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Abstract: Zika virus, a recurring mosquito-borne flavivirus, became a global public health agency
in 2016. It is mainly transmitted through mosquito bites. Recently, experimental result demonstrated
that Aedes mosquitoes can acquire and transmit Zika virus by breeding in contaminated aquatic
environments. The environmental transmission route is unprecedented discovery for the Zika virus.
Therefore, it is necessary to introduce environment transmission route into Zika model. Furthermore,
we consider diffusive terms in order to capture the movement of humans and mosquitoes. In this paper,
we propose a novel reaction-diffusion Zika model with environment transmission route in a spatial
heterogeneous environment, which is different from all Zika models mentioned earlier. We introduce
the basic offspring number Rm

0 and basic reproduction number R0 for this spatial model. By using
comparison arguments and the theory of uniform persistence, we prove that disease free equilibrium
with the absence of mosquitoes is globally attractive when Rm

0 < 1, disease free equilibrium with
the presence of mosquitoes is globally attractive when Rm

0 > 1 and R0 < 1, the model is uniformly
persistent when Rm

0 > 1 and R0 > 1. Finally, numerical simulations conform these analytical results.
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1. Introduction

Zika virus, a mosquito-borne flavivirus, was first isolated in monkeys a rhesus in Uganda in 1947.
Later, it was detected in humans in Uganda and the United Republic of Tanzania in 1952 [1]. From the
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1960s to 1980s, rare sporadic cases of human infections were found throughout Africa and Asia. The
first recorded outbreak was reported from the Island of Yap in 2007 [2]. In March 2015, Brazil reported
a large outbreak of rash illness, soon identified as Zika virus infection, and later found to be associated
with Guillain-Barré syndrome and microcephaly [3]. On February 1, 2016, WHO declared Zika as
a “Public Health Emergency of International Concern” [4]. Since the outbreak of Zika in Brazil, the
expansion of the Zika outbreak has seemed unstoppable. It spread rapidly from Brazil to northern
Europe [5], Australia [6], through Canada [7], the USA [8], subsequently, arrived to reach Japan [9],
China [10]. Zika cases have been reported in 90 countries and territories by November 4, 2019 [11].
Recently, November 6, 2021, 13 new cases were reported in Uttar Pradesh’s Kanpur district, which
took the case tally to 79 in the state during the past two weeks. Authorities in the Indian capital region
said they were on alert in the wake of a spike in Zika virus cases in the neighbouring state of Uttar
Pradesh. It is natural to ask how the previously unknown Zika virus spreads rapidly in the short term.

Since the outbreak of Zika in Brazil, many models have been proposed to study spread, impact,
and control of Zika disease and dynamic behaviors. Zhang et al. [12] employed a SEIR
(Susceptible-Exposed-Infected-Removed)-SEI (Susceptible-Exposed-Infected) human-vector model
to estimate the time of first introduction of Zika to Brazil. Zhao et al. [13] considered the limited
medical resources in Zika model and obtained rich bifurcation phenomena, such as, backward
bifurcation, Hopf bifurcation, Bogdanov-Takens bifurcation of codimension 2 and discontinuous
bifurcation. Various ordinary differential equations (ODEs) models and dynamics analyses had been
applied to study Zika outbreak [14–20]. However, the above models ignore the effects of the spatial
factors. In fact, the spread of the disease concerns not only the time, but also the spatial location. For
this purpose, some researchers began to describe spatio-temporal transmission of Zika disease
through partial differential equations (PDEs) [21, 22]. Miyaoka et al. [21] considered spatial
movement of humans and vectors and formulated a reaction diffusion model to research the effect of
vaccination on the transmission and control of Zika disease. Yamazaki [22] added diffusive terms in
Zika model in order to capture the movement of human hosts and mosquitoes, considering the unique
threat of the sexual transmission of Zika disease. In the above PDEs models, all the coefficients are
positive constants. That is, the dynamics of humans and vectors are described in spatially
homogeneous environments. However, the diffusion dynamics of the disease is affected by the natural
landscapes, the urban and rural distribution, even cultural geographical factors [23]. To make the
model more consistent with the spread laws of the disease, the spatial heterogeneity must be
considered. Hence, it is necessary to understand the transmission dynamics of the Zika disease
influenced by the spatial heterogeneity [24]. However, in the above studies, the contaminated aquatic
environments, an important transmission route for Zika virus, seem to have received little attention.

Recently, experimental result [25] demonstrated that Aedes mosquitoes can acquire and transmit
Zika virus by breeding in contaminated aquatic environments. It implies that Aedes mosquitoes are
infected by Zika virus not only through biting infectious hosts but also through urine excreted by Zika
patients. This new transmission route makes the transmission cycle of Zika virus much shorter. It may
be one of the major causes of rapid spread of Zika virus in nature. Therefore, it is more reasonable to
introduce environment transmission route (That is, human-environment-mosquito-human transmission
route) into Zika model [26]. However, few Zika models incorporate environment transmission route
and spatial heterogeneity simultaneously.

The paper is organized as follows. In Section 2, we propose a novel reaction-diffusion Zika model
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with environment transmission route in a spatial heterogeneous environment, which is different from
all Zika models mentioned earlier. In Section 3, the well-posedness and some properties of the model
are also discussed. The basic offspring number Rm

0 and basic reproduction number R0 for our spatial
model are established in Section 4. In Section 5, by using comparison arguments and the theory of
uniform persistence, the threshold dynamics for the model in terms of Rm

0 and R0 are analysed. A brief
conclusion is given in Section 7.

2. Model formulation

In this section, we propose a reaction-diffusion Zika model with environment transmission route.
Considering the effects of individual mobility, we assume that a host population lives in a spatial
heterogeneous environment, which is represented with a bounded domain Ω with smooth boundary
∂Ω. Mosquitoes are classified in aquatic and adult mosquitoes. Here we combine the egg, larval and
pupal stages as one aquatic stage. Aquatic mosquitoes are divided into susceptible and infectious
compartments, and their spatial densities at location x and time t are represented by S a(x, t) and
Ia(x, t), respectively. Adult mosquitoes are divided into susceptible and infectious compartments with
spatial densities S m(x, t) and Im(x, t), respectively. We divide the density of total human population at
location x and time t, denoted by Nh(x, t), into three categories: susceptible humans S h(x, t),
infectious humans Ih(x, t) and recovered humans Rh(x, t). So Nh(x, t) = S h(x, t) + Ih(x, t) + Rh(x, t).
V(x, t) represents the density at location x and time t of Zika virus within the contaminated aquatic
environments. Implication of V(x, t) is similar to avian influenza virus concentration in water [27, 28].

In this paper, we extend our previous model [26] to consider mosquitoes and humans in spatially
heterogeneous environments. So, the transmission path of Zika virus is similar to literature [26]. In
order to incorporate the multiple factors of diffusion and spatial heterogeneity in the spatial domain Ω,
we assume that the parameters K(x), ϑ(x), ω(x), µa(x), µm(x), Λ(x), µh(x), r(x), a(x), β1(x), β2(x), βv(x),
θ(x), δ(x) are functions of the spatial location x where the contact occurs, and these space dependent
parameters are continuous and strictly positive. Mathematically, we assume that all aquatic mosquitoes
do not diffuse, and all adult mosquitoes have the same diffusion rate, denoted by dm > 0, while all
humans have the same diffusion rate, denoted by dh > 0. The biological meanings of all parameters
are shown in Table 1.
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Table 1. Parameters description.

Parameter Description

K(x) The environment carrying capacity of aquatic mosquitoes at location x

l The fraction of hatched female mosquitoes from all eggs
s Probability of mosquito egg-to-adult survival
ϑ(x) Intrinsic oviposition rate at location x

ω(x) Maturation rate from aquatic stages to adult mosquitoes at location x

µa(x) Death rate of aquatic mosquitoes at location x

µm(x) Death rate of adult mosquitoes at location x

Λ(x) Recruitment rate of humans at location x

µh(x) Natural death rate of humans at location x

r(x) Recovery rate of humans at location x

a(x) Biting rate of mosquitoes at location x

β1(x) Transmission probability from infectious humans to susceptible mosquitoes at location x

β2(x) Transmission probability from infectious mosquitoes to susceptible humans at location x

βv(x) Transmission rate from contaminated aquatic environments to aquatic mosquitoes at location x

θ(x) Excretion rate for each infected individual at location x

δ(x) Clearance rate of Zika virus in contaminated aquatic environments at location x

dm Adult mosquito diffusion rate
dh Human diffusion rate

On the basis of above assumptions, following the flow diagram in Figure 1, we will focus on the
spatiotemporal reaction-diffusion Zika model with environment transmission route as follows:

Figure 1. Flow diagram of Zika transmission. The parameters are given in Table 1.
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

∂S a

∂t
= lsϑ(x)(S m + Im)

(
1 −

S a + Ia

K(x)

