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Abstract: Time delay in the resource limitation of the prey is incorporated into a diffusive predator-
prey model with generalist predator. By analyzing the eigenvalue spectrum, time delay inducing
instability and Hopf bifurcation are investigated. Some conditions for determining the bifurcation
direction and the stability of the bifurcating periodic solution are obtained by utilizing the normal form
method and center manifold reduction for partial functional differential equation. The results suggest
that time delay can destabilize the stability of coexisting equilibrium and induce bifurcating periodic
solution when it increases through a certain threshold.
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1. Introduction

Predator-prey model mainly describes the interaction between two populations with predation
relationship. Since predator-prey relationship exists widely in nature, many scholars have studied the
predator-prey models [1-4]. Considering the influence of different factors on the population, a variety
of predator-prey models have been established [5, 6]. Among these predator-prey models,
Leslie-Gower predator-prey model is one of the classical model [7], with the following form

u
u(t) = riu(l — —) — o(u, v)v,
K (1.1)

v(t) = rpv(l — @).
u

u(t) and v(r) stand for prey and predator’s densities. r; and K; stand for the growth rate and the carrying
capacity of the prey. ¢(u,v) is the functional response. The predator also follows the logistic growth
law, where r, and u/g stand for the growth rate of predator and the carrying capacity of the predator.
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Another classical predator-prey model is Gauss predator-prey model [8], with the form

V(f) = N
iu(t) = riu(l Kl) e(u,v)v, (1.2)

v(t) = cp(u, v)v — dv.

c and d are the conversion rate and death rate.

In predator-prey model, predators are mainly divided into specialist predators and generalist
predators. Specialist predators feed almost exclusively on one specie of prey and require more
specific environmental conditions. But, the generalist predators feed on many types of species, and
can change its diet to another species when its a focal prey population begin to run short [9-11].
In [10], the authors studied a diffusive predator-prey model with generalist predator. They aimed to
formalize the conditions in which spatial biological control can be achieved by generalists [10].
In [11], the authors studied the spatiotemporal dynamics and bifurcations of a diffusive predator-prey
model with generalist predator and the combined the effect of linear prey harvesting and constant
proportion of prey refuge. According to [10], the predator-prey model with generalist predators is of
the following form

i) = rudl = ) = gl
v (1.3)
v(t) = rpv(l — =) + co(u, v)v.
K

K, stands for the carrying capacity of the predator in absence of focal prey.

Predator-prey models with different functional responses can show different dynamic behaviors.
In [10], the authors used the Type II functional response to reflect the effect of predator to the prey.
Holling Type II functional response is a kind of prey-dependent functional response.
Predator-dependent response function is also important. Such as Beddington-DeAngelis type [12],

with the following form
Bu

C+Au+Ay ’
where B, C, A| and A, stand for the maximum predator attack rate, the half-saturation constant, the
effect of handling time and the magnitude of interference among predators. Some works all suggest that
Beddington-DeAngelis functional response can enrich the dynamics of predator-prey model [13—15].
Moreover, time delay exists widely in the population model. The delayed predator-prey model
has attracted wide attention from scholars [16—18]. These results show that time delay can enrich the
dynamics of predator-prey model. Considering the generalist predator and discrete time delay 7 in the
resource limitation of the prey, we propose the following predator-prey model.

o(u,v) =

_ B

Ou(x,1) _ diru+ 1 - ut -1\ uv ;

ot K] C+Aust Ay
dv(x, 1) . Lo

=d,Av + l-— |+ =, ©,1>0

- LAY rzv( Kz) C+Au+ Ay X € > (1.4)
0

u(x,1) _ ov(x,1) _ 0, x€dQ,t>0

9y ov
u(x,t) = u(x,1) > 0,v(x,0) = vi(x,1) >0, x€Q,t€[-,0].
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All the parameters in the model are positive. u(x,?) and v(x,?) stand for the densities of prey and
predator at the location x and time ¢, respectively. E is conversion rate of prey. The boundary condition
is Neumann boundary condition. The aim of this article is to study the dynamics of model (1.4) from
the point of view of stability and bifurcation. Whether time delay can induce some new dynamic
phenomena?

