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1. Introduction

The investigation of factorization technique is seen as the similarity among Maxwell’s and Dirac’s
equations. They are both linear systems of equations and each of them contains partial derivatives of
the first order. Also, both Maxwell’s and Dirac’s equations are Lorentz invariant. It may be remarked
that in the case of Maxwell’s equations, the linearity may be an over-simplification which leads to the
difficulties with infinite self-energies.

An operational procedure which provides answers to the questions about eigenvalue problems and
which are of significant importance to physicists is known as the factorization method [10]. The basic
idea is to consider a pair of first-order differential equations, which on operating gives an equivalent
second-order differential equation. The manufacturing process is also used for the calculation of
transition probabilities. The method is generalized so that it will handle perturbation problems.

Let {lm(u)}∞m=0 be a sequence of polynomials such that

deg(lm(u)) = m, (m ∈ N0 := {0, 1, 2, . . .}).
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The sequences of two differential operators η−m and η+
m, for m = 0, 1, 2, · · · are defined as:

η−m(lm(u)) = lm−1(u) (1.1)

and
η+

m(lm(u)) = lm+1(u), (1.2)

are called the derivative and multiplicative operators, respectively.
A significant property known as the differential equation

(η−m+1η
+
m){lm(u)} = lm(u), (1.3)

is obtained on using these above mentioned operators η−m and η+
m. The technique used in obtaining

differential equations via Eq (1.3) is known as the factorization method. The main idea behind the
factorization method is to find the derivative operator η−m and multiplicative operator η+

m such that the
Eq (1.3) holds.

The iterations of η−m and η+
m to lm(u) provide the following relations:

(η−m+1η
+
m)lm(u) = lm(u); (1.4)

(η+
m−1η

−
m)lm(u) = lm(u); (1.5)

(η−1η
−
2η
−
3 · · · η

−
m−1η

−
m)lm(u) = l0(u); (1.6)

(η+
m−1η

+
m−2η

+
m−3 · · · η

+
1η

+
0 )l0(u) = lm(u). (1.7)

We can derive higher order differential equations that are fulfilled by particular special polynomials
using the operational relations outlined above. The second-order differential equations were studied
using the classical factorization method presented in [10].

The Frobenius-Genocchi polynomials Gm(x|u) satisfying the following exponential generating
expression were explored in great depth by Yilmaz and Özarslan [14]:

∞∑
m=0

Gm(x|u)
tm

m!
=

(1 − u)t
et − u

ext, ∀ u ∈ C; u , 1. (1.8)

For, x = 0, these Frobenius-Genocchi polynomials Gm(x|u) reduce to the Frobenius-Genocchi numbers
Gm(u). Therefore, Gm(u) = Gm(0|u) and thus are given by the following expression:

∞∑
m=0

Gm(0|u)
tm

m!
=

(1 − u)t
et − u

, ∀ u ∈ C; u , 1. (1.9)

It is clear that
G0(0|u) = G0(u) = 0 and G1(u) = 1. (1.10)

Further more in [14], it is given that the numbers gk(u) related to Frobenius-Genocchi polynomials
Gm(x|u) are given by

gk(u) :=
k∑

l=0

1
2l

(
k
l

)
Gk−l(

1
2
|u) (1.11)
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and by series manipulations, one can find

g0 = 0, g1 =
1
2
. (1.12)

Also, the Frobenius-Genocchi polynomials Gm(x|u) are recursively represented in terms of the
Frobenius-Genocchi numbers Gm(u) as follows:

Gm(x|u) =

m∑
k=0

(
m
k

)
Gk(u)xm−k, m ≥ 0. (1.13)

The classical Genocchi polynomials Gm(x) are an analogue of the Frobenius-Genocchi polynomials
Gm(x|u), represented by the following generating expression:

∞∑
m=0

Gm(x)
tm

m!
=

2t
et + 1

ext. (1.14)

Especially, the rational numbers Gm = Gm(0) are called the classical Genocchi numbers. These
numbers and polynomials play essential roles in many different areas of mathematics including
number theory, combinatorics, special functions and analysis. Obviously, the Frobenius-Genocchi
polynomials Gm(x|u) give the classical Genocchi polynomials Gm(x) for u = −1 in Eq (1.8).