)
− βv(x)S aV − ω(x)S a − µa(x)S a, x ∈ Ω, t > 0,

∂Ia

∂t
= βv(x)S aV − ω(x)Ia − µa(x)Ia, x ∈ Ω, t > 0,

∂S m

∂t
= dm4S m + ω(x)S a − a(x)β1(x)

IhS m

Nh
− µm(x)S m, x ∈ Ω, t > 0,

∂Im

∂t
= dm4Im + ω(x)Ia + a(x)β1(x)

IhS m

Nh
− µm(x)Im, x ∈ Ω, t > 0,

∂S h

∂t
= dh4S h + Λ(x) − a(x)β2(x)

ImS h

Nh
− µh(x)S h, x ∈ Ω, t > 0,

∂Ih

∂t
= dh4Ih + a(x)β2(x)

ImS h

Nh
− r(x)Ih − µh(x)Ih, x ∈ Ω, t > 0,

∂Rh

∂t
= dh4Rh + r(x)Ih − µh(x)Rh, x ∈ Ω, t > 0,

∂V
∂t

= θ(x)Ih − δ(x)V, x ∈ Ω, t > 0,

∂S m

∂n
=
∂Im

∂n
=
∂S h

∂n
=
∂Ih

∂n
=
∂Rh

∂n
= 0, x ∈ ∂Ω, t > 0,

S a(x, 0) = S a0(x) ≥ 0, Ia(x, 0) = Ia0(x) ≥ 0, S m(x, 0) = S m0(x) ≥ 0, x ∈ Ω,

Im(x, 0) = Im0(x) ≥ 0, S h(x, 0) = S h0(x) ≥ 0, Ih(x, 0) = Ih0(x) ≥ 0, x ∈ Ω,

Rh(x, 0) = Rh0(x) ≥ 0, V(x, 0) = V0(x) ≥ 0, x ∈ Ω,

(2.1)

where 4 represents the Laplacian operator. The density of total human population Nh(x, t) can be
determined by the following equation

∂Nh

∂t
= dh4Nh + Λ(x) − µh(x)Nh, x ∈ Ω, t > 0,

∂Nh

∂n
= 0, x ∈ ∂Ω, t > 0.

(2.2)

From Lemma 1 in [29], system (2.2) admits a globally attractive positive steady state H(x) in C(Ω̄, R+).
For simplicity, we assume that the density of total human population at location x and time t stabilizes
at H(x). That is, Nh(x, t) ≡ H(x), ∀ t ≥ 0, x ∈ Ω. Therefore, it suffices to consider the following reduced
system:
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

∂S a

∂t
= ρ(x)(S m + Im)

(
1 −

S a + Ia

K(x)

)
− βv(x)S aV − ω(x)S a − µa(x)S a, x ∈ Ω, t > 0,

∂Ia

∂t
= βv(x)S aV − ω(x)Ia − µa(x)Ia, x ∈ Ω, t > 0,

∂S m

∂t
= dm4S m + ω(x)S a −

a(x)β1(x)
H(x)

IhS m − µm(x)S m, x ∈ Ω, t > 0,

∂Im

∂t
= dm4Im + ω(x)Ia +

a(x)β1(x)
H(x)

IhS m − µm(x)Im, x ∈ Ω, t > 0,

∂S h

∂t
= dh4S h + Λ(x) −

a(x)β2(x)
H(x)

ImS h − µh(x)S h, x ∈ Ω, t > 0,

∂Ih

∂t
= dh4Ih +

a(x)β2(x)
H(x)

ImS h − r(x)Ih − µh(x)Ih, x ∈ Ω, t > 0,

∂V
∂t

= θ(x)Ih − δ(x)V, x ∈ Ω, t > 0,

∂S m

∂n
=
∂Im

∂n
=
∂S h

∂n
=
∂Ih

∂n
= 0, x ∈ ∂Ω, t > 0,

S a(x, 0) = S a0(x) ≥ 0, Ia(x, 0) = Ia0(x) ≥ 0, x ∈ Ω,

S m(x, 0) = S m0(x) ≥ 0, Im(x, 0) = Im0(x) ≥ 0, x ∈ Ω,

S h(x, 0) = S h0(x) ≥ 0, Ih(x, 0) = Ih0(x) ≥ 0, V(x, 0) = V0(x) ≥ 0, x ∈ Ω,

(2.3)

where ρ(x) = lsϑ(x).

3. Well-posedness

In this section, we will study the well-posedness of system (2.3). Let X := C(Ω̄, R7) be the Banach
space with the supremum norm ‖ · ‖. Define X+ := C(Ω̄, R7

+), then (X, X+) is a strongly ordered
Banach space. Let XK be the subset in X defined by

XK :=
{
φ = (φ1, φ2, φ3, φ4, φ5, φ6, φ7)T ∈ X+ : 0 ≤ φ1(x) + φ2(x) ≤ K(x), ∀ x ∈ Ω̄

}
.

In order to simplify notations, we set u = (u1, u2, u3, u4, u5, u6, u7)T = (S a, Ia, S m, Im, S h, Ih,V)T , and the
initial data satisfies u0 = (u0

1, u
0
2, u

0
3, u

0
4, u

0
5, u

0
6, u

0
7)T = (S a0, Ia0, S m0, Im0, S h0, Ih0,V0)T . Throughout, for

any w ∈ C(Ω̄, R), we denote w := max
x∈Ω̄

w(x), w := min
x∈Ω̄

w.

We define Ti(t), T j(t), T5(t), T6(t), T7(t) : C(Ω̄, R) → C(Ω̄, R) as the C0 semigroups associated
with

−(ω(·) + µa(·)), dm4 − µm(·), dh4 − µh(·), dh4 − (r(·) + µh(·)), − σ(·)

subject to the Neumann boundary condition, respectively, i = 1, 2, j = 3, 4. Then it follows that for
any ψ ∈ C(Ω̄, R), t ≥ 0,

(Tk(t)ψ)(x) =

∫
Ω

Γk(x, y, t)ψ(y)dy, k = 1, 2, 3, 4, 5, 6, 7, (3.1)
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in which Γi, Γ j, Γ6, Γ7 and Γ7 are the Green functions associated with

−(ω(·) + µa(·)), dm4 − µm(·), dh4 − µh(·), dh4 − (r(·) + µh(·)), − σ(·)

subject to the Neumann boundary condition, respectively, i = 1, 2, j = 3, 4.
It is well-known that for all t > 0 and k = 1, 2, 3, 4, 5, 6, 7, Tk is compact and strongly positive (see

[30], Section 7.1 and Corollary 7.2.3). Moreover, T (t) = (T1(t), T2(t), T3(t), T4(t), T5(t), T6(t), T7(t))T

, t ≥ 0, is a C0 semigroup. For ∀ x ∈ ∂Ω and u = (u1, u2, u3, u4, u5, u6, u7)T ∈ XK , the nonlinear
operator F = (F1, F2, F3, F4, F5, F6, F7)T : XK → X is defined by

F1(u)(x) = ρ(x)(u3 + u4)
(
1 −

u1 + u2

K(x)

)
− βv(x)u1u7,

F2(u)(x) = βv(x)u1u7,

F3(u)(x) = ω(x)u1 −
a(x)β1(x)

H(x)
u6u3,

F4(u)(x) = ω(x)u2 +
a(x)β1(x)

H(x)
u6u3,

F5(u)(x) = Λ(x) −
a(x)β2(x)

H(x)
u4u5,

F6(u)(x) =
a(x)β2(x)

H(x)
u4u5,

F7(u)(x) = θ(x)u6.

(3.2)

Then system (2.3) can be rewritten as the following integral equation

uk(t) = Ti(t)u0
k +

∫ t

0
Γi(t − s)Fk(u(·, s))ds, k = 1, 2, 3, 4, 5, 6, 7. (3.3)

For any φ ∈ XK and h ≥ 0, then we have

φ + hF(φ) =



φ1 + h
(
ρ(x)(φ3 + φ4)

(
1 −

φ1 + φ2

K(x)

)
− βv(x)φ1φ7

)
φ2 + hβv(x)φ1φ7

φ3 + h
(
ω(x)φ1 −

a(x)β1(x)
H(x)

φ6φ3

)
φ4 + h

(
ω(x)φ2 +

a(x)β1(x)
H(x)

φ6φ3

)
φ5 + h

(
Λ(x) −

a(x)β2(x)
H(x)

φ4φ5

)
φ6 + h

a(x)β2(x)
H(x)

φ4φ5

φ7 + hθ(x)φ6



≥



φ1

(
1 − hβvφ7

)
φ2

φ3

1 − h
aβ1

H
φ6


φ4

φ5

1 − h
aβ2

H
φ4


φ6

φ7



,
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and

K(x) − (φ1 + hF1(φ) + φ2 + hF2(φ)) = K(x) −
(
(φ1 + φ2) + hρ(x)(φ3 + φ4)

(
1 −

φ1 + φ2

K(x)

))
= (K(x) − (φ1 + φ2))

[
1 − h

ρ(x)
K(x)(φ3 + φ4)

]
.

