recall that French departments have code 

numbers, for example, Nord is code number 59, and we will use this number in this section as well as 

in the visualization of results shown in Figures 6 and 7. We refer readers to [55] for a complete list of 

all French department code numbers. In Figure 6a, the Paris department (code number 75) and Nord 

department (code number 59) have a positive score in PC 1 and negative score in PC 2 while the 

Essonne department is positive in both PCs. In Figure 6b, the Paris department and Essonne department 

(code number 91) are negative in both PCs while the Nord department is positive in PC 2 with the 

highest score and negative in PC 1. In Figure 6c, Nord and Essonne departments are negative in PC 2 

but positive in PC 1 while the Paris department is positive in both PCs. The Paris department and 

Essonne department are negative in both PCs in Figure 6d while the Nord department is positive in PC 2 

and negative in PC 1. In Figure 6e, Paris and Nord departments have positive scores in both PCs while 

the Essonne department is negative in PC 2 and positive in PC 1. Nord department has the highest 

positive score in PC 1 for Figure 6f and negative for PC 1, Paris department is positive in PC 2 and 

negative in PC while Essonne department is negative in both PCs. The Paris department has the highest 

positive score in PC 1 and negative in PC 2 in Figure 6g, Nord department is positive in both PCs 

while Essonne department is negative in PC 2 but positive in PC 1. Finally, in Figure 6h while Nord 

department is positive and highest in PC 2, Paris department is the lowest with negative score in PC 2. 

Both departments are negative in PC 1. Essonne department is positive in PC 2, but negative in PC 1. 

The above description shows that there is a difference between the vaccination period in France and 

the period when measures like lockdown, social distancing etc. were only used to control the spread 

of the virus despite the fact that it has been proven medically that people can be vaccinated and still be 

infected. 

The diagrams in Figure 6a–h show the same shift toward positive PC 1 values. These shifts 

demonstrate the effect of various mitigation measures differences in the departments and based on 

population and migration in this area, particularly the five departments outside France's metropole 

where the rules in France are not strictly enforced. It also demonstrates that PC 1 is the most important 

PC, from which the majority of the analysis information can be obtained. 
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Figure 6. FPCA scores for different functional data before the start of vaccination (19/03/2020–

29/10/2020) and when vaccination has started (27/12/2020–30/06/2021). (a) hospitalized cases, (b) 

hospitalized when vaccination has started, (c) ICU cases, (d) ICU cases when vaccination has started, 

(e) daily return home, (f) daily return home when vaccination has started, (g) daily deceased and (h) 

daily deceased when vaccination has started. Note that the numbering of points on the diagram are 

codes for each French department. 

4. Canonical correlation analysis (CCA) 

Canonical correlation is an aspect of multivariate statistical analysis method that is used to 

simultaneously correlate several metric dependent variables and several metric independent variables 

measured on or observed with similar experimental units. PCA is often used for dimensionality 

reduction of a particular data set through linear combinations of the initial variables which maximizes 

the amount of variance explained by these linear combinations while CCA finds linear combinations 

within a data set with the goal of maximizing the correlation between these linear combinations [23]. 

Mathematically, it can also be expressed as two groups of n-dimensional variables 
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X=[𝑥1, 𝑥2, 𝑥3, … 𝑥𝑃] 

and 

Y=[𝑦1, 𝑦2, 𝑦3, … 𝑦𝑞], 

where 

𝑥𝑖 =

[
 
 
 
𝑥𝑖1

𝑥𝑖2

𝑥𝑖3…
𝑥𝑖𝑛]

 
 
 

, 𝑦𝑗 =

[
 
 
 
 
𝑦𝑗1

𝑦𝑗2

𝑦𝑗3
…
𝑦𝑗𝑞]

 
 
 
 

. 

The purpose of canonical correlation analysis is to find coefficient vectors 

𝒂𝟏 = (𝑎11, 𝑎21, … , 𝑎𝑝1)
𝑇 and 𝒃𝟏 = (𝑏11, 𝑏21, … , 𝑏𝑞1)

𝑇 

in order to maximize the correlation 𝛽 = 𝑐𝑜𝑟𝑟(𝑋𝒂𝟏, 𝑌𝒃𝟏), while 𝑈1 = 𝑋𝒂𝟏 and 𝑉1 = 𝑌𝒃𝟏, linear 

combinations of X and Y components respectively, constitute the first pair of canonical covariates. 