Gould-Hopper based Frobenius-Genocchi polynomials given in [2], g( j)Gm(x, y|u) are represented by
the succeeding generating expression

(1 − u)t
(et − u)

exp(xt + yt j) =

∞∑
m=0

g( j)Gm(x, y|u)
tm

m!
. (1.15)

Using (1.9) and generating expression of Gould-Hopper polynomials [8]:

exp(xt + yt j) =

∞∑
m=0

g( j)
m (x, y)

tm

m!

in the l.h.s. of (1.15), it follows that

(1 − u)t
(et − u)

exp(xt + yt j) =

∞∑
m=0

∞∑
k=0

Gk(u)g( j)
m (x, y)

tk

k!
tm

m!

or
(1 − u)t
(et − u)

exp(xt + yt j) =

∞∑
m=0

∞∑
k=0

Gk(u)g( j)
m (x, y)

tm+k

k! m!
,

using Cauchy product rule and replacing m by m − k in above equation, the following series
representation is established:

g( j)Gm(x, y|u) =

m∑
k=0

(
m
k

)
Gk(u)g( j)

m−k(x, y). (1.16)
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Similarly, using generating expression

(1 − u)t
(et − u)

exp(xt) =

∞∑
m=0

g( j)Gm(x|u)
tm

m!

and expanding the term exp(yt j) in the l.h.s. of Eq (1.15), we obtain the following series representation
for Gould-Hopper based Frobenius-Genocchi polynomials g( j)Gm(x, y|u):

g( j)Gm(x, y|u) = m!
[ m

j ]∑
k=0

Gm−k(x|u) yk

k! (m − jk)!
. (1.17)

This hybrid special polynomials family carry the properties of the parent polynomials. These
polynomials are important because they possess important properties such as generating function,
series definition, recurrence relations, differential equations, summation formulae, integral
representations etc. In [9, 11–13], the differential equations for the Appell and related families of
polynomials are derived by using factorization method [10]. This approach is further extended to
derive the differential and integral equations for the hybrid, mixed type and 2D special polynomials
related to the Appell family, see for example [1, 3–7]. This provides motivation to establish the
differential equations for the Gould-Hopper-Frobenius-Euler polynomials. This gives inspiration to
build up the differential equations for the g( j)Gm(x, y|u) polynomials.

The article is organized as follows: In Section 2, the recurrence relation and shift operators for
the Gould-Hopper based Frobenius-Genocchi polynomials are derived. In Section 3, the differential,
integro-differential and partial differential equations for this family are established.

2. Recurrence relations and shift operators

For the Gould-Hopper based Frobenius-Genocchi polynomials g( j)Gm(x, y|u), the recurrence relation
and shift operators are derived in this section.

In order to derive the recurrence relation for the Gould-Hopper based Frobenius-Genocchi
polynomials g( j)Gm(x, y|u), the following result is proved:

Theorem 2.1. For the Gould-Hopper based Frobenius-Genocchi polynomials with two variables
g( j)Gm(x, y|u) , the following recurrence relation holds true:

g( j)Gm+1(x, y|u)

=
m + 1

m

[ (
x −

m + 1
2(1 − u)

)
g( j)Gm(x, y|u) −

1
1 − u

m+1∑
k=2

(
m + 1

k

)
gk(u)

× g( j)Gm−k+1(x, y|u) + jy
m!

(m − j + 1)! g( j)Gm− j+1(x, y|u)
]
, (2.1)

where u is a parameter, j is a positive integer and the numerical coefficients gk(u) are related toGm(x|u)
that is Frobenius-Genocchi polynomials given by the relations (1.11) and (1.12).
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Proof. Taking derivatives of expression (1.15) with respect t on both sides, it follows that

∞∑
m=0

g( j)Gm(x, y|u) m
tm−1

m!

=

(
x + jyt j−1 +

1
t
−

et

et − u

) ∞∑
m=0

g( j)Gm(x, y|u)
tm

m!
.

Rearranging and simplifying the terms, we have

∞∑
m=0

(m − 1)g( j)Gm(x, y|u)
tm−1

m!

=x
∞∑

m=0
g( j)Gm(x, y|u)

tm

m!
+ jy

∞∑
m=0

g( j)Gm(x, y|u)
tm+ j−1

m!

−
1

1 − u

∞∑
m=0

∞∑
k=0

gk(u)g( j)Gm(x, y|u)
tm+k

m! k!
.

Replacing m by m+1 in the l.h.s. and using well known Cauchy-product rule in the r.h.s. by replacing
m by m-j+1 and m-k in second and third terms, it follows that

∞∑
m=0

m
m + 1g( j)Gm+1(x, y|u)

tm

m!

