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Abstract: The green chain supplier selection process plays a major role in the environmental decision
for the efficient and effective supply chain management. Therefore, the aim of this paper is to develop
a mechanism for decision making on green chain supplier problem. First, we define the Hamacher
operational law for Pythagorean cubic fuzzy numbers (PCFNs) and study their fundamental properties.
Based on the Hamacher operation law of PCFNs, we defined Pythagorean cubic fuzzy aggregation
operators by using Hamacher t-norm and t-conorm. Further, we develop a series of Pythagorean
cubic fuzzy Hamacher weighted averaging (PCFHWA), Pythagorean cubic fuzzy Hamacher order
weighted averaging (PCFHOWA) Pythagorean Cubic fuzzy Hamacher hybrid averaging (PCFHHA),
Pythagorean Cubic fuzzy Hamacher weighted Geometric (PCFHWG), Pythagorean Cubic fuzzy
Hamacher order weighted Geometric (PCFHOWG), and Pythagorean Cubic fuzzy Hamacher hybrid
geometric (PCFHHA) operators. Furthermore, we apply these aggregation operators of Pythagorean
Cubic fuzzy numbers to the decision making problem for green supplier selection. We construct an
algorithm for the group decision making by using aggregation operators and score function. The
proposed decision making method applies to green chain supplier selection problem and find the best
green supplier for green supply chain management. The proposed method compared with other group
decision techniques under Pythagorean cubic fuzzy information. From the comparison and sensitivity
analysis, we concluded that our proposed method is more generalized and effective method.
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1. Introduction

1.1. Green supply chain

The new green activities have been divided into two categories: Single firm activities and supply
chain management activities. Single company systems and supply chain systems have been identified
as emerging information systems. Emerging information systems has been identified as single business
systems and supply chain systems. Green supply chain management (GSCM) has helped with the
deployment of eco-efficiency [4], renewable energy sources [20], and sustainable actions [62] in the
supply chain (SC), innovation clusters [44], and symbiotic industrial networks [45] in this context.
Starting with product design and progressing through raw material selection, manufacturing processes,
transportation and delivery, and the final consumer arriving at the final destination. Zhu and Sarkis
[61] define GSCM as the integration of environmental thinking with operations management in the SC.
According to Large and Thomsen [29], the design process, raw material selection, green procurement,
the greener manufacturing process, green distribution, and reverse logistics are all part of GSCM.
Centobelli et al. [7] defined the goals of pursuing supply chain sustainable development through the
adoption of green practices and enabling technologies using cross-country analysis of LSPs. The
value of sustainable development is increasingly known worldwide in Private businesses [12]. This
is because the global economy is evolving rapidly for consumption [14, 32]. Here with growing
acknowledgment, organizations have begun to accept several forms of susceptibility exercise include
Green Supply Chain Management (GSCM) in their reinforcement activities [30, 48, 49]. The GSCM
concerns the successful consideration of the production of susceptibility throughout distribution chain
in a company [40]. It involves the improvement of company processes in a Organization to attract the
supply chain consumer when addressing susceptibility concerns [17, 42]. GSCM helps to reduce waste
through diverse processes like product creation, manufacturing resources, product distribution and end
of life management of goods [10] in the supply chain activities of an enterprise. This coordinates the
tasks Across the supply chain to develop the corporation’s susceptibility growth [3, 51]. Successful
GSCM assists companies in their productivity by: (a) reducing pollution a and waste; (b) partners
with environmentally friendly provider; (c) green product creation and facilities; and (d) decreasing
pollution from the conveyance and procurement of goods and facilities [11]. It is difficult to assess
the efficiency of GSCM practices. Various decision-makers are sometimes suspected. Often there
are numerous and contradictory requirements for the assessment. Hidden uncertainty is still present
in the estimation process due to the use of subjective judgments. A lot of work was performed, and
different models were built to solve the problem to evaluate the efficiency of GSCM activities from
different opinions [2, 22, 41]. These models can usually be categorized from two viewpoints: multi-
criteria and multi-objective assessment upgrading [50, 53]. For example, Kannan et al. [22] combined
structural interpretive modeling and analytically hierarchy process [9] to estimate the GSCM practices.
The research of interpretive structural modeling is interaction between parameters, which contributes
to the weights of the assessment criteria. The theoretical hierarchy method is then implemented in
order to determine the right GSCM procedure in organizations. A flimsy model for assessing GSCM
activities in the organization is developed by Awasthi et al [2]. The TOPSIS model for the evaluation
of GSCM activities in the Taiwan electronics industry extended by Shen et al. [41]. For example,
For organizations to manage green supply chains, Roghanian et al. [38] suggested a multi-objective
optimization model. A multi-objective model for the architecture of multi-echelon supply chains is

AIMS Mathematics Volume 7, Issue 3, 4735–4766.



4737

suggested by Torabi and Hassini [47]. Liu and Papageorgiou [34, 31] have built a linear programming
model to analyses the supply GSCM.

1.2. Literature review

The multi-attribute decision making (MADM) approach is the methodology used for decisions
making finding the best alternative on the base of some criteria. MADM is the most effective decision-
making method and MADM has been commonly applied in human activities [23]. To interact with the
MADM process in an indefinite environment, researchers prefer a fuzzy set (FS) rather than a crisp set.
In 1965, Zadeh present FS theory [59]. In 1986, Atanassov [1] expressed theory of intuitionistic fuzzy
set (IFS), which is the extension of the FS theory of Zadeh. The TOPSIS approach to IFS information
was introduced by Kumar and Garg [28]. Garg and Kumar [18] suggested the similarity measures of
intuitionistic fuzzy sets based on the principle of set pair analysis and explored their use in decision-
making issues, and Garg [19] suggested some robust improved geometric aggregation operators
under intuitionistic fuzzy aggregation operators. In 1989, Atanassov and Gargov [46] introduced the
concept of Interval-value intuitionistic fuzzy sets (IVIFSs), where the degrees of membership and non-
membership are denoted by intervals instead of single numbers. So, IVIFSs is the generalization of IFS.
Yager the Pythagorean fuzzy set (PFS) in 2014 [57, 56] and also introduced the aggregation operators
like Pythagorean fuzzy weighted averaging (PFWA), Pythagorean fuzzy ordered weighted averaging
(PFOWA), Pythagorean fuzzy weighted geometric (PFWG) and Pythagorean fuzzy ordered weighted
geometric (PFOWG) operators. Based on PFS the values of membership and non-membership degrees
ranging from 0 to 1. So, that the squares of membership and non-membership degrees are less than
1. Peng et al. [36] proposed Pythagorean fuzzy linguistic sets (PFLSs) and their operating laws and
score function of PFNs. Jun et al. [21] presented a cubic set obtained by means of an interval valued
fuzzy set and a fuzzy set demonstrating the meaning of an interval valued fuzzy set [60] to achieve
the most suitable results by means of a fuzzy set [59]. Kaur and Garg [27, 25] suggested the unique
definition of a generalized cubic intuitionistic fuzzy set and developed aggregation operators using
t-norm operations and explored their applications for group decision-making processes.

The intuitionistic fuzzy set, on the other hand, does not address the ambiguity issues. We were
able to solve difficulties involving uncertainty because to this theory. Cubic set theory also describes
the satisfied, unsatisfied, and uncertain information that fuzzy sets theory and intuitionistic fuzzy set
theory [13, 33, 39]. Cubic set provides more appealing details than FS and IFS [24]. It is one of the
more basic types of fuzzy set, similar to IFS, in that each element of a cubic fuzzy set is defined as a
pair structure with a positive and negative membership function.

1.3. Motivation and objective

To sum up, these models showed their merits in evaluating the GSCM activities from different
perspectives. Though, because: (a) the need to properly consider the needs of multiple DMs; (b) the
existence of ambiguity; (c) the requirement on DM’s in the assessment process, they are not entirely
satisfactory in addressing this problem effectively.

This paper provides a model for a community DM for the assessment of GSCM activities by an
association. PCFNs are used to accurately model the ambiguity in decision-making to reflect the
decision maker’s assessment. To accurately quantify the subjective evaluation, a susceptibility criteria
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algorithm is defined to determine the cumulative success of the GSCM activities. An example showing
the model suggested is a success in addressing related issues in the real world context. The problem
of evaluating GSCM activities starts as a decision-making problem for MCDM. Then, an algorithm is
developed to solve this problem effectively and followed by an example.

The structure is as follows: Some basic concepts of FS, IFS, PFS and operational laws of
Pythagorean fuzzy sets offers in Section 2. In Section 3, we defined the concept of Pythagorean cubic
fuzzy Hamacher averaging aggregation operators. In Section 4, we defined the concept of Pythagorean
cubic fuzzy Hamacher geometric aggregation operators. In Section 5, addressed the decision frames
for PCFSs. In Section 6, a numerical example given to demonstrate the application of the proposed
method by using the proposed algorithms. In Section 7, discussed the comparison between the existing
methods and proposed method. In Section 8, this work is eventually outlined.

2. Preliminaries

We have familiarized with unique concepts and their relevant properties in this section.
Definition 2.1([59]). Let us assume that X be a fixed set. Then, a FS defined as follows;

F = {〈x, ûF(x)〉 |x ∈ X}, (2.1)

where ûF represent the membership degree of x ∈ X and mapping from X → [0, 1].
Definition 2.2([1]). Let us assume that X be a fixed set and I is defined on X. Then, IFS is stated as;

I = {
〈
x, ûI(x), γ∗I (x)

〉
|x ∈ X}, (2.2)

where ûI(x) and γ∗I (x) are the function from X → [0, 1], also hold that 0 ≤ ûI(x) ≤ 1, 0 ≤ γ∗I (x) ≤
1,∀x ∈ X and denote the membership and non-membership grade of x of X to set I, respectively.

Definition 2.3([21]). Let us suppose that X is a fixed set. So, a CS stated as;

C = {
〈
x, ûC(x), γ∗C(x)

〉
|x ∈ X}, (2.3)

where ûC is an IVFS in X and γ∗C is a FS in X.
Definition 2.4([56, 57]). Let us suppose that X be a fix set. Then, a PFS is expressed as;

P =
{〈

x, (ûP(x), γ∗P(x))
〉
|x ∈ X

}
, (2.4)

where the function ûP : X → [0, 1] represent the membership degree and the function γ∗P : X → [0, 1]
represent the non-membership degree of the element of x ∈ X to P consequently. So, for x ∈ X, it
holds that (ûP(x))2 + (γ∗P(x))2 ≤ 1. And the indeterminacy degree of the Pythagorean fuzzy set as;√

1 − (ûP(x))2 + (γ∗P(x))2.