Then, the second pair of canonical variates can be found in the same way subject to the constraint that 

they are uncorrelated with the first pair of variables. By repeating this procedure, the 𝑟 = 𝑚𝑖𝑛{𝑝, 𝑞} 

pairs of the canonical variates can be found and we will finally get the matrix A=[𝒂𝟏, 𝒂𝟐, 𝒂𝟑, … 𝒂𝒓] 

and the matrix B=[𝒃𝟏, 𝒃𝟐, 𝒃𝟑, … 𝒃𝒓] to transfer X and Y to canonical variates U and V following the 

below expression: 

𝑈𝑛𝑟 = 𝑋𝑛𝑝𝐴𝑝𝑟, 𝑉𝑛𝑟 = 𝑌𝑛𝑝       (11) 

If X and Y are both centered, we can concatenate them and calculate the covariance matrix given as: 

𝐶 = 𝐶𝑜𝑣([𝑋𝑌]) =
1

𝑛−1
[𝑋𝑌]𝑇[𝑋𝑌] = [

𝐶𝑥𝑥 𝐶𝑥𝑦

𝐶𝑦𝑥 𝐶𝑦𝑦
],    (12) 

where 𝐶𝑥𝑥  and 𝐶𝑦𝑦  are within-set covariance matrices, and 𝐶𝑥𝑦 = [𝐶𝑦𝑥]
𝑇

 are between-set 

covariance matrices. The first canonical variates 𝒂𝟏 and 𝒃𝟏 maximize the equation below: 

𝛽1 =
𝒂𝟏

𝑇𝐶𝑥𝑦𝒃𝟏

√𝒂𝟏
𝑇𝐶𝑥𝑥𝒂𝟏√𝒃𝟏

𝑇𝐶𝑦𝑦𝒃𝟏

.         (13) 

The subsequent pairs of canonical variates 𝒂𝒊 and 𝒃𝒊 (i2) maximize: 

𝛽𝑖 =
𝒂𝒊

𝑇𝐶𝑥𝑦𝒃𝒊

√𝒂𝒊
𝑇𝐶𝑥𝑥𝒂𝒊√𝒃𝒊

𝑇𝐶𝑦𝑦𝒃𝒊

,         (14) 

subject to the constraint: 

𝒂𝒊
𝑇𝐶𝑥𝑥𝒂𝒋 = 0∀𝑗 < 𝑖, 

𝒃𝒊
𝑇𝐶𝑦𝑦𝒃𝒋 = 0∀ 𝑗 < 𝑖.        (15) 
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The analysis was performed using a package CCA. We present the visualization results on Figures 7 

and 8 and also present the correlation scores in tabular form (see Table 3). We used the variables as 

presented in Table 3. X are the variables are listed in the first row of Table 3 i.e., total number of 

hospitalizations, daily return home, deceased and ICU cases for all departments and Y variables are 

the response variables described earlier as presented in the first column of Table 3. 
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Figure 7. Helio plot for the correlation of French departments for (a) hospitalized cases, (b) 

hospitalized when vaccination has started, (c) ICU cases, (d) ICU cases when vaccination started, (e) 

daily return home, (f) daily return home when vaccination started, (g) daily deceased and (h) daily 

deceased when vaccination started. 

The helio plot in Figure 7 depicts the relationships between the different departments in France, 

as well as the epidemiology variables and control measures (vaccination). Figure 7a,c,e showed a 

negative correlation between the epidemiology variables and the hospitalization, ICU, and daily return 

home cases across departments, whereas Figure 7g showed a positive correlation between the 

epidemiology variables and the deceased cases across departments. Figure 7b,d,f confirm the effect of 

vaccination on the number of hospitalizations, ICU, and daily return home during vaccination, 

demonstrating a positive correlation and the effect of this control measure, whereas Figure 7h shows 

a negative correlation, indicating a negative relationship between the deceased and the vaccination 
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introduced. The results presented in Figure 8 show the linear relations in the scatter plot as most of the 

variables show 95% significance level and from Table 3 there is high correlations between the 

variables considered. The Figure A5 (supplementary material) presents the redundancy between the 

canonical variates. We tested the canonical correlation, and the null hypothesis is when the canonical 

correlation is equal to zero. Figure 8a shows hospitalized cases with p-value<0.05 for all canonical 

variate, Figure 8b shows hospitalized when vaccination has started with p-value<0.05 except the last 

canonical variate with p-value=0.88, Figure 8c shows ICU cases with p-value<0.05 for all canonical 

variate, Figure 8d shows ICU cases when vaccination has started with p-value<0.05 except the last 

two Canonical variate with p-value=0.68 and p-value=0.87 respectively, Figure 8e shows daily return 

home with p-value<0.05 for all canonical variate, Figure 8f shows daily return home when vaccination 

has started with p-value<0.05 except the last two canonical variate with p-value=0.14 and p-

value=0.34 respectively, Figure 8g shows daily deceased with p-value<0.05 except the last canonical 

variate with p-value=0.08 and Figure 8h shows daily deceased when vaccination has started with p-

value<0.05 except the last two canonical variate with p-value=0.08 and p-value=0.46 respectively. 
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Figure 8. Canonical correlation visualization of (a) hospitalized cases, (b) hospitalized when 

vaccination has started, (c) ICU cases, (d) ICU cases when vaccination has started, (e) daily return 

home, (f) daily return home when vaccination has started, (g) daily deceased and (h) daily deceased 

when vaccination has started. 