=

∞∑
m=0

x g( j)Gm(x, y|u)
tm

m!
+ jy

∞∑
m=0

m!
(m − j + 1)! g( j)Gm− j+1(x, y|u)

tm

m!

−
1

1 − u

∞∑
m=0

m∑
k=0

(
m
k

)
gk(u) g( j)Gm−k(x, y|u)

tm

m!
. (2.2)

Using g0 = 0 and g1 = 1
2 , the third term in r.h.s. becomes 0 and − m

2(1−u) g( j)Gm−1(x, y|u) for k = 0 and 1,
respectively. To make the term same as g( j)Gm(x, y|u) as in first term, we replace m by m + 1. Therefore,
combining it with first term and comparing the coefficients of like powers of t on the both sides of the
resultant equation, assertion (2.1) is obtained. �

Next, we find the shift operators for the Gould-Hopper based Frobenius-Genocchi polynomials
g( j)Gm(x, y|u) by proving the following result:

Theorem 2.2. For the Gould-Hopper based Frobenius-Genocchi polynomials g( j)Gm(x, y|u), the
following expressions for the shift operators holds true:

x£−m :=
1
m

Dx, (2.3)

y£−m :=
1
m

D1− j
x Dy, (2.4)

x£+
m :=

m + 1
m

[(
x −

m + 1
2(1 − u)

)
−

m + 1
1 − u

m+1∑
k=2

Dk−1
x

gk(u)
k!

+ jy D j−1
x

]
, (2.5)
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y£+
m :=

m + 1
m

[(
x −

m + 1
2(1 − u)

)
−

m + 1
1 − u

m+1∑
k=2

gk(u)
k!

D(k−1)(1− j)
x Dk−1

y + jy D−( j−1)2

x D j−1
y

]
, (2.6)

where

Dx :=
∂

∂x
, Dy :=

∂

∂y
, and D−1

x :=
∫ x

0
f (ξ)dξ. (2.7)

Proof. Differentiating generating relation (1.15) with respect to x and then equating the coefficients of
same powers of t on both sides of the resultant equation, we have

∂

∂x
{g( j)Gm(x, y|u)} = mg( j)Gm−1(x, y|u), (2.8)

so that
1
m

∂

∂x
{g( j)Gm(x, y|u)} = mg( j)Gm−1(x, y|u).

Consequently, it follows that

x£−m{g( j)Gm(x, y|u)} =
1
m

∂

∂x
{g( j)Gm(x, y|u)} = g( j)Gm−1(x, y|u), (2.9)

which proves assertion (2.3).
Next, differentiating generating relation (1.15) with respect to y and then equating the coefficients

of same powers of t on both sides of the resultant equation, we have

∂

∂y
{g( j)Gm(x, y|u)} =

m!
(m − j)! g( j)Gm− j(x, y|u), (2.10)

which in view of Eq (2.8) can be written as

∂

∂y
{g( j)Gm(x, y|u)} = m

∂ j−1

∂x j−1 g( j)Gm−1(x, y|u), (2.11)

so that

y£−m{g( j)Gm(x, y|u)} =
1
m

D1− j
x Dy {g( j)Gm(x, y|u)} = g( j)Gm−1(x, y|u). (2.12)

Thus assertion (2.4) is proved.
Next, to find raising operator x£+

m, the following relation is used:

g( j)Gk(x, y|u) = (x£−k+1 x£−k+2 . . . x£−m−1 x£−m){g( j)Gm(x, y|u)}, (2.13)

which can be further simplified on using expression (2.9) as:

g( j)Gk(x, y|u) =
k!
m!

Dm−k
x {g( j)Gm(x, y|u)}. (2.14)

Inserting above expression in relation (2.1), we have
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g( j)Gm+1(x, y|u)

=
m + 1

m

((
x −

m + 1
2(1 − u)

)
−

m + 1
1 − u

m+1∑
k=2

Dk−1
x

gk(u)
k!

+ jy D j−1
x

)
g( j)Gm(x, y|u). (2.15)

This yields expression for raising operator (2.5).
Further, to obtain the raising operator y£+

m, the following relation is used:

g( j)Gk(x, y|u) = (y£−k+1 y£−k+2 . . . y£−m−1 y£−m){g( j)Gm(x, y|u)}, (2.16)

simplifying above equation in view of expression (2.12), it follows that

g( j)Gk(x, y|u) =
k!
m!