Definition 2.5([26]). Let us suppose that X be a fixed set. Then, a PCFS is expressed as;

P = {〈x, (ΛP(x),ΓP(x))〉 |x ∈ X} , (2.5)

where the function ΛP =
(〈

[č−š , č
+
š ]; τ∗1š

〉)
and ΓP =

〈
[ě−š , ě

+
š ]; τ∗2š

〉
represent the membership

degree and non-membership degree of the element of x ∈ X to P consequently. So, for x ∈ X,
it holds that (ΛP(x))2 + (ΓP(x))2 ≤ 1. And the indeterminacy degree of Pythagorean fuzzy set as;√

1 − (ΛP(x))2 + (ΓP(x))2.
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2.1. Operational laws of Pythagorean cubic fuzzy set

Definition 2.6. Let us assume that P∗1 =
(〈

[č−1 , č
+
1 ]; τ∗11

〉
,
〈
[ě−1 , ě

+
1 ]; τ∗21

〉)
and P∗2 =(〈

[č−2 , č
+
2 ]; τ∗12

〉
,
〈
[ě−2 , ě

+
2 ]; τ∗22

〉)
are two PCFNs, γ∗ > 0. Then, the Hamacher operation for PCFNs are

described as given below;

1. P∗1 ⊕ P∗2 =






√

(č−1 )2+(č−2 )2−(č−1 )2(č−2 )2−(1−γ∗)(č−1 )2(č−2 )2

1−(1−γ∗)(č−1 )2(č−2 )2 ,√
(č+

1 )2+(č+
2 )2−(č+

1 )2(č+
2 )2−(1−γ∗)(č+

1 )2(č+
2 )2

1−(1−γ∗)(ě+
1 )2(ě+

2 )2

 ;

√
(τ∗11)2+(τ∗12)2−(τ∗11)2(τ∗12)2−(1−γ∗)(τ∗11)2(τ∗12)2

1−(1−γ∗)(τ∗11)2(τ∗12)2




ě−1 ě−2√
γ∗+(1−γ∗)((ě−1 )2+(ě−2 )2−(ě−1 )2(ě−2 )2)

,

ě+
1 ě+

2√
γ∗+(1−γ∗)((ě+

1 )2+(ě+
2 )2−(ě+

1 )2(ě+
2 )2)

 ;

τ∗21τ
∗
22√

γ∗+(1−γ∗)((τ∗21)2+(τ∗22)2−(τ∗21)2(τ∗22)2)





;

2. P∗1 ⊗ P∗2 =






č−1 č−2√
γ∗+(1−γ∗)((č−1 )2+(č−2 )2−(č−1 )2(č−2 )2)

,

č+
1 č+

2√
γ∗+(1−γ∗)((č+

1 )2+(č+
2 )2−(č+

1 )2(č+
2 )2)

 ;

τ∗11τ
∗
12√

γ∗+(1−γ∗)((τ∗11)2+(τ∗12)2−(τ∗11)2(τ∗12)2)




√

(ě−1 )2+(ě−2 )2−(ě−1 )2(ě−2 )2−(1−γ∗)(ě−1 )2(ě−2 )2

1−(1−γ∗)(ě−1 )2(ě−2 )2 ,√
(ě+

1 )2+(ě+
2 )2−(ě+

1 )2(ě+
2 )2−(1−γ∗)(ě+

1 )2(ě+
2 )2

1−(1−γ∗)(ě+
1 )2(ě+

2 )2

 ;

√
(τ∗21)2+(τ∗22)2−(τ∗21)2(τ∗22)2−(1−γ∗)(τ∗21)2(τ∗22)2

1−(1−γ∗)(τ∗21)2(τ∗22)2





;

3. λP∗1 =






√

(1+(γ∗−1)(č−1 )2)λ−(1−(č−1 )2)λ

(1+(γ∗−1)(č−1 )2)λ+(γ∗−1)(1−(č−1 )2)λ ,√
(1+(γ∗−1)(č+

1 )2)λ−(1−(č+
1 )2)λ

(1+(γ∗−1)(č+
1 )2)λ+(γ∗−1)(1−(č+

1 )2)λ

 ;

√
(1+(γ∗−1)(τ∗11)2)λ−(1−(τ∗11)2)λ

(1+(γ∗−1)(τ∗11)2)λ+(γ∗−1)(1−(τ∗11)2)λ


,




√
γ∗(ě−1 )λ

√
1+(γ∗−1)(1−(ě−1 )2)λ+(γ∗−1)(ě−1 )2)λ

,
√
γ∗(ě+

1 )λ
√

1+(γ∗−1)(1−(ě+
1 )2)λ+(γ∗−1)(ě+

1 )2)λ

 ;

√
(1+(γ∗−1)(τ∗12)2)λ−(1−(τ∗12)2)λ

(1+(γ∗−1)(τ∗12)2)λ+(γ∗−1)(1−(τ∗12)2)λ





;
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4.
(
P∗1

)λ
=






√
γ∗(č−1 )λ

√
1+(γ∗−1)(1−(č−1 )2)λ+(γ∗−1)(č−1 )2)λ

,
√
γ∗(č+

1 )λ
√

1+(γ∗−1)(1−(č+
1 )2)λ+(γ∗−1)(č+

1 )2)λ

 ;

√
(1+(γ∗−1)(τ∗11)2)λ−(1−(τ∗11)2)λ

(1+(γ∗−1)(τ∗11)2)λ+(γ∗−1)(1−(τ∗11)2)λ




√

(1+(γ∗−1)(ě−1 )2)λ−(1−(ě−1 )2)λ

(1+(γ∗−1)(ě−1 )2)λ+(γ∗−1)(1−(ě−1 )2)λ ,√
(1+(γ∗−1)(ě+

1 )2)λ−(1−(ě+
1 )2)λ

(1+(γ∗−1)(ě+
1 )2)λ+(γ∗−1)(1−(ě+

1 )2)λ

 ;

√
(1+(γ∗−1)(τ∗12)2)λ−(1−(τ∗12)2)λ

(1+(γ∗−1)(τ∗12)2)λ+(γ∗−1)(1−(τ∗12)2)λ





.

3. Pythagorean cubic fuzzy Hamacher averaging aggregation operators

In this section, we discuss the Pythagorean cubic fuzzy Hamacher averaging aggregation operators,
their basic properties and related theorems.

Definition 3.1. Let P∗š =
(〈

[č−š , č
+
š ]; τ∗1š

〉
,
〈
[ě−š , ě

+
š ]; τ∗2š

〉)
(š ∈ N) be a number of PCFNs. Then, we

define the PCFHWA operator given below;

PCFHWAŵ(P∗1, P
∗
2, ..., P

∗
n) =

n⊕
š=1

(ŵšP∗š) (3.1)

where ŵš = (ŵ1, ŵ2, ..., ŵn)T be the weight vector of P∗š(š ∈ N), and ŵš > 0,
n∑̌

s=1
ŵš = 1.

Centered on Hamacher ⊕ of the mentioned PCFN operations, we can operate the Theorem 1.

Theorem 3.1. Suppose P∗š =
(〈

[ĉ−š , ĉ
+
š ]; τ∗1š

〉
,
〈
[ě−š , ě

+
š ]; τ∗2š

〉)
(š ∈ N) be a group of PCFNs. Then,

their accumulated value is also a PCFN, using PCFHWA operator, and

PCFHWAŵš(P
∗
1, P

∗
2, ..., P

∗
n) =

n⊕
š=1

(ŵšP∗š) (3.2)
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=







√√√ n∏̌
s=1

(1+(γ∗−1)(ĉ−š )2)ŵš−
n∏̌

s=1
(1−(ĉ−š )2)ŵš

n∏̌
s=1

(1+(γ∗−1)(ĉ−š )2)ŵš +(γ∗−1)
n∏̌

s=1
(1−(ĉ−š )2)ŵš

,√√√ n∏̌
s=1

(1+(γ∗−1)(ĉ+
š )2)ŵš−

n∏̌
s=1

(1−(ĉ+
š )2)ŵš

n∏̌
s=1

(1+(γ∗−1)(ĉ+
š )2)ŵš +(γ∗−1)

n∏̌
s=1

(1−(ĉ+
š )2)ŵš


;

√√√ n∏̌
s=1

(1+(γ∗−1)(τ∗1š)
2)ŵš−

n∏̌
s=1

(1−(τ∗1š)
2)ŵš

n∏̌
s=1

(1+(γ∗−1)(τ∗1š)
2)ŵš +(γ∗−1)

n∏̌
s=1

(1−(τ∗1š)
2)ŵš


,





√
γ∗

n∏̌
s=1

(ě−š )ŵš√
n∏̌

s=1
1+(γ∗−1)(1−(ě−š )2)

ŵš
+(γ∗−1)

n∏̌
s=1

((ě−š )2)
ŵš
,

√
γ∗

n∏̌
s=1

(ě+
š )

ŵš√
n∏̌

s=1
1+(γ∗−1)(1−(ě+

š )2)
ŵš

+(γ∗−1)
n∏̌

s=1
((ě+

š )2)
ŵš


;

√
γ∗

n∏̌
s=1

(τ∗2š)
ŵš√

n∏̌
s=1

1+(γ∗−1)
(
1−(τ∗2š)

2
)ŵš

+(γ∗−1)
n∏̌

s=1
((τ∗2š)

2)
ŵš





where ŵš = (ŵ1, ŵ2, ..., ŵn)T be the weight vector of P∗š(š = 1, 2, ..., n), and ŵš > 0,
n∑̌

s=1
ŵš = 1, γ∗ >

0.

Proof. By using the mathematical induction, we have;

(i) If n = 2, then by using operation laws of PCFNs, we have

PCFHWAŵ(P∗1, P
∗
2) = (P∗1 ⊕ P∗2)




√

(1+(γ∗−1)(ĉ−1 )2)ŵ1−(1−(ĉ−1 )2)ŵ1

(1+(γ∗−1)(ĉ−1 )2)ŵ1 +(γ∗−1)(1−(ĉ−1 )2)ŵ1
,√

(1+(γ∗−1)(ĉ+
1 )2)ŵ1−(1−(ĉ+

1 )2)ŵ1

(1+(γ∗−1)(ĉ+
1 )2)ŵ1 +(γ∗−1)(1−(ĉ+

1 )2)ŵ1

 ;

√
(1+(γ∗−1)(τ∗11)2)ŵ1−(1−(τ∗11)2)ŵ1

(1+(γ∗−1)(τ∗11)2)ŵ1 +(γ∗−1)(1−(τ∗11)2)ŵ1


,




√
γ∗(ě−1 )ŵ1√

1+(γ∗−1)(1−(ě−1 )2)
ŵ1

+(γ∗−1)((ě−1 )2)
ŵ1
,

√
γ∗(ě+

1 )ŵ1√
1+(γ∗−1)(1−(ě+

1 )2)
ŵ1

+(γ∗−1)((ě+
1 )2)

ŵ1

 ;

√
γ∗(τ∗21)ŵ1√

1+(γ∗−1)(1−(τ∗21)2)
ŵ1

+(γ∗−1)((τ∗21)2)
ŵ1
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⊕






√

(1+(γ∗−1)(ĉ−2 )2)ŵ2−(1−(ĉ−2 )2)ŵ2

(1+(γ∗−1)(ĉ−2 )2)ŵ2 +(γ∗−1)(1−(ĉ−2 )2)ŵ2
,√

(1+(γ∗−1)(ĉ+
2 )2)ŵ2−(1−(ĉ+

2 )2)ŵ2

(1+(γ∗−1)(ĉ+
2 )2)ŵ2 +(γ∗−1)(1−(ĉ+

2 )2)ŵ2

 ;

√
(1+(γ∗−1)(τ∗12)2)ŵ2−(1−(τ∗12)2)ŵ2

(1+(γ∗−1)(τ∗12)2)ŵ2 +(γ∗−1)(1−(τ∗12)2)ŵ2


,




√
γ∗(ě−2 )ŵ2√

1+(γ∗−1)(1−(ě−2 )2)
ŵ2

+(γ∗−1)((ě−2 )2)
ŵ2
,

√
γ∗(ě+

2 )ŵ2√
1+(γ∗−1)(1−(ě+

2 )2)
ŵ2

+(γ∗−1)((ě+
2 )2)

ŵ2

 ;

√
γ∗(τ∗22)ŵ2√

1+(γ∗−1)(1−(τ∗22)2)
ŵ2

+(γ∗−1)((τ∗22)2)
ŵ2





=







√√√√ 2∏̌
s=1

(1+(γ∗−1)(ĉ−š )2)ŵš−
2∏̌

s=1
(1−(ĉ−š )2)ŵš

2∏̌
s=1

(1+(γ∗−1)(ĉ−š )2)ŵš +(γ∗−1)
2∏̌

s=1
(1−(ĉ−š )2)ŵš

,√√√√ 2∏̌
s=1

(1+(γ∗−1)(ĉ+
š )2)ŵš−

2∏̌
s=1

(1−(ĉ+
š )2)ŵš

2∏̌
s=1

(1+(γ∗−1)(ĉ+
š )2)ŵš +(γ∗−1)

2∏̌
s=1

(1−(ĉ+
š )2)ŵš


;

√√√√ 2∏̌
s=1

(1+(γ∗−1)(τ∗1š)
2)ŵš−

2∏̌
s=1

(1−(τ∗1š)
2)ŵš

2∏̌
s=1

(1+(γ∗−1)(τ∗1š)
2)ŵš +(γ∗−1)

2∏̌
s=1

(1−(τ∗1š)
2)ŵš


,





√
γ∗

2∏̌
s=1

(ě−š )ŵš√
2∏̌

s=1
1+(γ∗−1)(1−(ě−š )2)

ŵš
+(γ∗−1)

2∏̌
s=1

((ě−š )2)
ŵš
,

√
γ∗

2∏̌
s=1

(ě+
š )

ŵš√
2∏̌

s=1
1+(γ∗−1)(1−(ě+

š )2)
ŵš

+(γ∗−1)
2∏̌

s=1
((ě+

š )2)
ŵš


;

√
γ∗

2∏̌
s=1

(τ∗2š)
ŵš√

2∏̌
s=1

1+(γ∗−1)(1−(τ∗2š)
2)

ŵš
+(γ∗−1)

2∏̌
s=1

((τ∗2š)
2)

ŵš




Hence, Eq (3.2) is true for n = 2.