Table 3. Canonical correlation scores. 

 Before vaccination started After vaccination has started 

Hospital ICU Daily return Daily death Hospital ICU Daily return Daily death 

Deaths 0.996 0.926 0.859 - 0.989 0.689 0.745 - 

Recovered 0.970 0.973 0.941 0.961 0.838 0.865 0.846 0.797 

Test 0.950 0.937 0.911 0.816 0.685 0.750 0.776 0.736 

Vaccination - - - - 0.924 0.942 0.939 0.936 

Infected - 0.998 0.992 0.987 - 0.980 0.971 0.970 

Vaccination - - - - 0.901 0.885 0.917 0.841 
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5. Clustering method 

The clustering of functional data is one method that statisticians are always interested in and in 

this section we used the K-means and fuzzy K-means techniques whose algorithm is already in Python 

skfd.ml.clustering and FuzzyCMeans. These methods will enable us to visualize how various 

departments are clustered based on our functional data and to give it the best interpretation based on 

their geographical location. The basic function used for the K-means clustering is a B-spline and results 

of our clusters are presented below. We present the result in the cluster form and also on the map of 

France with indication of the membership to the 3 (i.e., K=3) clusters (0, 1 or 2) to get a clearer view 

of the result. Even if we increase the value of K, it won’t improve the results as K is optimal. We only 

presented the result for two cases (daily hospitalized and daily deceased) for the period before 

vaccination begins in France and two cases (daily return and ICU cases) for the period when 

vaccination has started in France. In Figure 9a–d we present the clusters (0, 1 or 2) that each French 

department belongs to. The result clustered French departments outside metropole or the French 

hexagon to the same clusters which of course are not binded with mitigation measures and rules used 

in departments within France [55]. Also, departments close to Paris are in the same cluster which is 

the same with departments having the same trend of the pandemic prevalence as presented in Figure 9a–d. 

In Figure 9e,g we observed same pattern for the data points in the clustering which means that the same 

way we have more hospitalization cases before vaccination, we also have the more people returning 

home during vaccination which affirm the fact that the vaccination campaign in France has helped to 

mitigate the spread of the disease. Figure 9f,h is a bit tricky because of the pattern they followed but it 

is not surprising that we have more deceased in most departments before vaccination period and less 

ICU cases during the vaccination period. These patterns of having more cluster points attaining the 

highest peak in PC 1 is distinct in the results presented. 
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Figure 9. Clustering of all departments in France using K-means: (a) hospitalized, (b) daily deceased, 

(c) daily return home when vaccination has started and (d) ICU cases when vaccination has started, 

and fuzzy K-means, (e) clusters for hospitalized, (f) clusters for daily deceased, (g) clusters for daily 

return home when vaccination has started and (h) clusters for ICU when vaccination has started. 
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6. Prediction 

6.1. Function to scalar linear model 

In this section we used functional linear regression model to predict two of our response variables. 

Let 

Y=< θ, X > +𝜖,          (16) 

where 𝜃  is the unknown function of the model, X is a functional covariate belonging to some 

functional space ℍ which is endowed with an inner product <. , . >, Y is the response variable and 𝜖 

is the random error term. Usually, ℍ is the space 𝐿2([𝑎, 𝑏]) of square integrable functions on some 

real compact interval [𝑎, 𝑏] and 

< 𝑓, 𝑔 >= ∫ 𝑓(𝑡)𝑔(𝑡)𝑑𝑡
𝑏

𝑎
,       (17) 

is the corresponding inner product, where the functions f, g∈ 𝐿2([𝑎, 𝑏]). Then, we consider C=[0,1], 

so the Eq (12) can be written as: 

𝑌 = ∫ 𝜃(𝑡)𝑋(𝑡)𝑑𝑡 +  𝜖
1

0
        (18) 

where 𝜃 is a square integrable function which is defined on C and 𝜖 is a random variable such that 

𝔼(𝜖) = 0 and 𝔼(𝑋(𝑡)𝜖) = 0. The Eq (18) can be rewritten as: 

𝑌 = Ψ(𝑋) + 𝜖,          (19) 

where Ψ represents the integral. 