(3.4)

This means that
lim

h→0+

1
h

dist (φ + hF(φ), XK) = 0, ∀ φ ∈ XK .

It then follows from Corollary 8.1.3 in [31] (see also Corollary 4 in [32]), we have the following result.

Lemma 3.1. For every initial value function φ ∈ XK , system (2.3) admits a unique mild solution,
denoted by

u(·, t, φ) = (S a(·, t, φ), Ia(·, t, φ), S m(·, t, φ), Im(·, t, φ), S h(·, t, φ), Ih(·, t, φ), V(·, t, φ))T

on its maximal existence interval [0, bφ) with u0 = φ, where bφ ≤ ∞. Moreover, u(·, t, φ) ∈ XK for
∀ t ∈ (0, bφ) and u(·, t, φ) is a classical solution of system (2.3).

Next, we will show that solutions of system (2.3) exist globally on [0, ∞), and admit a global
compact attractor on XK .

Lemma 3.2. For every initial value function φ ∈ XK , system (2.3) has a unique solution, denoted by

u(·, t, φ) = (S a(·, t, φ), Ia(·, t, φ), S m(·, t, φ), Im(·, t, φ), S h(·, t, φ), Ih(·, t, φ), V(·, t, φ))T

on [0, ∞) with u0 = φ. Moreover, define the semiflow Φ(t) : XK → XK associated with system (2.3) by

Φ(t)φ = u(·, t, φ), ∀φ = u0 ∈ XK , t ≥ 0.

Then the semiflow Φ(t) : XK → XK admits a global compact attractor on XK , ∀t ≥ 0.

Proof. Clearly, for ∀ φ ∈ XK , we have 0 ≤ S h(·, t, φ), Ih(·, t, φ) ≤ H(·) for all t ≥ 0. The comparison
principle ( [30], Theorem 7.3.4 ) implies that S h(x, t, φ) and Ih(x, t, φ) are uniformly bounded and
ultimately bounded. It then follows from the seventh equation of (2.3) that

∂V(x, t)
∂t

≤ θ(x)H(x) − δ(x)V(x, t),

≤ θH − δV(x, t) t > 0.
(3.5)

Thus, the comparison principle shows that V(·, t, φ) is uniformly bounded on [0, bφ), and

lim
t→∞

V(x, t) ≤
θH
δ
, uni f ormly in x ∈ Ω. (3.6)

More precisely, there exists a t1 > 0 such that

V(·, t) ≤ 2
θH
δ
, ∀ t ≥ t1.
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Letting N1 = max
{

max
t∈[0,t1], x∈Ω̄

V(x, t), 2 θH
δ

}
< ∞, we deduce

V(x, t) ≤ N1 f or all x ∈ Ω, t > 0. (3.7)

Let A(x, t) = S a(x, t) + Ia(x, t), M(x, t) = S m(x, t) + Im(x, t). Then it follows from the first four equations
of (2.3) that (A(x, t), M(x, t)) satisfies

∂A
∂t

= ρ(x)
(
1 −

A
K(x)

)
M − (ω(x) + µa(x))A, x ∈ Ω, t > 0,

∂M
∂t

= dm4M + ω(x)A − µm(x)M, x ∈ Ω, t > 0,

∂M
∂n

= 0, x ∈ ∂Ω, t > 0,

A(x, 0) = A0(x), M(x, 0) = M0(x), x ∈ Ω,

(3.8)

where A0(x) = φ1(x) + φ2(x), M0(x) = φ3(x) + φ4(x). It is easy to see that there exists a positive vector

ν = (ν1, ν2) :=
(
K, fωK

µm

)
such that

ρ(x)
(
1 −

ν1

K(x)

)
ν2 − (ω(x) + µa(x))ν1 ≥ 0, ω(x)ν1 − µm(x)ν2 ≤ 0.

Thus, ν is an upper solution of (3.8). The comparison principle implies that solutions of (3.8) are
uniformly bounded on [0, bφ). Hence, so are S a(x, t), Ia(x, t), S m(x, t) and Im(x, t). Then, we can
extend the local unique solution from Lemma 3.1 to global in time via a standard a priori estimates
and continuation of local theory. That is, solutions of (2.3) exist on [0, ∞). Next, we show that
S a(x, t), Ia(x, t), S m(x, t) and Im(x, t) are ultimately bounded.

From Lemma 3.1, we have S a(x, t) + Ia(x, t) ≤ K for all x ∈ Ω̄, t ≥ 0. This implies that S a(x, t) and
Ia(x, t) are ultimately bounded and

S a(x, t) ≤ K, Ia(x, t) ≤ K, ∀ x ∈ Ω̄, t ≥ 0. (3.9)

It then follows from the third equation of (2.3) that

∂S m

∂t
≤ dm4S m + ω(x)K − µm(x)S m

≤ dm4S m + ωK − µmS m, x ∈ Ω, t > 0,

∂S m

∂n
= 0, x ∈ ∂Ω, t > 0,

S m(x, 0) = φ3(x), x ∈ Ω.

(3.10)

Consider 
∂W
∂t

= dm4W + ωK − µmW, x ∈ Ω, t > 0,

∂W
∂n

= 0, x ∈ ∂Ω, t > 0,

W(x, 0) = φ3(x), x ∈ Ω.

(3.11)

AIMS Mathematics Volume 7, Issue 3, 4803–4832.



4812

From Lemma 1 in [29], ωK
µm

is a unique positive steady state that is globally attractive in C(Ω̄, R+).

Hence there exists t2 ≥ 0 such that W(x, t) ≤ 2ωK
µm

. By comparison principle, S m(·, t) ≤ 2ωK
µm

when
t > t2.

Then, 

∂Im

∂t
≤ dm4Im + ωK + 2

aβ1ωK
µm

− µmIm, x ∈ Ω, t > t2,

∂Im

∂n
= 0, x ∈ ∂Ω, t > t2,

Im(x, t2) := Im2(x), x ∈ Ω.

(3.12)

Similarly, Im(x, t) is ultimately bounded. More precisely, there exists a t3 > 0 such that Im(·, t) ≤
2ωK
µm

(
1 + 2aβ1

µm

)
, for ∀t > t3. Thus, we can obtain

Im(·, t) ≤ N2, f or ∀t ≥ 0, (3.13)

where N2 = max
{

max
t∈[0,t3], x∈Ω̄

Im(x, t), 2ωK
µm

(
1 + 2aβ1

µm

)}
< ∞.

In addition, since the first two equations and the last equation of (2.3) have no diffusion term, the
solution semiflow Φ(t) is not compact. However, due to −ω(x) − µa(x) < 0,−δ(x) < 0,∀x ∈ Ω̄, using
similar arguments from Theorem 4.1 in [33] (also Lemma 4.1 in [34] and Theorem 2.6 in [35]) that the
semiflow Φ(t) : XK → XK has a global compact attractor on XK , ∀t ≥ 0. This completes the proof of
Lemma 3.2. �

The following result shows that the solution of system (2.3) is strictly positive.

Lemma 3.3. Let (S a(·, t, φ), Ia(·, t, φ), S m(·, t, φ), Im(·, t, φ), S h(·, t, φ), Ih(·, t, φ),V(·, t, φ))T be the
solution of system (2.3) with the initial value φ ∈ XK . If there exists some t0 ≥ 0 such that
Ia(·, t0, φ) . 0, Im(·, t0, φ) . 0, Ih(·, t0, φ) . 0, V(·, t0, φ) . 0, then the solution of system (2.3) satisfies

S a(x, t, φ) > 0, Ia(x, t, φ) > 0, S m(x, t, φ) > 0, Im(x, t, φ) > 0,
S h(x, t, φ) > 0, Ih(x, t, φ) > 0,V(x, t, φ) > 0, ∀ t > t0, x ∈ Ω̄.

Moreover, for any initial value φ ∈ XK , there exists some positive constant ζ0 such that

lim inf
t→∞

S h(x, t, φ) ≥ ζ0, uni f ormly f or x ∈ Ω̄. (3.14)

Proof. For a give φ ∈ XK , it is easy to see that Ia(x, t, φ), Im(x, t, φ), Ih(x, t, φ) and V(x, t, φ) satisfy

∂Ia

∂t
≥ −(ω + µa)Ia, x ∈ Ω, t > 0,

∂Im

∂t
≥ dm4Im − µmIm, x ∈ Ω, t > 0,

∂Ih

∂t
≥ dh4Ih − (r + µh)Ih, x ∈ Ω, t > 0,

∂V
∂t
≥ −δV, x ∈ Ω, t > 0,

∂Ia

∂n
=
∂Im

∂n
=
∂Ih

∂n
=
∂V
∂n

= 0, x ∈ ∂Ω.
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If there exists some t0 ≥ 0 such that Ia(·, t0, φ) . 0, Im(·, t0, φ) . 0, Ih(·, t0, φ) . 0, V(·, t0, φ) . 0,
it then follows from the strong maximum principle (see Proposition 13.1 in [33]) that Ia(x, t, φ) >

0, Im(x, t, φ) > 0, Ih(x, t, φ) > 0,V(x, t, φ) > 0, ∀ t > t0, x ∈ Ω̄.