Let Eq (3.2) is hold for n = k. Then, by the Eq (3.2), we get

PCFHWAŵ(P∗1, ..., P
∗
k) =

k⊕
š=1

(ŵšP∗š)
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=







√√√√ k∏̌
s=1

(1+(γ∗−1)(ĉ−š )2)ŵš−
k∏̌

s=1
(1−(ĉ−š )2)ŵš

k∏̌
s=1

(1+(γ∗−1)(ĉ−š )2)ŵš +(γ∗−1)
k∏̌

s=1
(1−(ĉ−š )2)ŵš

,√√√√ k∏̌
s=1

(1+(γ∗−1)(ĉ+
š )2)ŵš−

k∏̌
s=1

(1−(ĉ+
š )2)ŵš

k∏̌
s=1

(1+(γ∗−1)(ĉ+
š )2)ŵš +(γ∗−1)

k∏̌
s=1

(1−(ĉ+
š )2)ŵš


;

√√√√ k∏̌
s=1

(1+(γ∗−1)(τ∗1š)
2)ŵš−

k∏̌
s=1

(1−(τ∗1š)
2)ŵš

k∏̌
s=1

(1+(γ∗−1)(τ∗1š)
2)ŵš +(γ∗−1)

k∏̌
s=1

(1−(τ∗1š)
2)ŵš


,





√
γ∗

k∏̌
s=1

(ě−š )ŵš√
k∏̌

s=1
1+(γ∗−1)(1−(ě−š )2)

ŵš
+(γ∗−1)

k∏̌
s=1

((ě−š )2)
ŵš
,

√
γ∗

k∏̌
s=1

(ě+
š )

ŵš√
k∏̌

s=1
1+(γ∗−1)(1−(ě+

š )2)
ŵš

+(γ∗−1)
k∏̌

s=1
((ě+

š )2)
ŵš


;

√
γ∗

k∏̌
s=1

(τ∗2š)
ŵš√

k∏̌
s=1

1+(γ∗−1)(1−(τ∗2š)
2)

ŵš
+(γ∗−1)

k∏̌
s=1

((τ∗2š)
2)

ŵš




Now, for n = k + 1, we get

PCFHWAŵ(P∗1, ..., P
∗
k, P

∗
k+1) =

k⊕
š=1

(ŵšP∗š ⊕ ŵš+1P∗š+1)





√√√√ k∏̌
s=1

(1+(γ∗−1)(ĉ−š )2)ŵš−
k∏̌

s=1
(1−(ĉ−š )2)ŵš

k∏̌
s=1

(1+(γ∗−1)(ĉ−š )2)ŵš +(γ∗−1)
k∏̌

s=1
(1−(ĉ−š )2)ŵš

,√√√√ k∏̌
s=1

(1+(γ∗−1)(ĉ+
š )2)ŵš−

k∏̌
s=1

(1−(ĉ+
š )2)ŵš

k∏̌
s=1

(1+(γ∗−1)(ĉ+
š )2)ŵš +(γ∗−1)

k∏̌
s=1

(1−(ĉ+
š )2)ŵš


;

√√√√ k∏̌
s=1

(1+(γ∗−1)(τ∗1š)
2)ŵš−

k∏̌
s=1

(1−(τ∗1š)
2)ŵš

k∏̌
s=1

(1+(γ∗−1)(τ∗1š)
2)ŵš +(γ∗−1)

k∏̌
s=1

(1−(τ∗1š)
2)ŵš


,





√
γ∗

k∏̌
s=1

(ě−š )ŵš√
k∏̌

s=1
1+(γ∗−1)(1−(ě−š )2)

ŵš
+(γ∗−1)

k∏̌
s=1

((ě−š )2)
ŵš
,

√
γ∗

k∏̌
s=1

(ě+
š )

ŵš√
k∏̌

s=1
1+(γ∗−1)(1−(ě+

š )2)
ŵš

+(γ∗−1)
k∏̌

s=1
((ě+

š )2)
ŵš


;

√
γ∗

k∏̌
s=1

(τ∗2š)
ŵš√

k∏̌
s=1

1+(γ∗−1)(1−(τ∗2š)
2)

ŵš
+(γ∗−1)

k∏̌
s=1

((τ∗2š)
2)

ŵš
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⊕






√

(1+(γ∗−1)(ĉ−k+1)2)ŵk+1−(1−(ĉ−k+1)2)ŵk+1

(1+(γ∗−1)(ĉ−k+1)2)ŵk+1 +(γ∗−1)(1−(ĉ−k+1)2)ŵk+1
,√

(1+(γ∗−1)(ĉ+
k+1)2)ŵk+1−(1−(ĉ+

k+1)2)ŵk+1

(1+(γ∗−1)(ĉ+
k+1)2)ŵk+1 +(γ∗−1)(1−(ĉ+

k+1)2)ŵk+1

 ;

√√ (
1+(γ∗−1)

(
τ∗1(k+1)

)2
)ŵk+1

−

(
1−

(
τ∗1(k+1)

)2
)ŵk+1

(
1+(γ∗−1)

(
τ∗1(k+1)

)2
)ŵk+1

+(γ∗−1)
(
1−

(
τ∗1(k+1)

)2
)ŵk+1


,





√
γ∗(ě−k+1)ŵk+1√

1+(γ∗−1)(1−(ě−k+1)2)
ŵk+1

+(γ∗−1)((ě−k+1)2)
ŵk+1

,

√
γ∗(ě+

2 )ŵ2√
1+(γ∗−1)(1−(ě+

k+1)2)
ŵ2

+(γ∗−1)
(
(ě+

k+1)
2
)ŵk+1

 ;

√
γ∗(τ∗2(k+1))

ŵk+1√
1+(γ∗−1)

(
1−

(
τ∗2(k+1)

)2
)ŵk+1

+(γ∗−1)
((
τ∗2(k+1)

)2
)ŵk+1





=







√√√√ k+1∏̌
s=1

(1+(γ∗−1)(ĉ−š )2)ŵš−
k+1∏̌
s=1

(1−(ĉ−š )2)ŵš

k+1∏̌
s=1

(1+(γ∗−1)(ĉ−š )2)ŵš +(γ∗−1)
k+1∏̌
s=1

(1−(ĉ−š )2)ŵš
,√√√√ k+!∏̌

s=1
(1+(γ∗−1)(ĉ+

š )2)ŵš−
k+1∏̌
s=1

(1−(ĉ+
š )2)ŵš

k∏̌
s=1

(1+(γ∗−1)(ĉ+
š )2)ŵš +(γ∗−1)

k+1∏̌
s=1

(1−(ĉ+
š )2)ŵš


;

√√√√ k+1∏̌
s=1

(1+(γ∗−1)(τ∗1š)
2)ŵš−

k+1∏̌
s=1

(1−(τ∗1š)
2)ŵš

k+1∏̌
s=1

(1+(γ∗−1)(τ∗1š)
2)ŵš +(γ∗−1)

k+1∏̌
s=1

(1−(τ∗1š)
2)ŵš


,





√
γ∗

k+1∏̌
s=1

(ě−š )ŵš√
k+1∏̌
s=1

1+(γ∗−1)(1−(ě−š )2)
ŵš

+(γ∗−1)
k+1∏̌
s=1

((ě−š )2)
ŵš
,

√
γ∗

k+1∏̌
s=1

(ě+
š )

ŵš√
k+1∏̌
s=1

1+(γ∗−1)(1−(ě+
š )2)

ŵš
+(γ∗−1)

k+1∏̌
s=1

((ě+
š )2)

ŵš


;

√
γ∗

k+1∏̌
s=1

(τ∗2š)
ŵš√

k+1∏̌
s=1

1+(γ∗−1)(1−(τ∗2š)
2)

ŵš
+(γ∗−1)

k+1∏̌
s=1

((τ∗2š)
2)

ŵš




Thus, Equation (3.2) is true for all n = k + 1. Which is required.
It can be easily shown that the following properties exist for the PCFHWA operator.
Theorem 3.2. (Idempotency). If all P∗š(š ∈ N) are equal, i.e., P∗š = P∗,∀ š. Hence,

PCFHWAŵš(P
∗
1, P

∗
2, ..., P

∗
n) = P∗. (3.3)

Theorem 3.3. (Boundedness). Suppose P∗š(š ∈ N) is a group of PCFNs, and P∗−š = minš P∗š, P
∗+
š =

maxš P∗š. Then,

P∗−š ≤ PCFHWAŵš(P
∗
1, P

∗
2, ..., P

∗
n) ≤ P∗+š . (3.4)
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Theorem 3.4. (Monotonicity). Suppose P∗š(š ∈ N) and P∗
′

š (š ∈ N) be two sets of PCFNs, if
P∗š ≤ P∗

′

š for all š. Then,

PCFHWAŵš(P
∗
1, P

∗
2, ..., P

∗
n) ≤ PCFHWAŵš(P

∗′

1 , P
∗′

2 , ..., P
∗′

n ). (3.5)

Now, about the parameter γ∗, we will explore several distinct cases of the PCFHWA operator.
When γ∗ = 1, PCFHWA operator decreases to the PCFWA operators as follows:

PCFHWAŵš(P
∗
1, P

∗
2, ..., P

∗
n) =

n⊕
š=1

(ŵšP∗š) (3.6)

=




[√

1 −
n∏̌

s=1

(
1 − (ĉ−š )2

)ŵš
,

√
1 −

n∏̌
s=1

(
1 − (ĉ+

š )2
)ŵš

]
;√

1 −
n∏̌

s=1
(1 − (τ∗1š)

2)ŵš

 ,([
n∏̌

s=1
(ě−š )ŵš ,

n∏̌
s=1

(ě+
š )ŵš

]
;

n∏̌
s=1

(τ∗2š)
ŵš

)


When γ∗ = 2, PCFHWA operator reduces to the PCFEWA operator as follows:

PCFEWAŵš(P
∗
1, P

∗
2, ..., P

∗
n) (3.7)

=







√√√ n∏̌
s=1

(1+(ĉ−š )2)ŵš−
n∏̌

s=1
(1−(ĉ−š )2)ŵš

n∏̌
s=1

(1+(ĉ−š )2)ŵš +
n∏̌

s=1
(1−(ĉ−š )2)ŵš

,√√√ n∏̌
s=1

(1+(ĉ+
š )2)ŵš−

n∏̌
s=1

(1−(ĉ+
š )2)ŵš

n∏̌
s=1

(1+(ĉ+
š )2)ŵš +

n∏̌
s=1

(1−(ĉ+
š )2)ŵš


;

√√√ n∏̌
s=1

(1+(τ∗1š)
2)ŵš−

n∏̌
s=1

(1−(τ∗1š)
2)ŵš

n∏̌
s=1

(1+(τ∗1š)
2)ŵš +

n∏̌
s=1

(1−(τ∗1š)
2)ŵš


,





√
2

n∏̌
s=1

(ě−š )ŵš√
n∏̌

s=1
(2−(ě−š )2)

ŵš
+

n∏̌
s=1

((ě−š )2)
ŵš
,

√
2

n∏̌
s=1

(ě+
š )ŵš√

n∏̌
s=1

(2−(ě+
š )2)

ŵš
+

n∏̌
s=1

((ě+
š )2)

ŵš


;

√
2

n∏̌
s=1

(τ∗2š)
ŵš√

n∏̌
s=1

(2−(τ∗2š)
2)

ŵš
+

n∏̌
s=1

((τ∗2š)
2)

ŵš




Definition 3.2. Let P∗š =

(〈
[ĉ−š , ĉ

+
š ]; τ∗1š

〉
,
〈
[ě−š , ě

+
š ]; τ∗2š

〉)
(š ∈ N) be a number of PCFNs. Then, we

define the PCFHOWA operator as follows:

PCFHWAŵš(P
∗
1, P

∗
2, ..., P

∗
n) =

n⊕
š=1

(
ŵšP∗f◦(š)

)
, (3.8)
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where (f◦(1),f◦(2), ...,f◦(n)) is a mapping of (1, 2, ..., n), such that P∗f◦(š−1) ≥ P∗f◦(š) ∀ š = 2, 3, ..., n,
and ŵš = (ŵ1, ŵ2, ..., ŵn)T is the aggregation-related weight vector such that ŵš ∈ [0, 1] and ŵš >

0,
n∑̌

s=1
ŵš = 1, γ∗ > 0.