The organization of this paper is as follows. In Sec. 2, the existence of coexisting equilibrium of the
model is given. In Sec. 3, stability of equilibria and the existence of Hopf bifurcation is considered.
In Sec. 4, the property of Hopf bifurcation is analyzed. In Sec. 5, some numerical simulations are
carried. In Sec. 6, a brief conclusion is given.

2. Equilibrium analysis

Denote it = u/K;, v = u/K, and 7 = tr,, system (1.4) is changed to (after dropping tildes):

ou(x, 1) av
= diA lew(t—7) = ——
ot difu+ ru u(t=7) 1+bu+cvl’
ov(x, t) euy
= doA 1- _ Q, 1> 0,
ot Avavl =t T > @.1)
ou(x,t) Ov(x,t
ubeh) _ VD o e a0, >0,

ov ov
ulx,t) =uj(x,t) 2 0,v(x,t) =vi(x,0) 20, xe Q,te[-1,0],

where

D D BK. AK A K EBK
di=— =22 r= =222 p =20 o202, BP0 2.2)
ry %) b C C C Cl"z
We assume Q = (0, Ir), where [ > 0.
Solving the following equations,
av
l-u——| =0,
i “ 1+ bu+cv
ey (2.3)
vl-v)+ —— =0
1+ bu+cv
We can obtained that (0,0), (1,0) and (0, 1) are three boundary equilibria. And the coexisting
equilibrium (u.,v,) satisfying v, = % Obviously, v. > 0 implies max{0, <*} < u, < 1. In

addition, form (2.3), we can easily obtained that

eu, —eu’ + av, —av> = 0.

Submitting v, = {23 nto it yields A(u,) = 0, where

a—Cc+cCuy

h(u) = (ab2 + cze) u’ +ﬁ2u2 +piu—a(l —a+oc),
Bi = a—2ab + a*b + ac — abc + a*e — 2ace + c’e, (2.4)

Br =2ab — ab® + abc + 2ace — 2c%e.

Theorem 2.1. If ¢ > a — 1, system (2.1) has at least one coexisting equilibrium (u.., v.), where u, is

— L c—a _ (I—u)(1+buy)
the root of W(u.) = 0 in interval (max{0, <*}, 1) and v, = eyl
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Proof. By direct calculation, we have i(1) = a*(1 + b +¢e) > 0, h(<*) = —az(‘lb;# < 0 and
h(0) = —a(1 —a +c¢). If ¢ > a, then <=* = max{0, <*} and A(=*) < 0. Then h(u.) = 0 has at least one
root in interval (<4, 1). If a—1 < ¢ < a, then 0 = max{0, <*} and 4(0) < 0. Then A(u.) = O has at least
one root in interval (0, 1). This completes the proof. O

3. Stability analysis

Linearize system (2.1) at (u., v.)

ou
I u(t) u(t) u(t— 1)
(%) dA(v(t))+Ll(v(t) + L, o 3.1
where
[ ra; -rap | -ru. O
L“( by b, ) Lz‘( 0 o)’
and
abu.v, u.a(l + bu,)
= > O, = O,
G b+ v )? U bu vy a2
evi.(1 +c¢v,) ceu, )
b = >0, by=v. |1+ > 0.
! (1 + bu, + cv,)? 2=V ( (1 + bu, + cv*)z)
The characteristic equation of (3.1) is
det(Al — M, — L, — Lye™™) =0, (3.3)
where I = diag{1, 1} and M, = —n?/Pdiag{d,, d,}, n € N,. Then, we have
A+ A, + B, + (C, + Aru)e™™ =0, neN, (3.4)
where
)
An = (dl + dz)l—z —ra; + bz,
n* n?
B, = d1d2l—4 — (aydor - dlbz)l—2 + r(axby — a1 by),
n?
C, = dzm*l_Z + byru,.
3.1. The non-delay model
When 7 = 0, the characteristic Eq (2.1) is
A —tr, A+ Ay(r) = 0, n €N, (3.5)
where
{ try = 1@y = 1) = by = 5 (dy + db), 3.6)
2 4 .
A, = rlaby — by(a) — w.)] — % [dar(ar — w.) — bydi] + didy 7,
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and the eigenvalues are given by

try £ \Jtrz — 4A,

AN (r) = > , neN,. (3.7)
We make the following hypothesis
H c > a,
(Hy) (38)

(H,) a-1<c<a, and ¢ > a(l - 1/b).