Next, we will prove S a(x, t, φ) > 0, ∀t > t0, x ∈ Ω̄. To this end, we first show A(x, t) = S a(x, t) +

Ia(x, t) < K(x) for all x ∈ Ω̄, t ≥ 0. If not, then there exists x1 ∈ Ω̄, t1 ≥ 0, such that A(x1, t1) = K(x1).
Since A(x, t) satisfies

∂A
∂t

= ρ(x)
(
1 −

A
K(x)

)
M − (ω(x) + µa(x))A, x ∈ Ω, t > 0,

A(x, 0) = A0(x), x ∈ Ω,

0 =
∂A(x1, t1)

∂t
= ρ(x)

(
1 −

A(x1, t1)
K(x1)

)
M(x1, t1) − (ω(x1) + µa(x1))A(x1, t1).

It implies that A(x1, t1) = 0. Then K(x1) = 0 which contradicts that K(x) is strictly positive. So,
S a(x, t), Ia(x, t) < K(x) for all x ∈ Ω̄, t ≥ 0. Next, we show S a(x, t, φ) > 0, ∀t > t0, x ∈ Ω̄. Suppose
not, there exists x2 ∈ Ω̄, t2 > t0, such that S a(x2, t2) = 0. From the first equation of system (2.3), we
have

0 =
∂S a(x2, t2)

∂t
= ρ(x2)(S m(x2, t2) + Im(x2, t2))

(
1 −

Ia(x2, t2)
K(x2)

)
> 0.

It is contradictory. Thus, S a(x, t, φ) > 0, ∀t > t0, x ∈ Ω̄. Similarly, we can show S m(x, t, φ) >

0, S h(x, t, φ) > 0, ∀t > t0, x ∈ Ω̄.

Moreover, for a give φ ∈ XK , it follows from the fifth equation of system (2.3) and (3.13) that
S h(x, t, φ) satisfies 

∂S h

∂t
≥ dh4S h + Λ −

aβ2N2

H
+ µh

 S h, x ∈ Ω, t > 0,

∂S h

∂n
= 0, x ∈ ∂Ω.

According to the comparison principle, we have

lim inf
t→∞

S h(x, t, φ) ≥
Λ

aβ2N2
H + µh

, uni f ormly f or x ∈ Ω̄.

This completes the proof of Lemma 3.3.
�

4. Threshold index

One of the most important concepts in epidemiology is the basic reproduction number R0 which is
a threshold index to determine the disease invasion. It is defined to be the average number of
secondary cases produced in a completely susceptible population, by a typical infective individual,
during its lifetime as infectious. By using the concept of next generation operators, Diekmann,
Heesterbeek and Metz [36] presented a general approach to R0 for autonomous epidemic models. Van
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den Driessche and Watmough [37] gave a computation formula of R0 for compartmental models of
ordinary differential equations with constant coefficients. For the reaction-diffusion system with
spatially dependent coefficients, Wang and Zhao [38] defined the basic reproduction ratio as the
spectral radius of the next infection operator. According to the above methods, in this section, in order
to obtain the basic reproduction number, we should first find the disease free equilibrium (DFE)
(infection-free steady state). System (2.3) admits two possible DFEs: E01(x) = (0, 0, 0, 0,H(x), 0, 0)
and E02(x) = (A(x)∗, 0,M∗(x), 0,H(x), 0, 0). E01(x) is characterized by the absence of mosquitoes.
E02(x) represents an eradication of Zika in the presence of mosquito population. Firstly, we give the
basic offspring number which determines whether mosquito population persists, corresponds to the
stability of E01(x).

4.1. Basic offspring number Rm
0

Since (A(x, t), M(x, t)) satisfies system (3.8), it suffices to consider system (3.8). Obviously, system
(3.8) always admits a DFE (0, 0). Linearizing system (3.8) at (0, 0), we have

∂A
∂t

= ρ(x)M − (ω(x) + µa(x))A, x ∈ Ω, t > 0,

∂M
∂t

= dm4M + ω(x)A − µm(x)M, x ∈ Ω, t > 0,

∂M
∂n

= 0, x ∈ ∂Ω, t > 0,

A(x, 0) = A0(x), M(x, 0) = M0(x), x ∈ Ω.

(4.1)

The eigenvalue problem associated with (4.1) is as follows
ρ(x)ψ2 − (ω(x) + µa(x))ψ1 = λ1ψ1, x ∈ Ω,

dm4ψ2 + ω(x)ψ1 − µm(x)ψ2 = λ1ψ2, x ∈ Ω,

∂ψ2

∂n
= 0, x ∈ ∂Ω,

(4.2)

where ψ1 and ψ2 are both positive for x ∈ Ω. Let Bm be defined as follows

Bm =

[
−(ω(x) + µa(x)) ρ(x)

ω(x) dm4 − µm(x)

]
. (4.3)

Denote the basic offspring number as Rm
0 . According to Lemma 4.2 in [38], 1

Rm
0

is the unique positive
eigenvalue of the eigenvalue problem

− dm4ϕ + µm(x)ϕ = λ2
ω(x)ρ(x)

ω(x) + µa(x)
ϕ, x ∈ Ω,

∂φ

∂n
= 0, x ∈ ∂Ω.

(4.4)

By using the variational characterization of principal eigenvalue [39], we can obtain

Rm
0 = sup

ϕ∈H1
0 (Ω), φ,0


∫

Ω

ω(x)ρ(x)
ω(x)+µa(x)ϕ

2∫
Ω

dm|∇ϕ|2 + µm(x)ϕ2

 . (4.5)

By Lemma 2.2 and Lemma 2.3 in [40], we have the following observation.
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Lemma 4.1. Let λ∗m = s(Bm) be the spectral bound of Bm.

(A1) If λ∗m ≥ 0, then λ∗m is the principal eigenvalue of (4.2) with a strongly positive eigenfunction.

(A2) Rm
0 − 1 and λ∗m have the same sign.

Let YK := {(A0,M0)T ∈ C(Ω̄,R2
+) : 0 ≤ A0(x) ≤ K(x)), ∀ x ∈ Ω̄}. The following result is

concerned with the global dynamics of system (3.8).

Lemma 4.2. ( [40], Lemma 2.5) Suppose that Rm
0 > 1. System (3.8) admits a unique steady state

(A∗(x),M∗(x)) which is globally asymptotically stable in YK\{(0, 0)}. Moreover,
0 < A∗(x) < K(x), ∀ x ∈ Ω̄.

Below we use the method proposed in Wang and Zhao [38] to introduce the basic reproduction
number.

4.2. Basic reproduction number R0

This sub-section is devoted to formulate of the reproduction number for system (2.3) that determines
invasion of Zika disease. So, it is the essential condition that guarantees the persistence of mosquito
population. From Lemma 4.2, we assume that Rm

0 > 1, and then E02(x) exists. Linearizing system (2.3)
at E02(x), and then considering only the equations of infective compartments, we have

∂Ia

∂t
= βv(x)A∗(x)V − (ω(x) + µa(x))Ia, x ∈ Ω, t > 0,

∂Im

∂t
= dm4Im + ω(x)Ia +

a(x)β1(x)M∗(x)
H(x)

Ih − µm(x)Im, x ∈ Ω, t > 0,

∂Ih

∂t
= dh4Ih + a(x)β2(x)Im − (r(x) + µh(x))Ih, x ∈ Ω, t > 0,

∂V
∂t

= θ(x)Ih − δ(x)V, x ∈ Ω, t > 0,

∂Im

∂n
=
∂Ih

∂n
= 0, x ∈ ∂Ω, t > 0,

Ia(x, 0) = Ia0(x), Im(x, 0) = Im0(x), Ih(x, 0) = Ih0(x), V(x, 0) = V0(x), x ∈ Ω.

(4.6)

Let T̄ (t) : C(Ω̄, R4)→ C(Ω̄, R4) be the solution semigroup generated by system (4.6). It is easy to see
that T̄ (t) is a positive C0 semigroup, and its generator B can be written as

B =


−(ω(x) + µa(x)) 0 0 βv(x)A∗(x)

ω(x) dm4 − µm(x) a(x)β1(x)M∗(x)
H(x) 0

0 a(x)β2(x) dh4 − (r(x) + µh(x)) 0
0 0 θ(x) −δ(x)

 .
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Further, B is a closed and resolvent positive operator (see Theorem 3.12 in [41]). The eigenvalue
problem associated with (4.6) is as follows

λ3ϕ1 = βv(x)A∗(x)ϕ4 − (ω(x) + µa(x))ϕ1, x ∈ Ω, t > 0,

λ3ϕ2 = dm4ϕ2 + ω(x)ϕ1 +
a(x)β1(x)M∗(x)

H(x)
ϕ3 − µm(x)ϕ2, x ∈ Ω, t > 0,

λ3ϕ3 = dh4ϕ3 + a(x)β2(x)ϕ2 − (r(x) + µh(x))ϕ3, x ∈ Ω, t > 0,
λ3ϕ4 = θ(x)ϕ3 − δ(x)ϕ4, x ∈ Ω, t > 0,
∂ϕ2

∂n
=
∂ϕ3

∂n
= 0, x ∈ ∂Ω, t > 0.