We can drive the Theorem 5 based on Hamacher ⊕ operations of the mentioned PCFNs.
Theorem 3.5. Suppose P∗š =

(〈
[ĉ−š , ĉ

+
š ]; τ∗1š

〉
,
〈
[ě−š , ě

+
š ]; τ∗2š

〉)
(š ∈ N) is a group of PCFNs. So, we

define PCFHOWA operator as follows;

PCFHOWAŵš(P
∗
1, P

∗
2, ..., P

∗
n) =

n⊕
š=1

(
ŵšP∗f◦(š)

)
(3.9)

=







√√√√ n∏̌
s=1

(
1+(γ∗−1)

(
ĉ−
f◦(š)

)2
)ŵš
−

n∏̌
s=1

(
1−

(
ĉ−
f◦(š)

)2
)ŵš

n∏̌
s=1

(
1+(γ∗−1)

(
ĉ−
f◦(š)

)2
)ŵš

+(γ∗−1)
n∏̌

s=1

(
1−

(
ĉ−
f◦(š)

)2
)ŵš
,√√√√ n∏̌

s=1

(
1+(γ∗−1)

(
ĉ+
f◦(š)

)2
)ŵš
−

n∏̌
s=1

(
1−

(
ĉ+
f◦(š)

)2
)ŵš

n∏̌
s=1

(
1+(γ∗−1)

(
ĉ+
f◦(š)

)2
)ŵš

+(γ∗−1)
n∏̌

s=1

(
1−

(
ĉ+
f◦(š)

)2
)ŵš


;

√√√√ n∏̌
s=1

(
1+(γ∗−1)

(
τ∗1f◦(š)

)2
)ŵš
−

n∏̌
s=1

(
1−

(
τ∗1f◦(š)

)2
)ŵš

n∏̌
s=1

(
1+(γ∗−1)

(
τ∗1f◦(š)

)2
)ŵš

+(γ∗−1)
n∏̌

s=1

(
1−

(
τ∗1f◦(š)

)2
)ŵš


,





√
γ∗

n∏̌
s=1

(
ě−f◦(š)

)ŵš√
n∏̌

s=1
1+(γ∗−1)

(
1−

(
ě−
f◦(š)

)2
)ŵš

+(γ∗−1)
n∏̌

s=1

((
ě−
f◦(š)

)2
)ŵš
,

√
γ∗

n∏̌
s=1

(
ě+
f◦(š)

)ŵš√
n∏̌

s=1
1+(γ∗−1)

(
1−

(
ě+
f◦(š)

)2
)ŵš

+(γ∗−1)
n∏̌

s=1

((
ě+
f◦(š)

)2
)ŵš


;

√
γ∗

n∏̌
s=1

(
τ∗2f◦(š)

)ŵš√
n∏̌

s=1
1+(γ∗−1)

(
1−

(
τ∗2f◦(š)

)2
)ŵš

+(γ∗−1)
n∏̌

s=1

((
τ∗2f◦(š)

)2
)ŵš




where (f◦(1),f◦(2), ...,f◦(n)) is a mapping of (1, 2, ..., n), such that P∗f◦(š−1) ≥ P∗f◦(š) ∀ š = 2, 3, ..., n,

and ŵš = (ŵ1, ŵ2, ..., ŵn)T is the aggregation-related weight vector: ŵš ∈ [0, 1] and ŵš > 0,
n∑̌

s=1
ŵš =

1, γ∗ > 0.
Can be easily displayed that the following properties exist for the PCFHOWA operator.
Theorem 3.6.(Idempotency). If all P∗š(š ∈ N) are equal, i.e., P∗š = P∗ for all š. Then,

PCFHOWAŵš(P
∗
1, P

∗
2, ..., P

∗
n) = P∗. (3.10)

Theorem 3.7(Boundedness). Suppose P∗š(š ∈ N) be a group of PCFNs, and P∗−š = minš P∗š, P
∗+
š =

maxš P∗š.
Then,

P∗−š ≤ PCFHOWAŵ(P∗1, P
∗
2, ..., P

∗
n) ≤ P∗+š . (3.11)

Theorem 3.8. (Monotonicity). Suppose P∗š(š ∈ N) and P∗
′

š (š ∈ N) be two set of PCFNs, if
P∗š ≤ P∗

′

š ,∀ š. So,

PCFHOWAŵš(P
∗
1, P

∗
2, ..., P

∗
n) ≤ PCFHOWAŵ(P∗

′

1 , P
∗′

2 , ..., P
∗′

n ). (3.12)
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When γ∗ = 1, PCFHOWA operator decrease to PCFOWA operator as follows:

PCFHOWAŵš(P
∗
1, P

∗
2, ..., P

∗
n) =

n⊕
š=1

(
ŵšP∗f◦(š)

)
(3.13)

=






√

1 −
n∏̌

s=1

(
1 −

(
ĉ−f◦(š)

)2
)ŵš

,

√
1 −

n∏̌
s=1

(
1 −

(
ĉ+
f◦(š)

)2
)ŵš

 ;√
1 −

n∏̌
s=1

(
1 −

(
τ∗1f◦(š)

)2
)ŵš


,

([
n∏̌

s=1

(
ě−f◦(š)

)ŵš
,

n∏̌
s=1

(
ě+
f◦(š)

)ŵš

]
;

n∏̌
s=1

(
τ∗2f◦(š)

)ŵš

)


When γ∗ = 2, PCFHOWA operator reduces to the PCFEOWA operator as follows:

PCFEOWAŵš(P
∗
1, P

∗
2, ..., P

∗
n) (3.14)

=







√√√√ n∏̌
s=1

(
1+

(
ĉ−
f◦(š)

)2
)ŵ
−

n∏̌
s=1

(
1−

(
ĉ−
f◦(š)

)2
)ŵš

n∏̌
s=1

(
1+

(
ĉ−
f◦(š)

)2
)ŵ

+
n∏̌

s=1

(
1−

(
ĉ−
f◦(š)

)2
)ŵš
,√√√√ n∏̌

s=1

(
1+

(
ĉ+
f◦(š)

)2
)ŵš
−

n∏̌
s=1

(
1−

(
ĉ+
f◦(š)

)2
)ŵš

n∏̌
s=1

(
1+

(
ĉ+
f◦(š)

)2
)ŵš

+
n∏̌

s=1

(
1−

(
ĉ+
f◦(š)

)2
)ŵš


;

√√√√ n∏̌
s=1

(
1+

(
τ∗1f◦(š)

)2
)ŵš
−

n∏̌
s=1

(
1−

(
τ∗1f◦(š)

)2
)ŵš

n∏̌
s=1

(
1+

(
τ∗1f◦(š)

)2
)ŵš

+
n∏̌

s=1

(
1−

(
τ∗1f◦(š)

)2
)ŵš


,





√
2

n∏̌
s=1

(
ě−f◦(š)

)ŵš√
n∏̌

s=1

(
2−

(
ě−
f◦(š)

)2
)ŵš

+
n∏̌

s=1

((
ě−
f◦(š)

)2
)ŵš
,

√
2

n∏̌
s=1

(
ě+
f◦(š)

)ŵš√
n∏̌

s=1

(
2−

(
ě+
f◦(š)

)2
)ŵš

+
n∏̌

s=1

((
ě+
f◦(š)

)2
)ŵš


;

√
2

n∏̌
s=1

(τf◦(š))ŵš√
n∏̌

s=1

(
2−

(
τ∗2f◦(š)

)2
)ŵ

+
n∏̌

s=1

((
τ∗2f◦(š)

)2
)ŵš




In Definitions (3.1) and (3.2) we discover that the PCFHWA operator tests the PCF statement itself,

While the operator of PCFHOWA considers the ordered positions of the PCF arguments rather than the
arguments themselves. Hence, weights in both the PCFHWA and PCFHOWA operators show different
attributes. However, both the operators find only one of them. To solve this disadvantage, a PCFHHA
operator will be suggested in the following.

Definition 3.3. A Pythagorean cubic fuzzy Hamacher hybrid average (PCFHHA) operator is
defined as follows:

PCFHHWAŵ,ωš (P∗1, P
∗
2, ..., P

∗
n) =

n⊕
š=1

(
ŵšP∗∗f◦(š)

)
, (3.15)
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where the corresponding weighting vector is ŵš = (ŵ1, ŵ2, ..., ŵn)T , with ŵš ∈ [0, 1],
n∑̌

s=1
ŵš = 1,

P∗∗f◦(š) be the šth biggest component of the PF argument P∗∗š (P∗∗š = nωšP∗š(š = 1, 2, ..., n), with

ωš ∈ [0, 1],
n∑̌

s=1
ωš = 1, and n is the balancing coefficient. Particularly, if ŵš = (1/n, 1/n, ..., 1/n)T ,

then PCFHHA is decreases to the PCFHWA operator; if ŵš = (1/n, 1/n, ..., 1/n) is decreases to the
PCFHOWA operator.

Centered on Hamacher sum operations of the demonstrate PCFNs we can develop the Theorem
(3.9).