Proposition 3.1. If hypothesis (Hy) (or (Hy)) holds, then a; — u,. < 0.

—a‘é’iﬁ(}')‘;z), where ¢(u) = bcu? + 2b(a — c)u + a — ab + bc.

By direct calculation, we have ¢(1) = a(1 + b) > 0, ¢(<*) = a(l +b— %)’ #(0) = a—ab + bc and
(j)'(%) = 0. From the proof of Theorem 2.1, we can obtain that u, € (<*, 1) under hypothesis (Hy).
And ¢(=*) > 0, implying that ¢(u.) > 0. Hence a; — u. < 0 under hypothesis (Hy). Similarly, we can
verify that a; — u. < 0 under hypothesis (H,). O

Proof. 1t is easy to obtain that a; — u, =

Theorem 3.1. Suppose (Hy) (or (H,)) holds. Then the equilibrium E.(u.,v.) is locally
asymptotically stable.

Proof. By the Proposition 3.1, we know that a; — u. < 0 under hypothesis (Hy) (or (Hy)). Then we
have tr, < 0 and A, > 0 for n € N,. This implies that all eigenvalues of (3.5) have negative real parts.
Then the equilibrium E, (u., v.) is locally asymptotically stable. O

3.2. The delay model

Now, we study the stability of E.(u.,v.) when 7 > 0. Let iw (w > 0) be a solution of Eq (3.4), we
have
—w’* + iwA, + B, + (C, + iwru,)(coswt — isinwt) = 0.

Then we have

—w? + B, + C,coswt + wru, sinwt = 0,
A,w — C,sinwt + wru.coswt = 0.

This leads to
w' + (A2 - 2B, - rul)w* + B: - C> = 0. (3.9)

Denote z = w?, then (3.9) can be changed into
Z+ (A2 2B, - r*ul)z+ B> - C>=0=0, (3.10)

and the roots of (3.10) are

1
© 72
Under (H,) (or (H5)), we have

[~(A2 ~ 2B, ~ Pud) £ \[(A2 ~ 2B, — P2 — 4(B - C2)].

B,+C,=A,>0.
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By direct computation,

4 2

Ai - 2B, - rzuf = (df + d%) ’;—4 —2(aydir — bzdz)rll—2 + b% - r(2a2b1 + r(uf - a%)),
n* n?

B,-C, = dldzl—4 — [(dar(a) + u,)) — byd,] 1_2 + rla;by — by(a; + u.)].

Fix parameters r, a, b, c, e, dy, d, [, define
D ={k € Ny | Eq (3.10) has positive roots with n = k.} 3.11)

Forn € D, if z* > 0, Eq (3.4) has a pair of purely imaginary roots +iw, at i, j € Nosif z7 > 0,
Eq (3.4) has a pair of purely imaginary roots +iw) att; , j € Ny, where

- 2jm
wi= A =t % (j=0,1,2,---),
Wy
20k 1 ccos (C, — ruA)(w)* — B,C,
" C2 + ru?(w;)?

(3.12)

n
n

From (3.12), we have 70F < Ti;’i (j € N). For k € D, define the smallest 7 so that the stability will

change, 7, = min{Tg’i or 72’+ | k € D}.
Lemma 3.1. Suppose (Hy) (or (Hy)) holds. If (A2—2B,—r*u?)*—4(B:—C?2) > 0, then Re(“3)| _ i+ >
0, Re(%)L:Tﬂ- <0forteDand jeN,.

Proof. Differentiating two sides of (3.4) with respect 7, we have

(dxl)_l 20+ A, +rue™ T
dr’  (C, + ru)de= A

Then

20+ A, + rue™ T] .
(Cy + Aru) e~ =T

[Re(d—ﬁ)—l]m_,;i = Re[
dr "

1
= [Xw2(2w2 +A2 - 2B, — r*u?)]