(4.7)

By a similar argument as Theorem 7.6.1 in [30], we have the following observation.

Lemma 4.3. Let λ∗ = s(B) be the spectral bound of B. If λ∗ ≥ 0, then λ∗ is the principal eigenvalue of
the eigenvalue problem (4.7) with a strongly positive eigenfunction.

In the following, we will use the ideas in [38] to define the basic reproduction number. Let T(t) :
C(Ω̄, R4)→ C(Ω̄, R4) be the solution semigroup generated by the following linear system

∂Ia

∂t
= −(ω(x) + µa(x))Ia, x ∈ Ω, t > 0,

∂Im

∂t
= dm4Im + ω(x)Ia − µm(x)Im, x ∈ Ω, t > 0,

∂Ih

∂t
= dh4Ih − (r(x) + µh(x))Ih, x ∈ Ω, t > 0,

∂V
∂t

= θ(x)Ih − δ(x)V, x ∈ Ω, t > 0,

∂Im

∂n
=
∂Ih

∂n
= 0, x ∈ ∂Ω, t > 0,

Ia(x, 0) = Ia0(x), Im(x, 0) = Im0(x), Ih(x, 0) = Ih0(x), V(x, 0) = V0(x), x ∈ Ω.

(4.8)

It is easy to see that T(t) is a C0 semigroup on C(Ω̄, R4).
We define

F(x) =


0 0 0 βv(x)A∗(x)
0 0 a(x)β1(x)M∗(x)

H(x) 0
0 a(x)β2(x) 0 0
0 0 0 0

 ,

V(x) =


(ω(x) + µa(x)) 0 0 0
−ω(x) µm(x) 0 0

0 0 (r(x) + µh(x)) 0
0 0 −θ(x) δ(x)

 .
In order to define the basic reproduction number for system (2.3), we assume that the state variables
are near DFE E02, and introduce the distribution of initial infective individuals described by φ(x) ∈
C(Ω̄, R4). Thus, it is easy to see that T(t)φ(x) represents the distribution of those infective individuals
at time t. Thus, F(x)T(t)φ(x) represents the distribution of new infective individuals at time t.
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Define L : C(Ω̄, R4)→ C(Ω̄, R4) as follows

L(φ)(x) :=
∫ ∞

0
F(x)T(t)φ(x)dt. (4.9)

It then follows that L(φ)(x) represents the distribution of the total new population generated by initial
infective individuals φ(x) during their infection period. So, L is the next generation operator. We define
the spectral radius of L as the basic reproduction number of system (2.3). That is,

R0 := r(L). (4.10)

From [38], we have the following observation.

Lemma 4.4. R0 − 1 and λ∗ have the same sign.

The following result indicates that basic offspring number Rm
0 is a threshold index for eradication or

persistence of the Zika disease.

5. Global dynamic behavior

We firstly focus on the global dynamic behaviors of the DFEs E01 and E02 of system (2.3).

Theorem 5.1. If Rm
0 < 1, then the DFE E01(x) is globally attractive in XK for system (2.3).

Proof. Assume Rm
0 < 1. It follows from Lemma 4.1 that λ∗m > 0. λ∗m is the principal eigenvalue

of eigenvalue problem (4.2) with a strongly positive eigenfunction (ψ1, ψ2). Since (A(x, t), M(x, t))
satisfies system (3.8), it follows that

∂A
∂t
≤ ρ(x)M − (ω(x) + µa(x))A, x ∈ Ω, t > 0,

∂M
∂t

= dm4M + ω(x)A − µm(x)M, x ∈ Ω, t > 0,

∂M
∂n

= 0, x ∈ ∂Ω, t > 0.

(5.1)

For any given φ = (φ1, φ2) ∈ YK , there exists some q > 0 such that

(A(x, 0, φ), M(x, 0, φ)) ≤ q(ψ1, ψ2), ∀ x ∈ Ω.

Note that the linear system (4.1) admits a solution qeλ
∗
mt(ψ1, ψ2), ∀ t ≥ 0. Then the comparison

principle implies that

(A(x, t, φ), M(x, t, φ)) ≤ qeλ
∗
mt(ψ1, ψ2), ∀ t ≥ 0, ∀ x ∈ Ω̄.

Hence, lim
t→∞

(A(x, t, φ),M(x, t, φ)) = (0, 0), uniformly for all x ∈ Ω̄. Then, from A(x, t) = S a(x, t)+ Ia(x, t)
and M(x, t) = S m(x, t)+Im(x, t), together with positivity of solutions, for system (2.3), we have for every
initial value function φ = (φ1, φ2, φ3, φ4, φ5, φ6, φ7)T ∈ XK ,

lim
t→∞

S a(x, t, φ) = 0, lim
t→∞

Ia(x, t, φ) = 0, lim
t→∞

S m(x, t, φ) = 0, lim
t→∞

Im(x, t, φ) = 0, uni f ormly f or all x ∈ Ω̄.
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Then, S h(·, t) in system (2.3) is asymptotic to the following system
∂S h

∂t
= dh4S h + Λ(x) − µh(x)S h, x ∈ Ω, t > 0,

∂S h

∂n
= 0, x ∈ ∂Ω, t > 0,

S h(x, 0) = φ5, x ∈ Ω.

(5.2)

By the theory for asymptotically autonomous semiflows (see Corollary 4.3 in [42]), together with
Lemma 1 in [29], it follows that

lim
t→∞

S h(x, t, φ) = H(x), uni f ormly f or all x ∈ Ω̄.

Similarly, Ih(·, t) in system (2.3) is asymptotic to the following system
∂Ih

∂t
= dh4Ih − (r(x) + µh(x))Ih, x ∈ Ω, t > 0,

∂Ih

∂n
= 0, x ∈ ∂Ω, t > 0,

Ih(x, 0) = φ6, x ∈ Ω.

(5.3)

Therefore,
lim
t→∞

Ih(x, t, φ) = 0, uni f ormly f or all x ∈ Ω̄.

Then V(·, t) in system (2.3) is asymptotic to the following system
∂V(x, t)
∂t

= −δ(x)V(x, t), x ∈ Ω, t > 0,

V(x, 0) = φ7, x ∈ Ω.
(5.4)

Thus,
lim
t→∞

V(x, t, φ) = 0, uni f ormly f or all x ∈ Ω̄.

This completes the proof of Theorem 5.1. �

Remark 1. Biologically, Theorem 5.1 shows that the basic offspring number Rm
0 can be used as a

control parameter which determines whether mosquito population is absent or not. It means that
mosquito population can be vanished, and the Zika virus will eradicate in human population and
contaminated aquatic environment by reducing Rm

0 below 1.

Theorem 5.2. Let u(x, t, φ) be the solution of system (2.3) with u(·, 0, φ) = φ ∈ XK . If Rm
0 > 1, R0 < 1,

then the DFE E02(x) is globally attractive for system (2.3). That is, for any φ ∈ XK , if (φ1, φ3) . (0, 0),
then

lim
t→∞

u(x, t, φ) = E02(x), uni f ormly f or all x ∈ Ω̄.
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Proof. Suppose R0 < 1. By Lemma 4.4, we have λ∗ < 0. So, there exists a sufficiently small positive
number ε0 such that λ∗ε0

< 0, where λ∗ε0
< 0 is the principal eigenvalue of the following eigenvalue

problem

λϕε0
2 = βv(x)(A∗(x) + ε0)ϕε0

7 − (ω(x) + µa(x))ϕε0
2 , x ∈ Ω, t > 0,

λϕε0
4 = dm4ϕ

ε0
4 + ω(x)ϕε0

2 +
a(x)β1(x)(M∗(x) + ε0)

H(x)
ϕε0

6 − µm(x)ϕε0
4 , x ∈ Ω, t > 0,

λϕε0
6 = dh4ϕ

ε0
6 + a(x)β2(x)ϕε0

4 − (r(x) + µh(x))ϕε0
6 , x ∈ Ω, t > 0,

λϕε0
7 = θ(x)ϕε0

6 − δ(x)ϕε0
7 , x ∈ Ω, t > 0,

∂ϕε0
4

∂n
=
∂ϕε0

6

∂n
= 0, x ∈ ∂Ω, t > 0,

(5.5)

with a strongly positive eigenfunction (ϕε0
2 , ϕ

ε0
4 , ϕ

ε0
6 , ϕ

ε0
7 ). It follows from the condition Rm

0 > 1,
Lemma 4.2 and the positivity of solutions that there exists a t0 > 0 such that

S a(x, t) ≤ A∗(x) + ε0, S m(x, t) ≤ M∗(x) + ε0,

for all x ∈ Ω̄, t ≥ t0. Hence, by the Ia, Im, Ih and V equations of system (2.3), it follows that

∂Ia

∂t
≤ βv(x)(A∗(x) + ε0)V − (ω(x) + µa(x))Ia, x ∈ Ω, t ≥ t0,

∂Im

∂t
≤ dm4Im + ω(x)Ia +

a(x)β1(x)(M∗(x) + ε0)
H(x)

Ih − µm(x)Im, x ∈ Ω, t ≥ t0,

∂Ih

∂t
≤ dh4Ih + a(x)β2(x)Im − (r(x) + µh(x))Ih, x ∈ Ω, t ≥ t0,

∂V
∂t

= θ(x)Ih − δ(x)V, x ∈ Ω, t ≥ t0,

∂Im

∂n
=
∂Ih

∂n
= 0, x ∈ ∂Ω, t ≥ t0.