Theorem 3.9. Suppose P∗š =
(〈

[ĉ−š , ĉ
+
š ]; τ∗1š

〉
,
〈
[ě−š , ě

+
š ]; τ∗2š

〉)
(š ∈ N) be a group of PCFNs. So, their

calculated value using PCFHWA operator is also a PCFN,

PCFHHAŵš,ωš(P
∗
1, P

∗
2, ..., P

∗
n) =

n⊕
š=1

(
ŵšP∗∗f◦(š)

)
(3.16)

=







√√√√ n∏̌
s=1

(
1+(γ∗−1)

(
ĉ−∗
f◦(š)

)2
)ŵš
−

n∏̌
s=1

(
1−

(
ĉ−∗
f◦(š)

)2
)ŵš

n∏̌
s=1

(
1+(γ∗−1)

(
ĉ−∗
f◦(š)

)2
)ŵš

+(γ∗−1)
n∏̌

s=1

(
1−

(
ĉ−∗
f◦(š)

)2
)ŵš
,√√√√ n∏̌

s=1

(
1+(γ∗−1)

(
ĉ+∗
f◦(š)

)2
)ŵš
−

n∏̌
s=1

(
1−

(
ĉ+∗
f◦(š)

)2
)ŵš

n∏̌
s=1

(
1+(γ∗−1)

(
ĉ+∗
f◦(š)

)2
)ŵš

+(γ∗−1)
n∏̌

s=1

(
1−

(
ĉ+∗
f◦(š)

)2
)ŵš


;

√√√√ n∏̌
s=1

(
1+(γ∗−1)

(
τ∗∗1f◦(š)

)2
)ŵš
−

n∏̌
s=1

(
1−

(
τ∗∗1f◦(š)

)2
)ŵš

n∏̌
s=1

(
1+(γ∗−1)

(
τ∗∗1f◦(š)

)2
)ŵš

+(γ∗−1)
n∏̌

s=1

(
1−

(
τ∗∗1f◦(š)

)2
)ŵš


,





√
γ∗

n∏̌
s=1

(
ě−∗σ◦(š)

)ŵš√
n∏̌

s=1
1+(γ∗−1)

(
1−

(
ě−∗
f◦(š)

)2
)ŵš

+(γ∗−1)
n∏̌

s=1

((
ě−∗
f◦(š)

)2
)ŵš
,

√
γ∗

n∏̌
s=1

(
ě+∗
f◦(š)

)ŵš√
n∏̌

s=1
1+(γ∗−1)

(
1−

(
ě+∗
f◦(š)

)2
)ŵš

+(γ∗−1)
n∏̌

s=1

((
ě+∗
f◦(š)

)2
)ŵš


;

√
γ∗

n∏̌
s=1

(
τ∗∗2f◦(š)

)ŵš√
n∏̌

s=1
1+(γ∗−1)

(
1−

(
τ∗∗2f◦(š)

)2
)ŵš

+(γ∗−1)
n∏̌

s=1

((
τ∗∗2f◦(š)

)2
)ŵš




Where the corresponding vector weighting is ŵš = (ŵ1, ŵ2, ..., ŵn), with ŵš ∈ [0, 1],

n∑̌
s=1

ŵš = 1, and

P∗∗σ◦(š) is the kth biggest component of the PF argument P∗∗š (P∗∗š = nωšP∗š, (š ∈ N), ωš = (ω1, ω2, ..., ωn)T

is the vector weighting of PF argument P∗š(š = 1, 2, ..., n), with ωš ∈ [0, 1],
n∑̌

s=1
ωš = 1, and n is the

balancing coefficient.
Now, about the parameter γ∗, we will explore several distinct cases of the PCFHHA operator.
When γ∗ = 1, PCFHHA operator decreases to the PCFHA operator as follows:

PCFHAŵš ,ωš
(P∗1, P

∗
2, ..., P

∗
n) =

n⊕
š=1

(
ŵšP∗∗f◦(š)

)
(3.17)
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=






√

1 −
n∏̌

s=1

(
1 −

(
ĉ−∗f◦(š)

)2
)ŵš

,

√
1 −

n∏̌
s=1

(
1 −

(
ĉ+∗
f◦(š)

)2
)ŵš

 ;√
1 −

n∏̌
s=1

(
1 −

(
τ∗∗1f◦(š)

)2
)ŵš


,

([
n∏̌

s=1

(
ě−∗f◦(š)

)ŵ∗š ,
n∏̌

s=1

(
ě+∗
f◦(š)

)ŵš

]
;

n∏̌
s=1

(
τ∗∗2f◦(š)

)ŵš

)


When γ∗ = 2, PCFHHA operator reduces to the PCFEHA operator as follows:

PCFEHAŵš,ω1(P
∗
1, P

∗
2, ..., P

∗
n) (3.18)

=







√√√√ n∏̌
s=1

(
1+

(
ĉ−∗
f◦(š)

)2
)ŵš
−

n∏̌
s=1

(
1−

(
ĉ−∗
f◦(š)

)2
)ŵš

n∏̌
s=1

(
1+

(
ĉ−∗
f◦(š)

)2
)ŵš

+
n∏̌

s=1

(
1−

(
ĉ−∗
f◦(š)

)2
)ŵš
,√√√√ n∏̌

s=1

(
1+

(
ĉ+∗
f◦(š)

)2
)ŵš
−

n∏̌
s=1

(
1−

(
ĉ+∗
f◦(š)

)2
)ŵš

n∏̌
s=1

(
1+

(
ĉ+∗
f◦(š)

)2
)ŵš

+
n∏̌

s=1

(
1−

(
ĉ+∗
f◦(š)

)2
)ŵš


;

√√√√ n∏̌
s=1

(
1+

(
τ∗∗1f◦(š)

)2
)ŵš
−

n∏̌
s=1

(
1−

(
τ∗∗1f◦(š)

)2
)ŵš

n∏̌
s=1

(
1+

(
τ∗∗1f◦(š)

)2
)ŵš

+
n∏̌

s=1

(
1−

(
τ∗∗1f◦(š)

)2
)ŵš


,





√
2

n∏̌
s=1

(
ě−∗f◦(š)

)ŵš√
n∏̌

s=1

(
2−

(
ě−∗
f◦(š)

)2
)ŵš

+
n∏̌

s=1

((
ě−∗
f◦(š)

)2
)ŵš
,

√
2

n∏̌
s=1

(
ě+∗
f◦(š)

)ŵš√
n∏̌

s=1

(
2−

(
ě+∗
f◦(š)

)2
)ŵš

+
n∏̌

s=1

((
ě+∗
f◦(š)

)2
)ŵš


;

√
2

n∏̌
s=1

(
τ∗∗2σ◦(š)

)ŵš√
n∏̌

s=1

(
2−

(
τ∗∗2f◦(š)

)2
)ŵš

+
n∏̌

s=1

((
τ∗∗2f◦(š)

)2
)ŵš




4. Pythagorean cubic fuzzy Hamacher geometric aggregation operators

In this section, we discuss the Pythagorean cubic fuzzy Hamacher geometric aggregation operators,
their basic properties and related theorems.

Definition 4.1. Suppose P∗š =
(〈

[ĉ−š , ĉ
+
š ]; τ∗1š

〉
,
〈
[ě−š , ě

+
š ]; τ∗2š

〉)
(š ∈ N) be a group of PCFNs. So, we

define PCFHWG operator as follows:

PCFHWGŵ(P∗1, P
∗
2, ..., P

∗
n) =

n⊗
š=1

(P∗š)
ŵš , (4.1)

as P∗š(š ∈ N), and ŵš > 0,
n∑̌

s=1
ŵš = 1, γ∗ > 0.

We can drive the Theorem 10 based on Hamacher ⊗ operations of the mentioned PCFNs.
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Theorem 4.1. Suppose P∗š =
(〈

[ĉ−š , ĉ
+
š ]; τ∗1š

〉
,
〈
[ě−š , ě

+
š ]; τ∗2š

〉)
(š ∈ N) be a group of PCFNs. So, their

accumulated value is also a PCFN, using PCFHWG operator, and

PCFHWGŵš(P
∗
1, P

∗
2, ..., P

∗
n) =

n⊗
š=1

(
P∗š

)ŵš (4.2)

=







√
γ∗

n∏̌
s=1

(ĉ−š )ŵš√
n∏̌

s=1
1+(γ∗−1)(1−(ĉ−š )2)

ŵš
+(γ∗−1)

n∏̌
s=1

(
(ĉ−š )

2
)ŵš
,

√
γ∗

n∏̌
s=1

(ĉ+
š )ω
∗
š√

n∏̌
s=1

1+(γ∗−1)(1−(ĉ+
š )2)

ŵš
+(γ∗−1)

n∏̌
s=1

((ĉ+
š )2)ŵš


;

√
γ∗

n∏̌
s=1

(τ∗1š)
ŵš√

n∏̌
s=1

1+(γ∗−1)(1−(τ∗1š)
2)

ŵš
+(γ∗−1)

n∏̌
s=1

((τ∗1š)
2)

ŵš





√√√ n∏̌
s=1

(1+(γ∗−1)(ě−š )2)ŵš−
n∏̌

s=1
(1−(ě−š )2)ŵš

n∏̌
s=1

(1+(γ∗−1)(ě−š )2)ŵš +(γ∗−1)
n∏̌

s=1
(1−(ě−š )2)ŵš

,√√√ n∏̌
s=1

(1+(γ∗−1)(ě+
š )2)ŵš−

n∏̌
s=1

(1−(ě+
š )2)ŵš

n∏̌
s=1

(1+(γ∗−1)(ě+
š )2)ŵš +(γ∗−1)

n∏̌
s=1

((1−(ě+
š )2)ŵš


;

√√√ n∏̌
s=1

(1+(γ∗−1)(τ∗2š)
2)ŵš−

n∏̌
s=1

(1−(τ∗2š)
2)ŵš

n∏̌
s=1

(1+(γ∗−1)(τ∗2š)
2)ŵš +(γ∗−1)

n∏̌
s=1

(1−(τ∗2š)
2)ŵš




Where the corresponding vector weighting is ŵš = (ŵ1, ŵ2, ..., ŵn)T of P∗š(š ∈ N), and ŵš > 0,

n∑̌
s=1

ŵš =

1, γ∗ > 0.
There are some properties of PCFHWG which can be easily proved as follows:
Theorem 4.2. (Idempotency). If all P∗š(š ∈ N) are same, i.e., P∗š = P∗,∀š. So,

PCFHWGŵš(P
∗
1, P

∗
2, ..., P

∗
n) = P∗. (4.3)

Theorem 4.3. (Boundedness). Suppose P∗š(š ∈ N) be a group of PCFNs, and P∗−š = minš P∗š, P
∗+
š =

maxš P∗š. Then,
P∗−š ≤ PCFHWGŵš(P

∗
1, P

∗
2, ..., P

∗
n) ≤ P∗+š . (4.4)

Theorem 4.4. (Monotonicity). Suppose P∗š(š ∈ N) and P∗
′

š (š ∈ N) be two set of PCFNs, if P∗š ≤
P∗
′

š for all š. Then,

PCFHWGŵš(P
∗
1, P

∗
2, ..., P

∗
n) ≤ PCFHWGŵš(P

∗′

1 , P
∗′

2 , ..., P
∗′

n ). (4.5)

Now, about the parameter γ∗, we will explore several distinct cases of the PCFHWG operator.
When γ∗ = 1, PCFHWG operator decreases to the PCFWG operator as follows:

PCFWGŵš(P
∗
1, P

∗
2, ..., P

∗
n) =

n⊗
š=1

(P∗š)
ŵš (4.6)
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=



([
n∏̌

s=1
(ĉ−š )ŵš ,

n∏̌
s=1

(ĉ+
š )ŵš

]
;

n∏̌
s=1

(τ∗1š)
ŵš

)
,[√

1 −
n∏̌

s=1
(1 − (ě−š )2)ŵš ,

√
1 −

n∏̌
s=1

(1 − (ě+
š )2)ŵš

]
;√

1 −
n∏̌

s=1
(1 − (τ∗2š)

2)ŵš


When γ∗ = 2, PCFHWG operator reduces to the PCFEWG operator as follows:

PCFEWGŵš(P
∗
1, P

∗
2, ..., P

∗
n) (4.7)

=







√
2

n∏̌
s=1

(ĉ−š )ŵš√
n∏̌

s=1
(2−(ĉ−š )2)

ŵš
+

n∏̌
s=1

((ĉ−š )2)
ŵš
,

√
2

n∏̌
s=1

(ĉ+
š )ŵš√

n∏̌
s=1

(2−(ĉ+
š )2)

ŵš
+

n∏̌
s=1

((ĉ+
š )2)

ŵš


;

√
2

n∏̌
s=1

(τ∗1š)
ŵš√

n∏̌
s=1

(2−(τ∗1š)
2)

ŵš
+

n∏̌
s=1

((τ∗1š)
2)

ŵš


,





√√√ n∏̌
s=1

(1+(ě−š )2)ŵš−
n∏̌

s=1
(1−(ě−š )2)ŵš

n∏̌
s=1

(1+(ě−š )2)ŵš +
n∏̌

s=1
(1−(ě−š )2)ŵš

,√√√ n∏̌
s=1

(1+(ě+
š )2)ŵš−

n∏̌
s=1

(1−(ě+
š )2)ŵš

n∏̌
s=1

(1+(ě+
š )2)ŵš +

n∏̌
s=1

(1−(ě+
š )2)ŵš


;

√√√ n∏̌
s=1

(1+(τ∗2š)
2)ŵš−

n∏̌
s=1

(1−(τ∗2š)
2)ŵš

n∏̌
s=1

(1+(τ∗2š)
2)ŵš +

n∏̌
s=1

(1−(τ∗2š)
2)ŵš




Definition 4.2. Let P∗š =

(〈
[ĉ−š , ĉ

+
š ]; τ∗1š

〉
,
〈
[ě−š , ě

+
š ]; τ∗2š

〉)
(š ∈ N) be a number of PCFNs. So, we

define the PCFHOWG operator as follows:

PCFHWGŵš(P
∗
1, P

∗
2, ..., P

∗
n) =

n⊗
š=1

(
P∗f◦(š)

)ŵš
, (4.8)

where (f◦(1),f◦(2), ...,f◦(n)) is a function of (1, 2, ..., n), such that P∗f◦(š−1) ≥ P∗σ◦(š) ∀ š = 2, 3, ..., n,
and ŵ = (ŵ1, ŵ, ..., ŵn)T is the aggregation-related weight vector such that ŵš ∈ [0, 1] and ŵš >

0,
n∑̌

s=1
ŵš = 1, γ∗ > 0.