-
=17

1
= +[10? \/(A,Z, — 2B, - ru2): — A(B2 — C2)]

T=T£’i’
_ 42 2,2 da , dd .
where A = w*b5 + C,w” > 0. Therefore RC(E)L:T{;* > 0, RC(E)L:T{;‘ < 0. O

Theorem 3.2. Suppose (Hy) (or (Hy)) holds. For system (2.1), the following statements are true.

(i) E.(u.,v.) is locally asymptotically stable for all T > 0 when D = 0.

(ii) E.(u.,v.) is locally asymptotically stable for T € [0, 1.), and unstable for T € [1.,T. + €) with
some € when D + (.

(iii) System (2.1) undergoes a Hopf bifurcation at the equilibrium E.(u.,v.) when T = T{fr (ort =
), Jj €Ny, neDwhen D + 0.

Using the same process, we can obtain the following theorem about the stability of boundary
equilibria.
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Theorem 3.3. For system (2.1), the following statements are true.

(i) (0,0) is always unstable for all T > 0;

(ii) (1,0) is always unstable when T = 0;

(iii) (0, 1) is locally asymptotically stable for a > 1 + ¢ and T > 0; and unstable for a < 1 + ¢ and
72>0.

4. Properties of Hopf bifurcation
Now, we will study the property of Hopf bifurcation by the method in [19,20]. For a critical value

T{;’+ (or Ti;’_), we denote it as 7. Let ii(x, t) = u(x, 7t) —u, and ¥(x, t) = v(x, 7t) — v, then the system (2.1)
is (drop the tildes)

ou o a(v+v,)

= _T[dlAu+r(u+u*)(1 W —1)—u. 1+b(u+u*)+c(v+v*)) , (4.1)
9 ) e(u+u,)v+v,) '
% =7l Av+ (v+v)( —v—-v)+ l+b(w+u)+cOv+v)

Denote 7 = ¥ + &, and U = (u(x,1),v(x,1)’. In the phase space C; := C([-1,0],X), (4.1) can be

rewritten as
dU®1)

= #DAU(t) + L-(U,) + F(U,, ), (4.2)
where L.(¢) and F(gp, ) are
_ [ ra1$1(0) — raz$(0) — ru.g1(=1)
L= o ") @
F(¢, &) = eDAY + L:(9) + f(¢, &), (4.4)

with
f(p,8) = (T + &)(Fi(g, €), Fa(d, ),
a($(0) +v.) )

Fi(¢,8) = r(¢1(0)+u*)(1 — (=) —u. - 145 (610) + 1) + ¢ (62(0) + v.)

= ra1$1(0) + rax$»(0) + ru.¢:(=1),
e (¢1(0) + u.) (42(0) + v,)

Fa(.8) = ($200) +v.) (1 = ¢2(0) = v.) + T— b (61 0) 1) + ca0) + 1)) b141(0) + b2¢2(0),
respectively, for ¢ = (¢, )" € C,.
Consider the linear equation
% =TDAU(t) + L:(U,). 4.5)
We know that A, := {iw,T, —iw,T} are characteristic roots of
% = —%D’;—Zzz(t) + Lx(zy). (4.6)
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By Riesz representation theorem, there exists a 2 X 2 matrix function (o, 7), (-1 < o < 0), whose
elements are of bounded variation functions such that

n2 ?
D00+ L0) = [ a0k

for ¢ € C([-1,0],R?).