D(k−1)(1− j)
x Dk−1

y {g( j)Gm(x, y|u)}. (2.17)

Inserting above expression in relation (2.1), it follows that

g( j)Gm+1(x, y|u) =
m + 1

m

((
x −

m + 1
2(1 − u)

)
−

m + 1
1 − u

m+1∑
k=2

D(k−1)(1− j)
x Dk−1

y
gk(u)

k!

+ jy D−( j−1)2

x D j−1
y

)
g( j)Gm(x, y|u). (2.18)

This yields expression for raising operator (2.6). �

3. Differential equations

In this segment utilizing the factorization method, the differential, integro-differential, and partial
differential expressions for the Gould-Hopper based Frobenius-Genocchi polynomials g( j)Gm(x, y|u) of
2-variables are established.

Theorem 3.1. The Gould-Hopper based Frobenius-Genocchi polynomials g( j)Gm(x, y|u) satisfy the
following expression for the differential equation:((

x −
m + 1

2(1 − u)

)
Dx −

m + 1
1 − u

m+1∑
k=2

Dk
x

gk(u)
k!

+ jy D j
x − (m − 1)

)
g( j)Gm(x, y|u) = 0. (3.1)

Proof. Using the factorization relation given by

x£−m+1 x£+
m{g( j)Gm(x, y|u)} = g( j)Gm(x, y|u), (3.2)

and inserting the expressions (2.3) and (2.5) in the l.h.s. of above equation gives assertion (3.1). �

Theorem 3.2. The Gould-Hopper based Frobenius-Genocchi polynomials g( j)Gm(x, y|u) satisfy the
following expressions for the integro-differential equations:
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(x − m + 1
1 − u

)
Dy −

m + 1
1 − u

m+1∑
k=2

gk(u)
k!

D(k−1)(1− j)
x Dk

y + j D−( j−1)2

x D j−1
y

+ jy D−( j−1)2

x D j
y − mD j−1

x

)
g( j)Gm(x, y|u) = 0 (3.3)

and (x − m + 1
1 − u

)
Dx −

m + 1
1 − u

m+1∑
k=2

gk(u)
k!

D(k−1)(1− j)+1
x Dk−1

y

+ jy D−( j−1)2+1
x D j−1

y − m − 1
)

g( j)Gm(x, y|u) = 0. (3.4)

Proof. Consider the following factorization relation:

y£−m+1 y£+
m{g( j)Gm(x, y|u)} = g( j)Gm(x, y|u). (3.5)

Using the shift operators (2.4) and (2.6) in the above relation, assertion (3.3) is obtained.
Combining (2.3) and (2.6) of the shift operators with the factorization relation

x£−m+1 y£+
m{g( j)Gm(x, y|u)} = g( j)Gm(x, y|u) (3.6)

yields assertion (3.4). �

Theorem 3.3. The Gould-Hopper based Frobenius-Genocchi polynomials g( j)Gm(x, y|u) satisfy the
following expressions for the partial differential equations:(x − m + 1

1 − u

)
Dm( j−1)

x Dy + m( j − 1)DyDm( j−1)−1
x −

m + 1
1 − u

m+1∑
k=2

gk(u)
k!

D( j−1)(m−k+1)
x Dk

y

+ j D( j−1)(m− j+1)
x D j−1

y + jy D( j−1)(m− j+1)
x D j

y − mD(m+1)( j−1)
x

)
g( j)Gm(x, y|u) = 0 (3.7)

and (x − m + 1
1 − u

)
Dm( j−1)+1

x + m( j − 1)Dm( j−1)
x −

m + 1
1 − u

m+1∑
k=2

gk(u)
k!

D( j−1)(m−k+1)+1
x Dk−1

y

+ jy D( j−1)(m− j+1)+1
x D( j−1)

y − m − 1Dm( j−1)
x

)
g( j)Gm(x, y|u) = 0, (3.8)

respectively.

Proof. Differentiating m( j − 1) times with respect to x of integro-differential equations (3.3) and (3.4),
partial differential equations (3.7) and (3.8) are obtained. �

4. Conclusions

Differential equations are used to explain issues in several fields of science and engineering, with
special functions serving as solutions in the majority of cases. The differential and integral equations
that these hybrid type special polynomials satisfy can be used to address new issues in a variety of
fields. To study the combination of operational representations with the factorization method and their
applications to the theory of differential equations for other hybrid type special polynomials and for
their relatives will be taken in further investigation.
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