Centered on the Hamacher product operations of the described PCFNs we can develop the Theorem
14.

Theorem 4.6. Suppose P∗š =
(〈

[ĉ−š , ĉ
+
š ]; τ∗1š

〉
,
〈
[ě−š , ě

+
š ]; τ∗2š

〉)
(š ∈ N) be a group of PCFNs. Then,

their accumulated value is also a PCFN, using PCFHOWG operator, and

PCFHOWGŵš(P
∗
1, P

∗
2, ..., P

∗
n) =

n⊗
š=1

(P∗š)
ŵš (4.9)
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=







√
γ∗

n∏̌
s=1

(
ĉ−f◦(š)

)ŵš√
n∏̌

s=1
1+(γ∗−1)

(
1−

(
ĉ−
f◦(š)

)2
)ŵš

+(γ∗−1)
n∏̌

s=1

((
ĉ−
f◦(š)

)2
)ŵš
,

√
γ∗

n∏̌
s=1

(
ĉ+
f◦(š)

)ŵš√
n∏̌

s=1
1+(γ∗−1)

(
1−

(
ĉ+
f◦(š)

)2
)ŵš

+(γ∗−1)
n∏̌

s=1

((
ĉ+
f◦(š)

)2
)ŵš


;

√
γ∗

n∏̌
s=1

(
τ∗1f◦(š)

)ŵš√
n∏̌

s=1
1+(γ∗−1)

(
1−

(
τ∗1f◦(š)

)2
)ŵš

+(γ∗−1)
n∏̌

s=1

((
τ∗1f◦(š)

)2
)ŵš





√√√√ n∏̌
s=1

(
1+(γ∗−1)

(
ě−
f◦(š)

)2
)ŵš
−

n∏̌
s=1

(
1−

(
ě−
f◦(š)

)2
)ŵš

n∏̌
s=1

(
1+(γ∗−1)

(
ě−
f◦(š)

)2
)ŵš

+(γ∗−1)
n∏̌

s=1

(
1−

(
ě−
f◦(š)

)2
)ŵš
,√√√√ n∏̌

s=1

(
1+(γ∗−1)

(
ě+
f◦(š)

)2
)ŵš
−

n∏̌
s=1

(
1−

(
ě+
f◦(š)

)2
)ŵš

n∏̌
s=1

(
1+(γ∗−1)

(
ě+
f◦(š)

)2
)ŵš

+(γ∗−1)
n∏̌

s=1

(
1−

(
ě+
f◦(š)

)2
)ŵš


;

√√√√ n∏̌
s=1

(
1+(γ∗−1)

(
τ∗2f◦(š)

)2
)ŵš
−

n∏̌
s=1

(
1−

(
τ∗2f◦(š)

)2
)ŵš

n∏̌
s=1

(
1+(γ∗−1)

(
τ∗2f◦(š)

)2
)ŵš

+(γ∗−1)
n∏̌

s=1

(
1−

(
τ∗2f◦(š)

)2
)ŵš




where (f◦(1),f◦(2), ...,f◦(n)) be a mapping of (1, 2, ..., n): P∗f◦(š−1) ≥ P∗f◦(š) ∀š = 2, 3, ..., n, and ŵš =

(ŵ1, ŵ2, ..., ŵn)T is the aggregation-related vector weight: ŵš ∈ [0, 1] and ŵš > 0,
n∑̌

s=1
ŵš = 1, γ∗ > 0.

There are some properties of PCFHOWG which can be easily proved as follows:
Theorem 4.7.(Idempotency). If all P∗š(š ∈ N) are identical, i.e., P∗š = P∗ for all š. Then,

PCFHOWGŵš(P
∗
1, P

∗
2, ..., P

∗
n) = P∗. (4.10)

Theorem 4.8.(Boundedness). Suppose P∗š(š = 1, 2, ..., n) be a group of PCFNs, and P∗−š =

minš P∗š, P
∗+
š = maxš P∗š.

Then,

P∗−š ≤ PCFHOWGŵš(P
∗
1, P

∗
2, ..., P

∗
n) ≤ P∗+š . (4.11)

Theorem 4.9. (Monotonicity). Suppose P∗š(š ∈ N) and P∗
′

š (š ∈ N)) be two set of PCFNs, if
P∗š ≤ P∗

′

š for all š. Then,

PCFHOWGŵš(P
∗
1, P

∗
2, ..., P

∗
n) ≤ PCFHOWGŵš(P

∗′

1 , P
∗′

2 , ..., P
∗′

n ). (4.12)

Now, about the parameter γ∗, we will explore several distinct cases of the PCFHOWG operator.
When γ∗ = 1, PCFHOWG operator reduces to the PCFOWG operator as follows:

PCFOWGŵš(P
∗
1, P

∗
2, ..., P

∗
n) =

n⊗
š=1

(
P∗f◦(š)

)ŵš
(4.13)
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=



([
n∏̌

s=1

(
ĉ−f◦(š)

)ŵš
,

n∏̌
s=1

(
ĉ+
f◦(š)

)ŵš

]
;

n∏̌
s=1

(
τ∗1f◦(š)

)ŵš

)
,

√
1 −

n∏̌
s=1

(
1 −

(
ě−f◦(š)

)2
)ŵš

,

√
1 −

n∏̌
s=1

(
1 − (

(
ě+
f◦(š)

)2
)ŵš

 ;√
1 −

n∏̌
s=1

(
1 −

(
τ∗2f◦(š)

)2
)ŵš


When γ∗ = 2, PCFHOWG operator reduces to the PCFEOWG operator as follows:

PCFEOWGŵš(P
∗
1, P

∗
2, ..., P

∗
n) (4.14)

=







√
2

n∏̌
s=1

(
ĉ−f◦(š)

)ŵš√
n∏̌

s=1

(
2−

(
ĉ−
f◦(š)

)2
)ŵš

+
n∏̌

s=1

((
ĉ−
f◦(š)

)2
)ŵš
,

√
2

n∏̌
s=1

(
ĉ+
f◦(š)

)ŵš√
n∏̌

s=1

(
2−

(
ĉ+
f◦(š)

)2
)ŵš

+
n∏̌

s=1

((
ĉ+
f◦(š)

)2
)ŵš


;

√
2

n∏̌
s=1

(
τ∗1f◦(š)

)ŵš√
n∏̌

s=1

(
2−

(
τ∗1f◦(š)

)2
)ŵš

+
n∏̌

s=1

((
τ∗1f◦(š)

)2
)ŵš


,





√√√√ n∏̌
s=1

(
1+

(
ě−
f◦(š)

)2
)ŵš
−

n∏̌
s=1

(
1−

(
(ě−
f◦(š))

)2
)ŵš

n∏̌
s=1

(
1+

(
ě−
f◦(š)

)2
)ŵš

+
n∏̌

s=1

(
1−

(
ě−
f◦(š)

)2
)ŵš
,√√√√ n∏̌

s=1

(
1+

(
ě+
f◦(š)

)2
)ŵš
−

n∏̌
s=1

(
1−

(
ě+
f◦(š)

)2
)ŵš

n∏̌
s=1

(
1+

(
ě+
f◦(š)

)2
)ŵš

+
n∏̌

s=1

(
1−

(
ě+
f◦(š)

)2
)ŵš


;

√√√√ n∏̌
s=1

(
1+

(
τ∗2f◦(š)

)2
)ŵš
−

n∏̌
s=1

(
1−

(
τ∗2f◦(š)

)2
)ŵš

n∏̌
s=1

(
1+

(
τ∗2f◦(š)

)2
)ŵš

+
n∏̌

s=1

(
1−

(
τ∗2f◦(š)

)2
)ŵš




Definitions (4.1) and (4.2) tell us that the PCFHWG operator weighs the Pythagorean cubic fuzzy

argument itself, Whereas the PCFHOWG operator regards the ordered positions of the Pythagorean
cubic arguments rather than the arguments themselves. Hence, weights in both the PCFHWG and
PCFHOWG operators show different attributes. However, both the operators find only one of them.
To solve this disadvantage, a Pythagorean cubic Fuzzy Hamacher Hybrid Average PCFHHG operator
will be suggested in the following.

Definition 4.3. A Pythagorean cubic fuzzy Hamacher hybrid geometric PCFHHG operator is
defined as follow:

PCFHHGŵš ,ωš (P∗1, P
∗
2, ..., P

∗
n) =

n⊗
š=1

(
P∗∗f◦(š)

)ŵš
, (4.15)

where the corresponding weighting vector is ŵš = (ŵ1, ŵ2, ..., ŵn)T , with ŵš ∈ [0, 1],
n∑̌

s=1
ŵš = 1,

and P∗∗f◦(š) is the šth biggest component of the Pythagorean fuzzy argument P∗∗š (P∗∗š = (P∗š)
nωš , (š =

1, 2, ..., n), with ω∗š ∈ [0, 1],
n∑̌

s=1
ωš = 1, and n is the balancing coefficient. Particularly, if ŵš =
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(1/n, 1/n, ..., 1/n)T , then PCFHHG is decreased to the Pythagorean Cubic fuzzy Hamacher weighted
averaging (PCFHG) operator; if ŵ = (1/n, 1/n, ..., 1/n) then, PCFHHG is decreased to the Pythagorean
Cubic fuzzy Hamacher ordered weighted averaging (PCFHOWG) operator.

We can drive Theorem (4.10) based on the Hamacher ⊗ operations of the previously mentioned
PCFNs.