Choose
T o0=0,
n'(o,1)=2 0 o€ (-1,0), 4.7
—TtF o =-1,
where
2
ra; —di%  —ra -ru, O
E = ! , F = . 4.8
(b1 _bz—dz',z—zzJ (0 0) @9
Define the bilinear paring
0 oa
w9 = w00 - [ [ wte-onronpene
—1 Je=0

o 4.9)
~ w0+ 7 [ wE+ DFglee

-1
for ¢ € C([-1,0],R?), y € C([0, 1], R?). A(%) has a pair of simple purely imaginary eigenvalues +iw,7,

and they are also eigenvalues of A*.
Define p;(0) = (1,67 e ™ (o € [-1,0]), qi(r) = (1,m)e ™ (r € [0, 1]), where

_ bl _ ar
T bt d P tiw, 1 by —don? P + i,

Let ® = (O, d,) and ¥* = (¥, ¥;)” with

3

0,y = PO+ P) ( Re (¢

pi(@) = pa(o) [ Tm (e ™)
2 Re (fe"“’"%‘f) B ’

, O = - o
} 2(0) 2i Im (fe"""m)
for 8 € [-1,0], and

@) +a() _[ Re (e_iwnﬁ) con _ 01D —ga(r) [ Im (e_i“’"%r)
() g 1)

for r € [0, 1]. Then we can compute by (4.9)

i) =

D} = (Y], ®1), D; := (¥}, @2), D :=(¥5, ®1), D = (¥5, D2).

D} Dj

D; D;

Define (¥*, @) = (P*, ®;) = (
4

) and construct a new basis ¥ for P* by
¥ = (¥, =, o).
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Then (¥, ®) = [,. In addition, define f, := ,11, ,8%), where

[ cosTx > 0
’8”_( 0 )’ ﬁ”_(cosﬂx)'

[

We also define
c-fu= cl,B,ll + 62,8,21, for ¢ = (cl,cz)T e Cy,

I In
1 _ 1 _
<u,y>=— uvidx + — U Vodx
lﬂ' 0 l7T 0

foru = (u1,up), v= i, ), u,ve Xand < ¢, fy >= (< @, f§ >, <@, f7 >).
Rewrite Eq (4.1) as the following abstract form

and

du()
7 =A:U, + R(U,, &),
where
{0, 6e[-1,0),
R(U-#) = { F(U,e), 0=0.

The solution is

U, = q)( o )f;, +h(X1,XZ,8),
X2

where
X1
( ):(\P’< Utafn >),
X2
and
h(x(, xp,€) € PsCy, h(0,0,0)=0, Dh(0,0,0)=0.
Then

U, = cp( 28 )f,, + h(xy, x5, 0).

Let z = x| — ix,, and notice that p; = ®; + i®,. Then we have

=z 1
(D( ﬁl )fn:(q)l,q)z)( 1(21;2) )fn: E(p11+m)ﬁ1a
2

2

and 5 iz—3)
2+7 z—2
h(xy, x2,0) = h(T, >

,0).
Equation (4.13) is

z+7 i(z—2)

1 _
U = E(PlZ +Pid)fu + h(T’ 2 ,0)
1 _ _
= E(plz +pi2)fu + W(z,2),

(4.10)

4.11)

(4.12)

(4.13)