(5.6)

For any given φ ∈ XK , there exists some q1 > 0 such that

(Ia(x, t0, φ), Im(x, t0, φ), Ih(x, t0, φ), V(x, t0, φ)) ≤ q1(ϕε0
2 , ϕ

ε0
4 , ϕ

ε0
6 , ϕ

ε0
7 ), ∀ x ∈ Ω̄.

Note that the following linear system

∂Ia

∂t
= βv(x)(A∗(x) + ε0)V − (ω(x) + µa(x))Ia, x ∈ Ω, t ≥ t0,

∂Im

∂t
= dm4Im + ω(x)Ia +

a(x)β1(x)(M∗(x) + ε0)
H(x)

Ih − µm(x)Im, x ∈ Ω, t ≥ t0,

∂Ih

∂t
= dh4Ih + a(x)β2(x)Im − (r(x) + µh(x))Ih, x ∈ Ω, t ≥ t0,

∂V
∂t

= θ(x)Ih − δ(x)V, x ∈ Ω, t ≥ t0,

∂Im

∂n
=
∂Ih

∂n
= 0, x ∈ ∂Ω, t ≥ t0,

(5.7)

AIMS Mathematics Volume 7, Issue 3, 4803–4832.



4820

admits a solution q1eλ
∗
ε0

(t−t0)(ϕε0
2 , ϕ

ε0
4 , ϕ

ε0
6 , ϕ

ε0
7 ), ∀ t ≥ t0. Then the comparison principle implies that

(Ia(x, t, φ), Im(x, t, φ), Ih(x, t, φ), V(x, t, φ)) ≤ q1eλ
∗
ε0

(t−t0)(ϕε0
2 , ϕ

ε0
4 , ϕ

ε0
6 , ϕ

ε0
7 ), ∀ t ≥ t0, ∀ x ∈ Ω̄.

Hence, lim
t→∞

(Ia(x, t, φ), Im(x, t, φ), Ih(x, t, φ), V(x, t, φ)) = (0, 0, 0, 0), uniformly for all x ∈ Ω̄. Then,
(S a(·, t), S m(·, t)) in system (2.3) is asymptotic to system (3.8). By the theory for asymptotically
autonomous semiflows, together with Lemma 1 in [29], it follows that

lim
t→∞

(S a(x, t, φ), S m(x, t, φ)) = (A∗(x), M∗(x)), uni f ormly f or all x ∈ Ω̄.

Similarly, S h(·, t) in system (2.3) is asymptotic to system (5.2). That is,

lim
t→∞

S h(x, t, φ) = H(x), uni f ormly f or all x ∈ Ω̄.

This completes the proof of Theorem 5.2. �

Remark 2. Biologically, Theorem 5.2 shows that mosquito population is present when the basic
offspring number Rm

0 > 1. Under this premise, the basic reproduction number R0 can be used as a
control parameter which determines whether the disease will eventually die out or not. It means that
the disease can be eradicated by reducing R0 below 1.

Before giving the disease persistence, we first give the following lemma.

Lemma 5.1. Suppose that Rm > 1, and φi ≡ 0, i = 2, 4. If there exists some ζ1 > 0 such that

lim inf
t→+∞

Ih(x, t, φ) ≥ ζ1, uni f ormly f or all x ∈ Ω̄,

then there exists some ζ2 > 0 such that

lim inf
t→+∞

S a(x, t, φ) ≥ ζ2, lim inf
t→+∞

Ia(x, t, φ) ≥ ζ2, lim inf
t→+∞

S m(x, t, φ) ≥ ζ2,

lim inf
t→+∞

Im(x, t, φ) ≥ ζ2, lim inf
t→+∞

S h(x, t, φ) ≥ ζ2, lim inf
t→+∞

Ih(x, t, φ) ≥ ζ2,

lim inf
t→+∞

V(x, t, φ) ≥ ζ2, uni f ormly f or all x ∈ Ω̄.

(5.8)

Proof. From lim inf
t→+∞

Ih(x, t, φ) ≥ ζ1, uni f ormly f or all x ∈ Ω̄, we have that there exists t11 > 0 such
that

Ih(x, t) ≥
1
3
ζ1, ∀t ≥ t11, x ∈ Ω̄.

It follows from the last equation of system (2.3) that V(x, t) satisfies
∂V
∂t
≥

1
3
ζ1θ − δV, x ∈ Ω, t ≥ t11,

∂V
∂n

= 0, x ∈ ∂Ω.

By comparison principle, we have

lim inf
t→+∞

V(x, t) ≥
ζ1θ

3δ
:= e1, uni f ormly f or all x ∈ Ω̄.
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Thus, there is a t12 > t11 such that

V(x, t) ≥
1
3

e1, ∀t ≥ t12, x ∈ Ω̄.

Due to Rm > 1 and φi ≡ 0, i = 2, 4, and from Lemma 4.2, we can obtain that there exists t13 > t12 such
that

S a(x, t) + Ia(x, t) ≤ A∗(x) +
1
3

(K(x) − A∗(x)) =
1
3

K(x) +
2
3

A∗(x),

S m(x, t) + Im(x, t) ≥
1
3

M∗(x).

From the first equation of system (2.3) and (3.7), one has

∂S a

∂t
≥

1
3

M∗(x)ρ(x)
1 − 1

3 K(x) + 2
3 A∗(x)

K(x)

 − (βv(x)N1 + ω(x) + µa(x))S a

≥
2
9

M∗ρ

1 − A∗

K

 − (βvN1 + ω + µa)S a, x ∈ Ω, t > t13,

∂S a

∂n
= 0, x ∈ ∂Ω.

Then, we can obtain

lim inf
t→+∞

S a(x, t) ≥
2
9 M∗ρ

(
1 − A∗

K

)
βvN1 + ω + µa

:= e2, uni f ormly f or all x ∈ Ω̄.

Thus, there is a t14 > t13 such that

S a(x, t) ≥
1
3

e2, ∀t ≥ t14, x ∈ Ω̄.

From the second equation of system (2.3), we have
∂Ia

∂t
≥ βv ×

1
3

e1 ×
1
3

e2 − (ω + µa)Ia, x ∈ Ω, t ≥ t14,

∂Ia

∂n
= 0, x ∈ ∂Ω.

Then

lim inf
t→+∞

Ia(x, t) ≥
βve1e2

9(ω + µa)
:= e3, uni f ormly f or all x ∈ Ω̄,

which implies that there is a t15 > t14 such that

Ia(x, t) ≥
1
3

e3, ∀t ≥ t15, x ∈ Ω̄.

Similarly, it follows from the third and fourth equations of system (2.3) that

lim inf
t→+∞

S m(x, t) ≥
fωe2

3(bβ1 + µm)
:= e4, lim inf

t→+∞
Im(x, t) ≥

fωe3

3µm
:= e5, uni f ormly f or all x ∈ Ω̄.
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So, there is a t16 > t15 such that

S m(x, t) ≥
1
3

e4, Im(x, t) ≥
1
3

e5, ∀t ≥ t16, x ∈ Ω̄.

By Lemma 3.3, we know

lim inf
t→∞

S h(x, t, φ) ≥ ζ0, uni f ormly f or x ∈ Ω̄.

Hence, there is a t17 > t16 such that

S h(x, t) ≥
1
3
ζ0, ∀t ≥ t17, x ∈ Ω̄.

Therefore, letting ζ2 = 1
3 max{ζ0, ζ1, e1, e2, e3, e4, e5}, we can obtain that (5.8) holds. This completes the

proof of Lemma 5.1.
�

Theorem 5.3. Let

M0 := {(S a, Ia, S m, Im, S h, Ih,V)T ∈ XK : Ia(·) . 0, Im(·) . 0, Ih(·) . 0, V(·) . 0},
∂M0 := XK\M0.