Theorem 4.10. Suppose P∗š =
(〈

[ĉ−š , ĉ
+
š ]; τ∗1š

〉
,
〈
[ě−š , ě

+
š ]; τ∗2š

〉)
(š ∈ N) be a group of PCFNs. So their

accumulated value is also a PCFN, using PCFHHG operator, and

PCFHHGŵš,ωš(P
∗
1, P

∗
2, ..., P

∗
n) =

n⊗
š=1

(
P∗∗f◦(š)

)ŵš
(4.16)

=







√
γ∗

n∏̌
s=1

(
ĉ−∗f◦(š)

)ŵš√
n∏̌

s=1
1+(γ∗−1)

(
1−

(
ĉ−∗
f◦(š)

)2
)ŵš

+(γ∗−1)
n∏̌

s=1

((
ĉ−∗
f◦(š)

)2
)ŵš
,

√
γ∗

n∏̌
s=1

(
ĉ+∗
f◦(š)

)ŵš√
n∏̌

s=1
1+(γ∗−1)

(
1−

(
ĉ+∗
f◦(š)

)2
)ŵš

+(γ∗−1)
n∏̌

s=1

((
ĉ+∗
f◦(š)

)2
)ŵš


;

√
γ∗

n∏̌
s=1

(
τ∗∗1f◦(š)

)ŵš√
n∏̌

s=1
1+(γ∗−1)

(
1−

(
τ∗∗1f◦(š)

)2
)ŵš

+(γ∗−1)
n∏̌

s=1

((
τ∗∗1f◦(š)

)2
)ŵš





√√√√ n∏̌
s=1

(
1+(γ∗−1)

(
ě−∗
f◦(š)

)2
)ŵš
−

n∏̌
s=1

(
1−(

(
ě−∗
f◦(š)

)2
)ŵš

n∏̌
s=1

(
1+(γ∗−1)

(
ě−∗
f◦(š)

)2
)ŵš

+(γ∗−1)
n∏̌

s=1

(
1−

(
ě−∗
f◦(š)

)2
)ŵš
,√√√√ n∏̌

s=1

(
(1+(γ∗−1)

(
ě+∗
f◦(š)

)2
)ŵš
−

n∏̌
s=1

(
1−

(
(ě+∗
f◦(š)

)2
)ŵš

n∏̌
s=1

(
1+(γ∗−1)

(
ě+∗
f◦(š)

)2
)ŵš

+(γ∗−1)
n∏̌

s=1

(
1−

(
ě+∗
f◦(š)

)2
)ŵš


;

√√√√ n∏̌
s=1

(
1+(γ∗−1)

(
τ∗∗2f◦(š)

)2
)ŵš
−

n∏̌
s=1

(
1−

(
τ∗∗2f◦(š)

)2
)ŵš

n∏̌
s=1

(
1+(γ∗−1)

(
τ∗∗2f◦(š)

)2
)ŵš

+(γ∗−1)
n∏̌

s=1

(
1−

(
τ∗∗2f◦(š)

)2
)ŵš




Where the corresponding weighting vector is ŵš = (ŵ1, ŵ2, ..., ŵn)T , with ŵš ∈ [0, 1],

n∑̌
s=1

ŵš = 1,

and P∗∗f◦(š) is the kth biggest component of the PF argument P∗∗š (P∗∗š = (P∗š)
nωš , (š = 1, 2, ..., n), with

ωš ∈ [0, 1],
n∑̌

s=1
ωš = 1, and n is the balancing coefficient.

When γ∗ = 1, PCFHHG operator decreases to the PCFHG operator as follows:

PCFHGŵš ,ωš
(P∗1, P

∗
2, ..., P

∗
n) =

n⊗
š=1

(
P∗∗f◦(š)

)ŵš
(4.17)

=



([
n∏̌

s=1

(
ĉ−∗f◦(š)

)ŵš
,

n∏̌
s=1

(
ĉ+∗
f◦(š)

)ŵš

]
;

n∏̌
s=1

(
τ∗∗1f◦(š)

)ŵš

)
,

√
1 −

n∏̌
s=1

(
1 −

(
ě−∗f◦(š)

)2
)ŵš

,

√
1 −

n∏̌
s=1

(
1 −

(
ě+∗
f◦(š)

)2
)ŵš

 ;√
1 −

n∏̌
s=1

(
1 −

(
τ∗∗2f◦(š)

)2
)ŵš


AIMS Mathematics Volume 7, Issue 3, 4735–4766.



4755

When γ∗ = 2, PCFHHG operator decreases to the PCFEHG operator as follows:

PCFEHGŵš(P
∗
1, P

∗
2, ..., P

∗
n) (4.18)

=







√
2

n∏̌
s=1

(
ĉ−∗f◦(š)

)ŵš√
n∏̌

s=1

(
2−

(
ĉ−∗
f◦(š)

)2
)ŵš

+
n∏̌

s=1

((
ĉ−∗
f◦(š)

)2
)ŵš
,

√
2

n∏̌
s=1

(
ĉ+∗
f◦(š)

)ŵš√
n∏̌

s=1

(
2−

(
ĉ+∗
f◦(š)

)2
)ŵš

+
n∏̌

s=1

((
ĉ+∗
f◦(š)

)2
)ŵš


;

√
2

n∏̌
s=1

(
τ∗∗1f◦(š)

)ŵš√
n∏̌

s=1

(
2−

(
(τ∗∗1f◦(š)

)2
)ŵš

+
n∏̌

s=1

((
τ∗∗1f◦(š)

)2
)ŵš


,





√√√√ n∏̌
s=1

(
1+

(
ě−∗
f◦(š)

)2
)ŵš
−

n∏̌
s=1

(
1−

(
ě−∗
f◦(š)

)2
)ŵš

n∏̌
s=1

(
1+

(
ě−∗
f◦(š)

)2
)ŵš

+
n∏̌

s=1

(
1−

(
ě−∗
f◦(š)

)2
)ŵš
,√√√√ n∏̌

s=1

(
1+

(
ě+∗
f◦(š)

)2
)ŵš
−

n∏̌
s=1

(
1−

(
ě+∗
f◦(š)

)2
)ŵš

n∏̌
s=1

(
1+

(
ě+∗
f◦(š)

)2
)ŵš

+
n∏̌

s=1

(
1−

(
ě+∗
f◦(š)

)2
)ŵš


;

√√√√ n∏̌
s=1

(
1+

(
τ∗∗2f◦(š)

)2
)ŵš
−

n∏̌
s=1

(
1−

(
τ∗∗2f◦(š)

)2
)ŵš

n∏̌
s=1

(
1+

(
τ∗∗2f◦(š)

)2
)ŵš

+
n∏̌

s=1

(
1−

(
τ∗∗2f◦(š)

)2
)ŵš




5. Model for MCGDM with Pythagorean cubic Hamacher fuzzy information

MCGDM includes multiple DM in setting and rating goals. Alternatives available regarding
multiple, often conflicting criteria [41, 35, 37, 54, 55]. A variety of tasks typically include evaluating
and choosing appropriate green supply chain management (GSCM) strategies within an enterprise.
First, it is important to identify all the alternatives and the assessment criteria. The feasibility of
the alternatives to the GSCM procedure and the weight of the appraisal criterion must be calculated.
At last, for the calculation of the overall value of the performance index for each alternative, the
alternative score and the weight of the parameters must be considered aggregated. In human decision
making uncertainty is always present. In order to model the uncertainty better, Pythagorean cubic fuzzy
numbers are used to represent DM’s assessments. This is because (a) the suitability of Pythagorean
cubic fuzzy numbers to resolve ambiguity in DM, and (b) the flexibility of particular evaluations using
membership and non-member status. The proposed model begins by assessing the success ranking for
each GSCM practise alternative Az(z = 1, 2, ..., n) for each Cs(s = 1, 2, ..., n) parameter.

The method set out above for the proposed model can be summarized as given below;

Step 1. Construct Pythagorean cubic fuzzy decision matrix.

R =
(〈

[č−i j, č
+
i j]; τ

∗
i j

〉
,
〈
[ě−i j, ě

+
i j]; τ

∗
i j

〉)
(i = 1, 2, ...,m; j = 1, 2, ..., n).

Normalize the aggregated matrix R to R/. The criteria are divided as benefit criteria and cost
criteria. If all the criteria are of the same type, then normalization is not required. Where as cost
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type criteria can be converted to benefit criteria by the below normalization formula, if R has both
benefit criteria and cost criteria.

R/ =


(〈

[č−i j, č
+
i j]; τ

∗
i j

〉
,
〈
[ě−i j, ě

+
i j]; τ

∗
i j

〉)
, for benefit type(〈

[ě−i j, ě
+
i j]; τ

∗
i j

〉
,
〈
[č−i j, č

+
i j]; τ

∗
i j

〉)
, for cost type

,

R/ is the complement of R. Thus, we get the normalized PCFSs decision matrix.

Step 2. The parameters weight ŵ can be modified as follows to promote the decision-making process
as given below;

ŵš = (ŵ1, ŵ2, ..., ŵn)T , ŵš > 0,
n∑

š=1

ŵš = 1, γ∗ > 0. (5.1)

Step 3. Utilize the proposed aggregation operators to calculate the Pythagorean cubic fuzzy values
for the alternatives A1i(i = 1, 2, ..., n). i.e., the proposed operators to stem the collective overall
preference values of the alternatives A∗i , where ŵ = (ŵ1, ŵ2, ..., ŵn)T is the criteria weight vector.

Step 4. The performance index value for every alternative can be calculated in relation to all
parameters using the score function.

S (P∗š) =
1
2

{(
1 + (

ĉ−š + ĉ+
š − τ

∗
1š

3

)
−

(
ě−š + ě+

š − τ
∗
2š

3

)}
. (5.2)

Step 5. Rank the alternatives in decreased sequence of their index values for performance.

6. Case study

This segment provides an example of how to analyse the existing GSCM practises to ensure that
an organization can choose the best GSCM practises. Owing to the extreme competitiveness and
the networked nature of the industry, a renowned Taiwanese organization is contemplating a Green
Supply Chain plan to improve its action [10]. The company is one of Taiwan’s biggest producers of
professional printed circuit boards. It devises the next generation of development to improve their
competitiveness. Because of the rising market demand, the business has to produce green products to
satisfy the growing customer situation. This contributes to finding the implementation of a successful
GSCM protocol by the organization.

The assessment of the GSCM activities identified as E1, E2, E3 includes four top managers from
four different divisions within the organization. A number of meetings were held. This results in
four parameters for determining the four GSCM operations within an organization. Such requirements
include the Green Design (C1), Green Manufacturing (C2) and Green Manufacturing Investments (C3),
and green marketing (C4).

Green Design (C1) is linked to an organization’s ability to decrease its negative environmental
impact of product designs [30]. This is also calculated by the organization’s ability to eliminate the use
of toxic chemicals, follow the ideals of susceptibility, improve technological capacities and the energy
usage in the organization’s operations. Green Manufacturing (C2) considers enhancing the production
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processes to minimize toxic matter generation [58]. To manufacture goods with less waste and less
emissions, a company needs to. This is also calculated by how many resources are used, how green the
energy is, and how hazardous waste is reduced [3, 15]. Green Purchasing (C3) deals with the process
of obtaining and consuming goods and facilities which are less environmentally destructive than their
substitutes [49]. In this respect, many other aspects, including the green picture, green proficiency
and green process management, are generally taken into account [51, 5]. Green Marketing (C4) aims
to promote the green qualities of safe products and services for the surrounding [16]. This is also
assessed by the implementation of advertisement ICTs, and the provision of training and information
on the benefits of green services and goods.

Step 1. By choosing the alternatives and criteria given above, the output score for all alternative
options can be calculated from A1, A2, A3 and A4 as shown in Tables 1–3 for each criterion.

Table 1. Performance assessment of GSCM Practices.

C1 C2 C3 C4

A1

(
〈[.7, .8] ; .7〉 ,
〈[.4, .5] ; .5〉

) (
〈[.7, .8] ; .5〉 ,
〈[.4, .5] ; .6〉

) (
〈[.6, .8] ; .7〉 ,
〈[.5, .7] ; .4〉

) (
〈[.4, .5] ; .7〉 ,
〈[.7, .8] ; .5〉

)
A2

(
〈[.7, .8] ; .6〉 ,
〈[.4, .5] ; .5〉

) (
〈[.6, .7] ; .7〉 ,
〈[.5, .6] ; .6〉

) (
〈[.7, .5] ; .7〉 ,
〈[.5, .7] ; .6〉

) (
〈[.7, .8] ; .5〉 ,
〈[.4, .5] ; .6〉

)
A3

(
〈[.6, .7] ; .7〉 ,
〈[.5, .6] ; .4〉

) (
〈[.7, .8] ; .6〉 ,
〈[.4, .5] ; .7〉

) (
〈[.4, .5] ; .5〉 ,
〈[.7, .6] ; .7〉

) (
〈[.5, .6] ; .8〉 ,
〈[.6, .7] ; .5〉

)
A4

(
〈[.6, .1] ; .2〉 ,
〈[.4, .5] ; .1〉

) (
〈[.4, .5] ; .4〉 ,
〈[.7, .8] ; .7〉

) (
〈[.6, .2] ; .1〉 ,
〈[.5, .6] ; .3〉

) (
〈[.6, .7] ; .1〉 ,
〈[.8, .6] ; .4〉

)

Table 2. Performance assessment of GSCM Practices.