(4.14)
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where 7 iz-2)
_ 2+7 Uz—2
W(z,2) = h(—, ,0).
(z,2) = I( > > )
From [19], z satisfies
7 = iw,T7 + 8(2,2), (4.15)
where
8(z,2) = (¥1(0) = i'¥»(0)) < F(U,,0), f, > . (4.16)
Let
7 z
W(z,2) = Wzoz + Whzz + WOQE oee, 4.17)
7 z
g8(z,2) =8205 +811Z2+g025 +--, (4.18)
then
1o = nx D+ wDmos + wOmE.
u(0) = 5z + 7 cos (7) FWHOF + WPOZ+ WO + -+
1 — nx 22 _ z
n(0) = 5(& + &) cos (7) F WO + WYOZ + W05+
1 - - nx 22 z
u(=1) = > (ze™" +Ze" ) cos() + Wg}f(—l)E + W (=1)zz + Wg;>(—1)5 T
Lo it = oty X @ 1\ @ s @ (1L
W(=1) = 5§ + ETcos(T) + W (<D T + WDZ + W (-DF +--
and
— 1
Fi(U,0) = ZF = aiu; (0) + au,(0)v,(0) + a3v;(0) + aqu; (0) 4.19)
+ asu(0)v,(0) + asu, (07 (0) + a7v;(0) + O(4),
— 1
F5(U,,0) = =F, = —v*(0) + Biu*(—1) + v, (=1) + B33 (-1
2(U;, 0) 712 v (0) + Bru; (—1) + Bou(=Dvi(=1) + B3v;(=1) (4.20)
+ Baity (=1) + Bsu; (= 1)v(—1) + Bou (= 1)vi (—1) + Brv; (—1) + O(4),
. _ arv.(b+bcv,) ar(1+cve+b(u.+2cu,vy)) _ aru.(c+bcu,) _ ab?rv.(1+cv,)
with ap (_ £1+bu*+cv*)3’ ) @2 - ( (lz-i—bu*+cv*)3 )’ a3 = (1+bus+cv,)3? @y = - (L+bus+cv,)*?
_ abr(1=c2v2+b(u+2cu,vy) _acr 1-b2u2+cv, +2bcu, v, _ 6actru.(1+bu,) _ ev,(b+bcv,)
s = +bu+cv ) » @ = +bu+cv ) I e e S LA ﬁ‘( - 2_(1+bu*+m‘;);’
_e(l+cvit+b(us+2cusvy)) _ eu,(c+bcu,) _ brev.(1+cevy) be(1—c™vi+b(us+2cu,v.)
By = +(1+-2u*+:v*)3 By o= -1 = (1+bu*++cv*)3’ Ba (1+bu*++cv*)4’ Bs - (I+bus+cv, )t ’
_ ce(1-b2ul+cv,+2bcu,v.) _ Ceu,(1+bu)
Bs = — (1+bus+cv,)? B = (+busteve)* "
Hence,
— , nx_ 72 _ 7 7z nx 5 NX
F1(U;,0) =cos™(—)(Fx20 + 22¢11 + S X20) + 7 (X1€0S — + x2€08" —) + -+,
172 2 2 l l 4.21)
Zz 2z nx

_ Z nx
F50) + S (5108 = + 65 cos’ T

2

2
— nx_ .z _
Fy(U,,0) = COSZ(T)(EQO +2z¢11 + 7
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< F(U,,0), f, >=%(F (U,,0)f' + F»(U,,0)f%)

2 2 = 27 (4.22)
:Z—%(m )F+zZ%(X” )r+ Z—%()EZO )r+ﬁ%( “ )+ :
2\ S0 Si1 2\ S0 2 K2
with
1 I
= —f cos3(E)dx,
l7T 0 l
I I
K| = )Qf cosZ(E)dx+)Qf cos4(g)dx,
Ir 0 [ Ir 0 l
I I
Ky = ﬂf cosz(@)dx+ gf cos4(g)dx
lﬂ' 0 l lﬂ' 0 l
and

Y0 = %e—i‘rwn (—I” + eiﬂun(a/l + g(a'z + 036))),

X1 = —}re‘”“’" ((1 + 62”“’") r—e™nay + 203EE + an (€ + f))),

X1 = W0) (—e7™r + 20y + af) + W2 (0)(@z + 238) + AW3(0) (=™ 7 + 201 + @)
+ W2 (0)@y + 2058) — rW], (—1) — 22

X2 = 33y + as(€ + 28) + EQaé + ae + 3a7£9)),

620 = 3(B1 + EBa + B3E)), 11 = 1(2B1 + 2BsEE + BoE + §)),

g1 = WL(0)(2B1 + Bad) + W} (0)(By + 2B58) + Wy, (0) (,31 + %’c) + 2W3,(0)(Ba + 2B38),

2 = 3(3Ba + Bs(& +26) + EQ2PeE + Boé + 3B1£)).

Denote
¥1(0) — i¥2(0) := (71 y2).
Notice that
1 ™ nx

— cos’—dx=0, n=1,2,3,---
l7T 0 l

b

and we have

(F1(0) - i%2(0)) < F(U,,0), f, >=
2 =2
Z ~ — . < — — ~
5 20 + 7260017 + 22y + %2610 + S (yixo + 7262017 (4.23)
27
+ 77[71K1 + YKo+

Then by (4.16), (4.18) and (4.23), we have g,0 = g1 = g2 =0, forn =1,2,3,---. If n = 0, we have:

820 = Y1Tx20 + ¥2T620, &1 = ViTx11 + ¥2TS11, 802 = ViTX a0 + Y2TS0-

And for n € Ny, g5 = T(y1&1 + Y2K2).
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From [19], we have

W(z,2) = Wazz + W2z + Wizz + Wepzz + - -+,

2 =2
- z _ Z
A‘T’W(Za Z) = A-T-WZ()E + A;W“ZZ + A%WOZE + e,
and
W(z,2) = A:W + H(z,2),
where

) )
_ Z _ Z
H(z,2) = Hzoa + Whzz + Hozz + -

= XoF(U;,0) — O, < XoF (U, 0), f > - fn)-
Hence, we have
Qiw,T — A:)Wa = Hyy, —A:Wy = Hyy, (—2iw,T — Az)Wo = Hpy,

that is

Wao = Qiw, T — Az) "Hy, Wy = —A'Hy, W = (=2iw,* — A)™' Hy,.

Then

H(z2) = —©(0)¥(0) < F(U,,0), f, > -/,
P1(0) + p2(6) pi() — P2(9))( ©,(0)

= —(

PO OO (D0 ) < Fw0si >

1
== 7 [P1O)(@1(0) = iDx(0)) + p2(O)(@1(0) + iD2(0D] < F(U1, 0). fu > -fa

2

(4.24)

(4.25)

(4.26)

1
=— =[(p1(0)g20 + Pz(e)goz)% + (p1(O)g11 + p2(0)g)zz + (p1(0)go2 + P2(9)§2o)%] +-ee

2

Therefore,
0 neN
Hy(0) = B :
0 {—amwmm+mwmm»ﬁ n=0,
0 neN
Hy () = ~ :
n(©) {—amwmn+mwmu»ﬁ n=0,
0 neN
H 9 = _ )
(6) { —%(Pl(e)goz + p2(0)gy) - fo n=0,

and

H(z,2)(0) = F(U;,0) = (Y, < F(U;,0), fu >) - fu,
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where
7 );20 )cosz(% , neN,
Hy(0) = Xif) (4.27)
T o ) — 2(P1(0)g20 + P2(0)80y) - fo. n=0.
7 ?1 )cosz(% , neN,
Hy1(0) = Xﬂ
T cu ) - %(pl(o)gll + p2(0)gyy) - fo, n=0.
By the definition of A; and (4.25), we have
. L 1 _
W20 = A‘?WZO = 2la)nTW20 + E(pl(e)gzo + p2(9)g02) . ﬁ,, -1<6<0.
That is ) _
l 8 Iw, T
Wao(0) = =——=(820p1(0) + Z2p2(0)) - f, + E1*™,
2iw,T 3
where
E _ WZO(O) _ n:19273,"'5
F Wao(0) - 5= (2001 (0) + 2 pa(0)) - fy n = 0.

By the definition of A; and (4.25), we have that for -1 <6 < 0

_ o ,
— (g2071(0) + 22 py(0)) - fo + 2iw,TE) — Ar(m——
3 20,7

(82001(0) + 2 py(0)) - £, + Eye2er™

l
—A:E, - L.
! (an% 3

. 1 _
= r( 20 ) — =(p1(0)g20 + P2(0)3y) - fo-
$20 2
As
Azp1(0) + L:(p1 - fo) = iwop1(0) - fo,
and
A:p2(0) + La(p2 - fo) = —iwop2(0) - fo,
we have
2@#&—AJ&—MEWM”:%(mO
$20
That is
E, —NE(XZO )0052 ),
$20 [
AIMS Mathematics

(g20p1(0) + ‘%pz(())) )

)cosz(n—lx), n € Ny.
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where

.. 2 -1
o 2iw,T + dl,—z —ra ra,
= L~ . - 2 R .
—b e T 2iw,T + dzr;—z — @ — byeHenT