If Rm
0 > 1 and R0 > 1, then system (2.3) is uniformly persistent, i.e., and there is a constant ς > 0 such

that, for any initial value φ ∈ M0, we can obtain

lim inf
t→+∞

S a(x, t, φ) ≥ ς, lim inf
t→+∞

Ia(x, t, φ) ≥ ς, lim inf
t→+∞

S m(x, t, φ) ≥ ς,

lim inf
t→+∞

Im(x, t, φ) ≥ ς, lim inf
t→+∞

S h(x, t, φ) ≥ ς, lim inf
t→+∞

Ih(x, t, φ) ≥ ς,

lim inf
t→+∞

V(x, t, φ) ≥ ς, uni f ormly f or all x ∈ Ω̄.

(5.9)

Proof. The following four steps are taken to prove this result.
Step I M0 is invariant under Ψ(t).
For any initial value φ ∈ M0, from Lemma 3.3, we can obtain

Ia(x, t, φ) > 0, Im(x, t, φ) > 0, Ih(x, t, φ) > 0,V(x, t, φ) > 0, ∀ t > 0, x ∈ Ω̄.

Then Ψ(t)φ ∈ M0. So M0 is invariant under Ψ(t).
Step II For any φ ∈ ∂M0, one obtains the ω−limit set ω(φ)={E01} ∪ {E02}, where ω(φ) is the omega

limit set of the forward orbit γ+ := {Ψ(t)φ : t ≥ 0}.
Define

Γ∂ := {φ ∈ ∂M0 : Ψ(t)φ ∈ ∂M0,∀ t ≥ 0}.

For any given φ ∈ Γ∂, we have Ψ(t)φ ∈ ∂M0,∀ t ≥ 0. That is, for every t ≥ 0, we have

Ia(·, t, φ) ≡ 0 or Im(·, t, φ) ≡ 0 or Ih(·, t, φ) ≡ 0 or V(·, t, φ) ≡ 0.

We first consider the case Im(·, t, φ) ≡ 0 for all t ≥ 0. From the sixth equation of system (2.3), we can
get that Ih(x, t, φ) satisfies system (5.3). Thus,

lim
t→∞

Ih(x, t, φ) = 0, uniformly for all x ∈ Ω̄.
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From the seventh equation of system (2.3), and according to Corollary 4.3 in [42], one has

lim
t→∞

V(x, t, φ) = 0, uni f ormly f or all x ∈ Ω̄.

Similarly, we can obtain

lim
t→∞

Ia(x, t, φ) = 0, uni f ormly f or all x ∈ Ω̄.

In addition, S h(·, t, φ) in system (2.3) is asymptotic to system (5.2). Thus,

lim
t→∞

S h(x, t, φ) = H(x), uni f ormly f or all x ∈ Ω̄.

In the case Im(·, t, φ) . 0 for all t ≥ 0, S a(·, t, φ) and S m(·, t, φ) are as follows.

(i) S a(·, t, φ) ≡ 0 and S m(·, t, φ) ≡ 0 for all t ≥ 0.

(ii) S a(·, t, φ) ≡ 0 for all t ≥ 0, and S m(·, t21, φ) . 0 for some t21 > 0.
In this case, from the third equation of system (2.3), we can get

lim
t→∞

S m(x, t, φ) = 0, uni f ormly f or all x ∈ Ω̄.

(iii) S m(·, t, φ) ≡ 0 for all t ≥ 0, and S a(·, t22, φ) . 0 for some t22 > 0.
In this case, from the first equation of system (2.3), we can obatin

lim
t→∞

S a(x, t, φ) = 0, uni f ormly f or all x ∈ Ω̄.

(iv) S a(·, t23, φ) . 0 and S m(·, t23, φ) . 0 for some t23 > 0.
In this case, (S a(x, t, φ), S m(x, t, φ)) in system (2.3) is asymptotic to system (3.8). From Lemma
4.2, we have

lim
t→∞

(S a(x, t, φ), S m(x, t, φ)) = (A∗(x), M∗(x)), uni f ormly f or all x ∈ Ω̄.

Thus, we obtain ω(φ)={E01} ∪ {E02}.

Next, we assume Im(·, t24, φ) . 0 for some t24 > 0. Form Lemma 4.2, one has Im(·, t, φ) > 0 for all
t > t24. Then, we get

Ia(·, t, φ) ≡ 0 or Ih(·, t, φ) ≡ 0 or V(·, t, φ) ≡ 0, f or all t > t24.

Here, we only show the case Ia(·, t, φ) ≡ 0 for all t > t24. It follows from the second equation of system
(2.3) that

S a(·, t, φ) ≡ 0 or V(·, t, φ) ≡ 0, f or all t > t24.

If S a(·, t, φ) ≡ 0, f or all t > t24, then, from the first equation of system (2.3), we have Im(·, t, φ) ≡
0, f or all t > t24, which contradicts our assumption.

If V(·, t, φ) ≡ 0, f or all t > t24, then, from the sixth equation of system (2.3), one has Im(·, t, φ) ≡
0, f or all t > t24, which contradicts our assumption. Thus, the step II is proved.
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Step III W s({E01(x)})∩M0 = ∅ and W s({E02(x)})∩M0 = ∅. In this step, we will show the following
two claims.

Claim 1 E01(x) is a uniform weak repeller for M0. That is, there exists ε1 > 0 such that

lim sup
t→+∞

‖Ψ(t)φ − E01(x)‖ ≥ ε1, f or all φ ∈ M0. (5.10)

Claim 2 E02(x) is a uniform weak repeller for M0. That is, there exists ε2 > 0 such that

lim sup
t→+∞

‖Ψ(t)φ − E02(x)‖ ≥ ε2, f or all φ ∈ M0. (5.11)

Here, we just prove Claim 1. Claim 2 can be similarly proven.
If (5.10) does not hold, then

lim sup
t→+∞

‖Ψ(t)φ̃ − E01(x)‖ < ε1, f or some φ̃ ∈ M0. (5.12)

That is, there exists t25 > 0 such that

0 < S a(x, t, φ̃) < ε1, 0 < Ia(x, t, φ̃) < ε1, 0 < S m(x, t, φ̃) < ε1, 0 < Im(x, t, φ̃) < ε1,

H(x) − ε1 < S h(x, t, φ̃) < H(x) + ε1, 0 < Ih(x, t, φ̃) < ε1, 0 < V(x, t, φ̃) < ε1, f or ∀ t ≥ t25, x ∈ Ω̄.
(5.13)

Thus, S a(x, t, φ̃) and S m(x, t, φ̃) satisfy

∂S a

∂t
≥ ρ(x)

(
1 −

2ε1

K(x)

)
S m − (βv(x)ε1 + ω(x) + µa(x))S a, x ∈ Ω, t ≥ t25,

∂S m

∂t
≥ dm4S m + ω(x)S a −

(
µm(x) +

α(x)β1(x)
H(x)

ε1

)
S m, x ∈ Ω, t ≥ t25,

∂M
∂n

= 0, x ∈ ∂Ω, t ≥ t25.

Consider the following auxiliary linear system
∂ν

∂t
= B̃m(ε1)ν, x ∈ Ω, t ≥ t25,

∂ν2

∂n
= 0, x ∈ ∂Ω, t ≥ t25,

(5.14)

where ν = (ν1, ν2)T , and

B̃m(ε1) =

 −(βv(x)ε1 + ω(x) + µa(x)) ρ(x)
(
1 − 2ε1

K(x)

)
ω(x) dm4 −

(
µm(x) +

α(x)β1(x)
H(x) ε1

)  .
We know B̃m(0) = Bm, where Bm is defined by (4.3). From Lemma 4.1, if Rm

0 > 1, then λ∗m = s(Bm) > 0.
B̃m(ε1) is continuous for small ε1. So, when ε1 is small enough, we have s(B̃m(ε1)) > 0. Denote
λ∗mε1

:= s(B̃m(ε1)). Obviously, λ∗mε1
> 0.

Let (ϕ̃1, ϕ̃2) be the positive eigenfunction corresponding to λ∗mε1
. Then auxiliary system (5.14)

admits a solution (ν1(x, t), ν2(x, t)) = eλ
∗
mε1 (ϕ̃1, ϕ̃2). Due to S a(x, t, φ̃) > 0, S m(x, t, φ̃) > 0 for ∀ t ≥ t25,

there exists %1 > 0 such that

(S a(x, t25, φ̃), S m(x, t25, φ̃)) ≥ %1(ϕ̃1, ϕ̃2).
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According to the comparison principle, we can obtain

(S a(x, t, φ̃), S m(x, t, φ̃)) ≥ %1eλ
∗
mε1

(t−t25)(ϕ̃1, ϕ̃2), f or ∀ t ≥ t25, x ∈ Ω̄.