C1 C2 C3 C4

A1

(
〈[.7, .8] ; .4〉 ,
〈[.4, .5] , .7〉

) (
〈[.6, .7] ; .5〉 ,
〈[.5, .6] ; .7〉

) (
〈[.6, .7] ; .8〉 ,
〈[.5, .6] ; .4〉

) (
〈[.6, .7] ; .7〉 ,
〈[.4, .6] ; .4〉

)
A2

(
〈[.6, .7] ; .7〉 ,
〈[.7, .8] ; .5〉

) (
〈[.7, .8] ; .7〉 ,
〈[.7, .8] ; .9〉

) (
〈[.5, .6] ; .6〉 ,
〈[.4, .5] ; .7〉

) (
〈[.4, .5] ; .5〉 ,
〈[.4, .5] ; .3〉

)
A3

(
〈[.6, .7] ; .7〉 ,
〈[.5, .6] ; .6〉

) (
〈[.7, .8] ; .5〉 ,
〈[.4, .5] ; .7〉

) (
〈[.7, .8] ; .7〉 ,
〈[.4, .5] ; .5〉

) (
〈[.7, .8] ; .9〉 ,
〈[.4, .5] ; .3〉

)
A4

(
〈[.5, .6] ; .6〉 ,
〈[.6, .7] ; .5〉

) (
〈[.6, .7] ; .5〉 ,
〈[.5, .6] ; .8〉

) (
〈[.7, .3] ; .4〉 ,
〈[.4, .5] ; .7〉

) (
〈[.7, .8] ; .5〉 ,
〈[.4, .6] ; .7〉

)
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Table 3. Performance assessment of GSCM Practices.

C1 C2 C3 C4

A1

(
〈[.7, .8] ; .6〉 ,
〈[.4, .6] ; .7〉

) (
〈[.6, .8] ; .6〉 ,
〈[.5, .6] ; .8〉

) (
〈[.6, .8] ; .6〉 ,
〈[.5, .6] ; .8〉

) (
〈[.7, .4] ; .6〉 ,
〈[.8, .7] ; .9〉

)
A2

(
〈[.5, .7] ; .5〉 ,
〈[.4, .5] ; .6〉

) (
〈[.4, .5] ; .6〉 ,
〈[.8, .4] ; .6〉

) (
〈[.6, .8] ; .6〉 ,
〈[.5, .6] ; .8〉

) (
〈[.3, .4] ; .8〉 ,
〈[.8, .9] ; .6〉

)
A3

(
〈[.6, .8] ; .2〉 ,
〈[.5, .6] ; .9〉

) (
〈[.6, .7] ; .6〉 ,
〈[.5, .6] ; .7〉

) (
〈[.8, .5] ; .6〉 ,
〈[.5, .3] ; .4〉

) (
〈[.5, .6] ; .8〉 ,
〈[.4, .7] ; .6〉

)
A4

(
〈[.6, .8] ; .6〉 ,
〈[.5, .6] ; .7〉

) (
〈[.5, .7] ; .7〉 ,
〈[.4, .6] ; .6〉

) (
〈[.6, .1] ; .2〉 ,
〈[.5, .6] ; .4〉

) (
〈[.4, .5] ; .8〉 ,
〈[.7, .8] ; .6〉

)

Step 2. Centered on this data the parameters of the weight vector can be determined using Equation
(5.1). The corresponding parameters was calculated as ŵ = (0.25, 0.35, 0.4)T .

Step 3, 4. Using the proposed aggregation operators and Eq (5.2), each alternative’s output index
value can be calculated in regard of all criteria and their respective ranking. It indicates that in Table 4,
with the highest performance index of 0.8566, alternative A4 has the highest performance value.

Table 4. The ranking of GCSM practices Alternatives.

Alternative Performance index value Ranking
A1 −0.02774 4
A2 0.79762 2
A3 0.76802 3
A4 0.8566 1

7. Comparative analysis

7.1. Validity test

In this subsection, first we take a worse alternative of each expert, as given in Table 5.

Table 5. Rating values of the worse alternative.

C1 C2 C3 C4

E1

(
〈[.6, .6] ; .7〉 ,
〈[.7, .8] ; .5〉

) (
〈[.7, .8] ; .5〉 ,
〈[.4, .5] ; .7〉

) (
〈[.6, .7] ; .8〉 ,
〈[.5, .6] ; .4〉

) (
〈[.7, .8] ; .7〉 ,
〈[.4, .5] ; .5〉

)
E2

(
〈[.7, .8] ; .4〉 ,
〈[.4, .5] ; .7〉

) (
〈[.6, .7] ; .7〉 ,
〈[.4, .6] ; .4〉

) (
〈[.5, .6] ; .6〉 ,
〈[.4, .5] ; .7〉

) (
〈[.7, .8] ; .9〉 ,
〈[.4, .5] ; .3〉

)
E3

(
〈[.4, .7] ; .5〉 ,
〈[.5, .6] ; .6〉

) (
〈[.6, .7] ; .7〉 ,
〈[.5, .6] ; .6〉

) (
〈[.6, .7] ; .5〉 ,
〈[.4, .5] ; .3〉

) (
〈[.7, .8] ; .7〉 ,
〈[.4, .5] ; .9〉

)
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Since, different MCGDM approaches produce different results (ranking) when applied to the same
DM problem, the results are uncertain. In order to analyze the reliability and validity of the MCGDM
methods, Wang & Triantaphyllou [52] provided the following test conditions:

Test criteria 1: The MCGDM method is successful if the best alternative remains unchanged
and the nonoptimal alternative is replaced with a worse alternative without increasing the relative
importance of each decision-criteria.

Test criteria 2: An efficient MCGDM approach should obey transitive properties.

Test criteria 3: When decomposing the MCGDM problem into subproblems and applying the
proposed MCGDM approach to these subproblems for ranking alternatives, the MCGDM approach is
successful. The overall ranking of the alternatives is identical to the overall ranking of the problem.

The following criteria are used to determine the validity of the proposed solution.

7.1.1. Validity check with Criteria 1

In order to assess the validity of the existing method with Criteria 1, the non-optimal alternative A4

is replaced by the worse alternative A/
4 in the original decision matrix for each expert, and the rating

values are given in Table 6.

Now, using the proposed aggregation operators, we get the computed the scores of the alternatives
are S (A1) = 0.716, S (A2) = 0.837, S (A3) = 0.742, and S (A4) = 0.873. As a result, the final ranking of
the alternatives indicates that A4 remains the best option and that the approach established meets the
test criteria 1.

7.1.2. Validity check with criteria 2 and 3

We decomposed the original decision-making problem into sub-DM problems, which included
these alternatives, (A1, A2, A3) , (A2, A3, A4) and (A1, A3, A4) in order to evaluate the specified MCGDM
method with Criteria 2 and 3. When we use the MCGDM method to solve these subproblems, we get
the following ranking of alternatives: A2 > A3 > A1, A4 > A2 > A3 and A4 > A3 > A1,. We get the final
ranking order as A4 > A2 > A3 > A1 by adding the ranking of alternatives to these small problems. The
resulting ranking is identical to that of a non-decomposed problem, revealing a transitive property. As
a result, the specified MCGDM method is compatible with Criteria 2 and 3.

7.2. Comparison with existing methods

A comparative study is conducted to demonstrate the new model’s validity. Within this portion, we
compare the output of the defined MCGDM method with some of the current methods of Pythagorean
fuzzy set; like as [6, 43, 26]. On the basis of this environment, we applied the current methods, and
their results are given in Table 6.
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Table 6. A Descriptive research review

Method Ranking
IFGA [6] A4 > A3 > A1 > A2

PFHWA [43] A4 > A2 > A3 > A1

PFHOWA [43] A4 > A3 > A2 > A1

PCFWA [26] A4 > A3 > A2 > A1

PCFOWA [26] A4 > A3 > A2 > A1

PCFHWA (proposed) A4 > A2 > A3 > A1

PCFHOWA (proposed) A4 > A2 > A3 > A1

From the analysis of Table 6, we see that the existing approaches have the deficiency of data and
these approaches are not suitable for solving and ranking the developed numerical example. Therefore,
the proposed methods are more effective and capable than the existing techniques.

7.3. Verification

The TOPSIS method is used to verify the results provided by the proposed aggregation operators in
this section.

TOPSIS method

We use the TOPSIS method to check the numerical problem from Section 6 in this section.
To solve the problem in Section 6, we use the TOPSIS method, which includes the following steps:
Step 1. Normalize Tables 1–3 decision matrix. Since, all of the measure values are of the same

type, i.e., benefit type, there is no need for normalization.
Step 2. Identifying the PIS Ξ+and NIS Ξ−, which are defined as,

Ξ+ = (ζ+
1 , ..., ζ

+
4 ),Ξ− = (ζ−1 , ..., ζ

−
4 ),

where
ζ+

j = max{ζi j/1 ≤ i ≤ 4} and ζ−j = min{ζi j/1 ≤ i ≤ 4},

which are calculated by using the score function;

S (P∗š) =
1
2

{(
1 + (

ĉ−š + ĉ+
š − τ

∗
1š

3

)
−

(
ě−š + ě+

š − τ
∗
2š

3

)}
Step 3. Calculate the distance for each alternative to Ξ+ and Ξ− using the proposed distance

measures with criteria weight vector ŵ = (0.25, 0.35, 0.4)T . i.e.,

d+
i =

√
Σm

j=1w j(ζ+
j − ζi j)2, and d−i =

√
Σm

j=1w j(ζ−j − ζi j)2.

Step 4. Calculate the closeness coefficients to the ideal solution by each alternative by applying the
Equation,

Θi = d−i /(d
−
i + d+

i )(i = 1, ..., 4),
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the overall closeness coefficients are obtained.
Step 5. Give ranking to the alternatives based on score value and select the best one. We obtain the

ranking result as;
A4 > A3 > A1 > A2

All the calculation results and the alternative ranking are given in Table 7. According to the calculations
of overall coefficients the best one with largest closeness coefficient is A4.

Hence, by the TOPSIS method it is again verified that A4 is the best alternative, as given in Table 7.

Table 7. Obtained values and their ranking.

Distance between Distance between Closeness
Alternatives alternative to alternative to coefficients of Ranking

PIS (d+
i ) NIS (d−i ) the alternative (Θi)

A1 0.103 0.217 0.245 3
A2 0.171 0.193 0.284 4
A3 0.183 0.221 0.212 2
A4 0.265 0.223 0.162 1

8. Conclusions

It’s not an easy task to evaluate the efficiency of existing GSCM practices in society. This is
because such an appraisal requires multiple decision-makers and various parameters with complexity
in community DM processes. In this paper, we introduced a multi-criteria community DM model
for assessing effectively the performance of GSCM activities within an organization. The complexity
of the evaluation process is appropriately modeled by the use of PCFNs. Also, we have developed
some Hamacher averaging and geometric aggregation operators to aggregate Pythagorean cubic fuzzy
information. The main features of these proposed operators are evaluated. Then, we used these
operators to develop several methods to solve the PCF multiple attribute decision-making issues.
Finally, a practical example is established to confirm the method established and to prove its practicality
and effectiveness. Furthermore, the comparison of the proposed and current aggregation was given and
discussed how our proposed method is more powerful than other current aggregation operators. The
example described displays that this model established can effectively and efficiently solve the multi-
criteria DM problem. This will help organizations understand more about the value of GSCM activities
to boost their susceptibility management growth performance. One relates to the importance of the
decision result on the decision-maker’s inputs. One more is the need to evaluate direct and indirect
benefits and costs together when determining the existing GSCM practices. Further analysis should
be executed to help address these two problems through the correct use of corporate evidence and
knowledge in management and improvement designing current optimization frameworks to overcome
the performance appraisal problem.

In the future, the application of our proposed model can be applied in DM using Dombi t-norm and
t-conorm operation, Bonferroni mean operator, Maclaurin symmetric mean operator, q-rung orthopair
fuzzy set, Spherical fuzzy set, and T-Spherical fuzzy set.
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