Similarly, from (4.26), we have

i

-Wy = 7 ~(p1(O)g11 + p2(O)g) - fn, —1<26<0.
w,T
That is
i _
Wi(0) = % ~(p1(0)g;; — p1(O)g11) + Es.
iw,T
Similarly, we have
~px | X11 2 NX
E, =7FE cos (—),
2 ( o ) ( ; )
where
-1
E*:(dl’l—z—ral T )
—bl d2'112 — b2 a
Thus, we have
i lg0a]? 1 Re(c1(0))
c1(0) = ~(g20811 — 2|811|2 - B )+ =81, Mo = —(—1-),
2w,T 3 2 Re(X' (1)) (4.28)

1 .
Ty = ——[Im(c(0) + poIm @), B> = 2Re(c1(0).

n

Theorem 4.1. When p, > 0 (or pp < 0), the bifurcating periodic solutions exists for T > T (or
T < 72F), and are orbitally asymptotically stable (or unstable) when 8, < 0 (or 8, > 0).

5. Numerical simulations

According to the reference [21], we choose r; = 19.3, K; = 400, r, = 8.8, K, = 5, B = 10.76,
C =60.6, A, =0.00728, A, = 1. By (2.2), we can obtain a, b, ¢, e and r. Fixd;, = 0.1,d, = 0.2, = 2.
We give the coexisting equilibrium (Figure 1), and bifurcation diagram (Figure 2) of system (2.1)
with parameter E. It shows that the density of prey (predator) in the coexisting equilibrium decreases
(increases) and the stable region increases with the increase of parameter E. This indicates that
increasing parameter E is benefit to prey and predator to reach the steady state (coexisting
equilibrium).
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Figure 1. The coexisting equilibrium of system (2.1) with parameter E.
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Figure 2. Bifurcation diagram of system (2.1) with parameter E.

When E = 8.8, we can obtain (u.,v.) = (0.0037, 1.2370) is a unique coexisting equilibrium.
Hypothesis (H;) is satisfied. We have 7, = Tg ~ 0.2440. Then E.(u.,v.) is local stable when 7 € [0, T.,)
(shown in Figure 3). When 7 = 7., Hopf bifurcation occurs. We can obtain

o = 81.0352 >0, B, ~—-556.5305 <0, and T, = 2035.9058 > 0.

Then, when 7 > 3.4595, the local stable bifurcating periodic solutions exists (shown in Figure 4).

.........

Figure 3. Numerical simulations of system (2.1) for 7 = 0.2, and initial condition is
(0.00367 + 0.0001cosx, 1.23699 + 0.001sinx).
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Figure 4. Numerical simulations of system (2.1) for 7 = 0.3, and initial condition is
(0.00367 + 0.0001cosx, 1.23699 + 0.001sinx).

6. Conclusions

In this paper, we propose a diffusive predator-prey system with generalist predator and time delay
in the resource limitation of the prey. We obtained that system (2.1) has three boundary equilibria:
(0,0) (predator and prey extinction equilibrium), (1,0) (predator extinction equilibrium) and (0, 1)
(prey extinction equilibrium). We mainly analyze the stability and Hopf bifurcation of coexisting
equilibrium. By the theory of normal form and center manifold method, we give some parameters that
determining the property of Hopf bifurcation: Bifurcation direction and the stability of the bifurcating
periodic solution.

Since the predators are generalist type and have other food resource, they will not be extinct. This
is in agreement with the Theorem 3.3. When the predator attack rate is large enough a > 1 + ¢, all the
prey will be caught by the predator. This will lead to the extinction of the prey, and the predator will
reach a balanced state. It is also in agreement with the Theorem 3.3 that (0, 1) is local asymptotically
stable for @ > 1 + ¢. When the predator attack rate is not large enough a < 1 + ¢, then the prey and
predator will coexist.

The conversion rate E can affect the the density of prey (predator) in the coexisting equilibrium.
With the increase of conversion rate, the density of prey (predator) will decrease (increase) and the
stable region will increase. In addition, time delay will also affect the stability of the equilibrium point
when the parameters satisfying the condition D # 0. Specifically, when the time delay is small than the
critical value 7., the prey and the predator will coexist and tend to the coexisting equilibrium. But when
time delay is larger than the critical value 7., the prey and predator will exhibit oscillatory behavior. In
addition, the spatial inhomogeneous periodic solutions may exist, but they are generally unstable.
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