Since λ∗mε1
> 0, we get

lim
t→∞

S a(·, t, φ̃) = +∞, lim
t→∞

S m(·, t, φ̃) = +∞,

which contradicts with (5.13).
The above discussion implies that {E01(x)} and {E02(x)} are isolated invariant sets in M0, and

W s({E01(x)}) ∩ M0 = ∅, W s({E02(x)}) ∩ M0 = ∅. Clearly, every orbit in Γ∂ converges to either E01(x) or
E02(x), and there are no subsets of {E01(x), E02(x)} forms a cycle in Γ∂. From Theorem 4.1 in [43],
system (2.3) is uniformly persistent if Rm

0 > 1 and R0 > 1.
Step IV Define a continues function g : XK → [0,+∞) with

g(φ) := min
{

min
x∈Ω̄

φ2(x),min
x∈Ω̄

φ4(x),min
x∈Ω̄

φ6(x),min
x∈Ω̄

φ7(x)
}
, ∀ φ ∈ XK .

It follows from Lemma 3.3 that g−1(0,+∞) ⊆ M0. If g(φ) > 0, or φ ∈ M0 with g(φ) = 0, then
g(Ψ(t)φ) > 0, ∀ t > 0. That is, g is a generalized distance fuction for the semiflow Ψ(t) (see [44]).
From Lemma 3.2 and according to Theorem 3 in [44], there exists a %2 > 0 such that

min
ψ∈ω(φ)

> %2, ∀ φ ∈ M0.

Thus, lim inf
t→+∞

Ih(·, t, φ) ≥ %2,∀ φ ∈ M0. From Lemma 5.1, there exists some ς > 0 such that (5.9) holds.
This completes the proof.

�

Remark 3. Biologically, Theorem 5.3 shows that mosquito population and the disease will persist
when the basic offspring number Rm

0 > 1 and basic reproduction number R0 > 1.

6. Numerical simulations

In this section, we implement numerical simulations to confirm the analytic results. For the sake
of convenience, we concentrate on one dimensional domain Ω, which can be taken, without loss of
generality, to be (0, π). For the sake of simplicity, we focus on model (2.3) and fix some coefficients
and functions as follows: H(x) = 100, K(x) = 500, ϑ(x) = 5, l = 1/2, ω(x) = 0.05, µa(x) = 0.15,
µm(x) = 0.05, µh(x) = 1

75×365 , Λ(x) = H(x) × µh(x), r(x) = 1
7 , a(x) = 0.3, θ(x) = 0.1, δ(x) = 0.3,

dm = 0.01, dh = 0.1,

β1(x) = 0.12(1 + cos(2x)), β2(x) = 0.15(1 + cos(2x)).

We set initial data

S a(x, 0) = 200 + sin(x) − 200 cos(4x), Ia(x, 0) = 5 + 0.1 sin(x) − 5 cos(4x),
S h(x, 0) = 21 + 0.5 sin(x) − 20 cos(4x), Ih(x, 0) = 0.5 + 0.01 sin(x) − 0.5 cos(4x),
S m(x, 0) = ω(x)S a(x, 0), Im(x, 0) = ω(x)Ia(x, 0), V(x, 0) = θ(x)Ih(x, 0), x ∈ (0, π).

(6.1)

AIMS Mathematics Volume 7, Issue 3, 4803–4832.



4826

Next, we will change the parameters s and βv(x) and then observe the longtime behavior of the
solution to model (2.3).

Example 6.1. Choose s = 0.04 and βv(x) = 0.00035(1 + cos(2x)). It follows from (4.5) that
Rm

0 = 0.52 < 1. Theorem 5.1 shows that the disease free equilibrium E01(x) is globally attractive when
Rm

0 < 1. We can confirm this in Figure 2. Figure 2 shows that the evolutions of
S a(x, t), S m(x, t), Ia(x, t), Im(x, t), Ih(x, t),V(x, t) decay to zero. Biologically, mosquito population will
vanish, and Zika virus will eradicate in human population and contaminated aquatic environment.

(a) (b) (c)

(d) (e) (f)
Figure 2. The evolution diagram of numerical solutions of model (2.3) for Rm

0 < 1. Diagrams
(a)-(f) show that the evolutions of S a(x, t), S m(x, t), Ia(x, t), Im(x, t), Ih(x, t),V(x, t) decay to
zero. It mean that mosquito population will vanish, and Zika virus will eradicate in human
population and contaminated aquatic environment.

Example 6.2. Choose s = 0.4 and βv(x) = 0.00035(1 + cos(2x)). It follows from (4.5) that
Rm

0 = 5 > 1. According to the method of calculating the regeneration numbers in [38], we can get
R0 = 0.98 < 1. Theorem 5.2 shows that the disease free equilibrium E02(x) is globally attractive
when Rm

0 > 1 and R0 < 1 . We can confirm this in Figure 3. Figure 3 shows that the evolutions
of S a(x, t), S m(x, t) tend to steady state A∗(x),M∗(x), and the evolutions of diseased compartments
Ia(x, t), Im(x, t), Ih(x, t),V(x, t) decay to zero. Biologically, mosquito population is present, and Zika
virus will eradicate in mosquito population, human population and contaminated aquatic environment.

Example 6.3. Choose s = 0.4 and βv(x) = 0.035(1+cos(2x)). It follows from (4.5) that Rm
0 = 5 > 1.

According to the method of calculating the regeneration numbers in [38], we can get R0 = 2.8 > 1.
Theorem 5.3 shows that system (2.3) is uniformly persistent when Rm

0 > 1 and R0 > 1. We can confirm
this in Figure 4. Figure 4 shows that the evolutions of S a(x, t), S m(x, t),Ia(x, t), Im(x, t), Ih(x, t),V(x, t)
keep positive. Biologically, mosquito population is present, and Zika virus will persist in mosquito
population, human population and contaminated aquatic environment.
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(a) (b) (c)

(d) (e) (f)
Figure 3. The evolution diagram of numerical solutions of model (2.3) for Rm

0 > 1 and
R0 < 1. Diagrams (a) and (b) show that the evolutions of S a(x, t), S m(x, t) tend to steady
state A∗(x),M∗(x), respectively. Diagrams (c)–(f) show that the evolutions of diseased
compartments Ia(x, t), Im(x, t), Ih(x, t),V(x, t) decay to zero. It mean that mosquito population
is present, and Zika virus will eradicate in mosquito population, human population and
contaminated aquatic environment.

(a) (b) (c)

(d) (e) (f)
Figure 4. The evolution diagram of numerical solutions of model (2.3) for
Rm

0 > 1 and R0 > 1. Diagrams (a)–(f) show that the evolutions of
S a(x, t), S m(x, t),Ia(x, t), Im(x, t), Ih(x, t),V(x, t) keep positive. It mean that mosquito
population is present, and Zika virus will persist in mosquito population, human population
and contaminated aquatic environment.
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7. Conclusions

The main contribution of this study, based on experimental proving evidence [25], is that we
propose a new Zika model by introducing the environment transmission route in a spatial
heterogeneous environment. In contrast to [12, 14, 24], we consider environment transmission
(human-environment-mosquito-human) route in Zika model. From Figures 3 and 4, we can get that
increasing environment transmission rate βv(x) can induce the outbreak of Zika. Therefore, the
environment transmission route is indispensable. Our work is an extension of previous mathematical
Zika models that the transmission of Zika virus involves both mosquito-borne transmission
(human-mosquito-human) routes [12, 14, 24]. In fact, environmental transmission route in our model
is similar to other waterborne disease models, such as cholera [45]. So, our model analysis can also be
applied to other waterborne diseases.

We derive a biologically meaningful threshold indexes, the basic offspring number Rm
0 and basic

reproduction number R0 by the theory developed by Wang and Zhao [38], which is characterized as the
spectral radius of the next generation operator. Then, we prove that if Rm

0 < 1, then both mosquitoes
and Zika virus will become vanish. If Rm

0 > 1 and R0 < 1, then mosquitoes will persist and Zika virus
will die out. If Rm

0 > 1 and R0 > 1, then mosquitoes and Zika virus are persistent presences. Finally,
numerical simulations conform these results.

Our current study has some limitations. In our model, we do not consider sexual transmission
route, but it is indeed an important route of spreading of Zika virus [46]. Future, we will study a Zika
model which incorporates mosquito-borne transmission, sexual transmission and environment
transmission threes routes. In addition, in our model, we assume same diffusive coefficients dm for
both S m and Im, same dh for all of S h, Ih and Rh. However, due to mobility for S m and Im, S h, Ih and Rh

is different, studies of different diffusion coefficients have more realistic implications. Yin [47]
studied a mathematical model for an infectious disease such as Cholera with different diffusion
coefficients. By the delicate theory of elliptic and parabolic equations, global asymptotic behavior of
the solution was obtained. This work makes progress toward the case of different diffusive
coefficients. Therefore, it motivates us to consider different diffusive coefficients into our model. We
leave it for future investigation.
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