We treated the functional data X (hospitalization) as a curve whose prediction is linked to a scalar 

Y (number of deaths and tests between 19/03/20–13/09/20 which is the time interval representing 

[1,177] ) response variable. The time interval for in which the response was predicted is from 

14/09/20–29/10/20 which represent [178,225].  The data considered are data before vaccination 

started in France and we trained 80% of the data and 20% was tested. The visualization of the results 

is presented in Figure 10 and the tabular form of the numerical results can be found in Table A1 

(supplementary material). The prediction affirms the fact that the relaxation in the mitigation measures 

during the studied period increases the number of deaths and tests in France, the predicted results of 

deaths being systematically higher than the observed values as seen in Figure 10a and Table A1. 
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Figure 10. (a) Functional linear regression model prediction for number of deaths in France as 

response variable before vaccination begins and (b) Functional linear regression model prediction for 

number of tests in France as response variable before vaccination begins. 

6.2. Function-on-function linear model 

We consider functional input and output regression model where we treated y(t) as response 

variable and x(s)’s as predictors at each time t, i.e., 𝑥(𝑡) → 𝑦(𝑡). The functional linear model with an 

intercept is of the form: 

𝑦(𝑡) = 𝛽𝑜(𝑡) + ∫β (𝑠, 𝑡)𝑥(𝑠)𝑑𝑠 + 𝜖(𝑡).     (20) 

We used this method to perform a function-on-function linear regression on our set of functional data 

by using the functional data curves of 101 days (predictors) to predict another set of curves of 101 days 

(response) while also estimating the slope 𝛽(𝑠, 𝑡), whose results in considered cases are presented in 

3D diagrams of Figure 11. 
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Figure 11. The 3D visualization of function-on-function regression for (a) hospitalized cases, (b) 

hospitalized when vaccination has started, (c) ICU cases, (d) ICU cases when vaccination has started, 

(e) daily return home, (f) daily return home when vaccination has started, (g) daily deceased and (h) 

daily deceased when vaccination has started. 
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Figure 11a shows hospitalized cases with the slope on the interval −2.799063 ≤ 𝛽(𝑠, 𝑡) ≤

1.980147, Figure 11b shows hospitalized when vaccination has started with the slope on the interval 

−1.501887 ≤ 𝛽(𝑠, 𝑡) ≤ 1.076421 , Figure 11c shows ICU cases with the slope on the interval 

−1.0733846 ≤ 𝛽(𝑠, 𝑡) ≤ 0.841100, Figure 11d shows ICU cases when vaccination has started with 

the slope on the interval −0.5646148 ≤ 𝛽(𝑠, 𝑡) ≤ 0.3661280, Figure 11e shows daily return home 

with the slope on the interval −0.6755000 ≤ 𝛽(𝑠, 𝑡) ≤0.7030529, Figure 11f shows daily return 

home when vaccination has started with the slope on the interval −0.4333295 ≤ 𝛽(𝑠, 𝑡) ≤0.4300995, 

Figure 11g shows daily deceased with the slope on the interval  −0.3277864 ≤ 𝛽(𝑠, 𝑡) ≤0.4002531 

and Figure 11h shows daily deceased when vaccination has started with the slope on the interval 

−0.3284866 ≤ 𝛽(𝑠, 𝑡) ≤0.3641679. We observed that in all these Figures in this section, the 3D 

surfaces yield results whose shapes look roughly similar to the slope curve, functional predictors curve 

and functional response curve. 

7. Perspectives and conclusions 

We studied in this article the best way to summarize temporal information relating to the 

variations of variables linked to the epidemic dynamics of COVID-19, such as hospitalized cases 

before and after vaccination has started, medical intensive care unit (MICU) cases before and after 

vaccination, daily return home cases before and after vaccination, and daily deceased before and after 

vaccination. Using the functional principal component analysis, it was shown that the first functional 

principal component well summarized the U or W shape observed for the data related to the first three 

principal components. This discovery confirms the importance of this first component for the 

explanation and the qualitative prediction from the observed data. The influence of the vaccination is 

visible, because the U or W shape is attenuated after vaccination, and does not come close to the shapes 

observed for seasonal influenza [16,44]. The subsequent functional principal components have poor 

predictive power, but the second component clearly shows the reducing influence of vaccination on 

all epidemic variables. A further, more in-depth study could undoubtedly show the predictive nature 

of this second component on the future success of a vaccination policy, by comparing different 

countries with different vaccination rates and by quantifying the phase of descent of the curves of the 

second component (for example by its slope at the second inflection and by the value of its minimum). 

We have given the percentage of variation between actual and predicted values, which quantifies the 

gain obtained by the mitigation measures during the studied period on the number of deaths in France, 

systematically higher than the observed values as seen in Figure 8 and Table A1. 
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Supplementary 

Table A1. Comparison between the predicted and actual values. 

Day 
Deaths Tests 

Actual/%gain Predicted Actual Predicted 

1 49/43% 86 269886 120499 

2 46/66% 136 251301 126261 

3 50/42% 86 248354 178764 

4 153/-32% 116 248910 264431 

5 26/68% 82 96177 192823 

6 11/72% 39 30345 75319 

7 53/45% 97 247760 328075 

8 78/42% 136 222942 124271 

9 43/65% 124 206626 118126 

10 52/70% 171 207651 237759 

11 150/14% 175 214336 124387 

12 39/69% 126 86361 229623 

13 27/36% 42 23804 78612 

14 81/-12% 72 223293 268357 

15 85/51% 172 199948 360891 

16 63/62% 168 191917 135525 

17 63/74% 246 196259 199318 

18 130/11% 146 210495 168640 

19 49/71% 167 90639 160399 

20 32/56% 59 25699 249580 

21 69/62% 181 240612 294387 

22 66/64% 185 217585 298154 

23 80/57% 188 214258 150142 

24 76/61% 194 231306 150122 

25 109/50% 219 259073 64680 

26 54/74% 209 114369 301318 

27 46/41% 78 32368 45122 

28 95/52% 198 299121 343681 

29 108/63% 292 276013 274313 

30 104/37% 165 279376 325882 

31 88/68% 275 301465 284502 

32 178/44% 320 322468 262879 

33 89/63% 238 140298 312368 
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Day 
Deaths Tests 

Actual/%gain Predicted Actual Predicted 

34 85/50% 169 40313 154521 

35 146/67% 447 355160 390516 

36 262/30% 376 321373 254298 

37 163/60% 410 330328 419636 

38 162/51% 329 357368 445595 

39 298/38% 484 388884 217528 

40 137/33% 206 165764 242920 

41 116/64% 318 47485 223540 

42 257/40% 430 430644 264886 

43 523/-63% 320 387569 256737 

44 244/55% 548 379590 484870 

45 235/32% 348 390099 417031 
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Figure A1. L2 (blue) and elastic (yellow) means of the functional data: (a) hospitalized cases, (b) 

hospitalized when vaccination has started, (c) ICU cases, (d) ICU cases when vaccination has started, 

(e) daily return home, (f) daily return home when vaccination has started, (g) daily deceased and (h) 

daily deceased when vaccination has started. We observed that the elastic mean better captures the 

geometry of the curves compared to the standard L2 mean for some of the functional data set we 

considered, since it is not affected by the deformations of the curves. This phenomenon can be seen in 

(a)–(c) and (e)–(g), but (d) and (h) show a bad shape for elastic mean. 
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Figure A2. Correlation coefficients between all French departments contour plot. (a) hospitalized 

cases, (b) hospitalized when vaccination has started, (c) ICU cases, (d) ICU cases when vaccination 

has started, (e) daily return home, (f) daily return home when vaccination has started, (g) daily 

deceased and (h) daily deceased when vaccination has started. 
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Figure A3. (a) Hospitalized cases interpolation smoothing, (b) hospitalized monotone smoothing, (c) 

ICU cases interpolation smoothing, (d) ICU cases monotone smoothing, (e) daily deceased 

interpolation smoothing and (f) daily deceased monotone smoothing. From graphs (a)–(f) one can 

deduce that cubic spline smoothing curves exhibit oscillations and oscillations are important to know 

the low and high data thresholds in case the consecutive data points experience a significant change in 

slope. We also observed that PCHIP is smooth and non-oscillatory despite some sharp increase as the 

U-shape of the curve deepens. 
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Figure A4. Kernel smoothing method for (a) hospitalized cases, (b) hospitalized when vaccination has 

started, (c) ICU cases, (d) ICU cases when vaccination has started, (e) daily return home and (f) daily 

return home when vaccination has started. 



5384 

AIMS Mathematics  Volume 7, Issue 4, 5347–5385. 



5385 

AIMS Mathematics  Volume 7, Issue 4, 5347–5385. 

 

Figure A5. Canonical variate redundancy plot for (a) hospitalized cases, (b) hospitalized when 

vaccination has started, (c) ICU cases, (d) ICU cases when vaccination has started, (e) daily return 

home, (f) daily return home when vaccination has started, (g) daily deceased and (h) daily deceased 

when vaccination has started. 
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