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Abstract: Considering a mixture model with qualitative factors, the R-optimal design problem is
investigated when the levels of the qualitative factor interact with the mixture factors. In this paper,
the conditions for R-optimality of designs with mixture and qualitative factors are presented. General
analytical expressions are also derived for the decision function under the R-optimal designs, in order
to verify that the resulting designs satisfy the general equivalence theorem. In addition, the relative
efficiency of the R-optimal design is discussed.
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1. Introduction

In recent years, the mixture models have been widely used in sciences, engineering and business
applications. Cornell [1] applied models for data from mixture experiments to chick feeding, paper
coatings, and many other products. Zijlstra et al. [2] embed mixture models in a panel mixed logit
framework to describe preferences and preference heterogeneity for the mobility budget. Goos and
Hamidouche [3] applied the mixture models to a real-life cocktail experiment. In mixture experiments,
the factors under study are proportions of the ingredients of a mixture. As the application involves the
choice of cocktails, the taste of cocktails only depends on the ingredient proportions, and not on the
total amount of cocktail.

To obtain the optimal design under certain optimality criteria has always been a hot topic in the
research of the mixture design. Available optimality criteria include D-, A-, R-, and I-optimality, etc.
(see [4, 5]). The D-optimality and A-optimality have been used most frequently. In practice, the
efficiency of a specific optimality criterion depends on statistical problem sensitively, and in many
cases, the D- and A-optimal designs are reasonable. However, there are also various situations where
the application of the D- and A-optimality criteria is not appropriate. The efficiency loss may be
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considerable when the D-optimal design is used for the construction of rectangular confidence
regions, as stated by Dette [6]. For this reason, Dette [6] proposed the R-optimality criterion, which
minimizes the volume of the p-dimensional rectangular confidence region for the unknown
parameters. Furthermore, the R-optimality criterion not only has an excellent statistical interpretation
but also satisfies a beneficial invariance property. It allows an easy calculation of optimal designs on
many linearly transformed design spaces. Hao et al. [7] investigated the R-optimal design for the
second-order mixture model, while the qualitative factors are not considered.

When an experiment includes qualitative factors, the effects between the quantitative and qualitative
factors should be taken into consideration. For example, Lee and Huang [8] demonstrated through
an example on chemical study how the D-optimal design may help to design an experiment with
both quantitative and qualitative factors more efficiently. Yue et al. [9] investigated the D-optimal
designs for multiresponse polynomial regression models with both quantitative and qualitative factors.
Kao and Hazar [10] investigated the optimal designs for mixed continuous and binary responses with
quantitative and qualitative factors. Zhang et al. [11] proposed a new uniformity criterion for designs
with both qualitative and quantitative factors. Although qualitative factors have received increasing
attention in the literature, little is known concerning mixture designs with qualitative factors. Following
the seminal work of Donev [12], the only published results concerning qualitative factors for mixture
models are presented in [13], which generated the A-optimal designs for mixture central polynomial
model with qualitative factors. This paper proposes a novel optimal design of mixture model with
qualitative factors.

This paper aims at developing a R-optimal design for Scheffé models, when the response depends
on the joint influence of both mixture and qualitative factors. The remainder of this paper is organized
as follows. Section 2 and Section 3 briefly introduce the R-optimality, and some basic notations of the
two kinds of mixture designs. The main results are presented in Section 4. Finally, the conclusion is
drawn in Section 5.

2. Preliminaries

A mixture experiment design usually assumes that the response variable y is only related to the
proportion of each component x1, · · · , xq, but not to the total. The experimental region determined by
the component proportions can be expressed as

X =

x =
(
x1, x2, · · · , xq

)
:

q∑
i=1

xi = 1, xi ≥ 0, i = 1, 2, · · · , q,C′s

 ,
in which C′s are some other constraint conditions. When the model does not contain such constraints,
it is called a (q − 1)-dimensional simplex, denoted as S q−1. The response at x can be written as

y = βT f (x) + ε, (2.1)

where β = (β1, β2, · · · , βm)T is the m-vector of unknown parameters, f (x) = ( f1(x), f2(x), · · · , fm(x))T

is a given m-vector of regression functions of x = (x1, x2, · · · , xq)T ∈ X ⊆ S q−1. The error ε is assumed
to be independent of x and independent identically distributed with a normal distributed with mean 0
and constant variance σ2.
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Based on the model (2.1), an approximate design can be expressed as

ξ =

(
x1 x2 · · · xk

r1 r2 · · · rk

)
,

where xi ∈ X are support points and their weights ξ(xi) = ri satisfy ri > 0 and
k∑

i=1
ri = 1, i = 1, 2, · · · , k.

For a design ξ, the Fisher information matrix is given by

M (ξ) =

∫
X

f (x) f T (x) ξ (dx) .

Moreover, let Ξ denote the set of all designs with non-singular information matrix on X.

Definition 1. A design ξ∗ ∈ Ξ is called R-optimal for the model (2.1) if it minimizes

ΦR(ξ) =

m∏
i=1

(
M−1 (ξ)

)
ii
, (2.2)

where m is the number of unknown parameters, (M−1 (ξ))ii is the element on the main diagonal of
M−1(ξ).

For a given design, the equivalence theorem seeks to prove whether the design is the optimal design.
Dette [6] investigated the equivalence theorem of R-optimal design.

Lemma 1. For any x ∈ X, the design ξ∗ is R-optimal if and only if

ψR(x, ξ) =

m∑
j=1

(
eT

j M−1(ξ) f (x)
)2

eT
j M−1(ξ)e j

− m ≤ 0, (2.3)

where e j is the unit vector whose j-th component is equal to 1 and all others are 0. Moreover, the
equality is attained at the support points of the R-optimal design ξ∗.

3. Models and analysis

In the mixture experiments, a simplex-lattice design for q ingredients involves all possible mixture
formulations, the set of q components n order lattice points can be expressed as

L{q, n} =

(α1

n
,
α2

n
, . . . ,

αq

n

)
:

q∑
i=1

αi = n, αi ∈ Z+, i = 1, 2, . . . , q

 ,
and there are

(
q + n − 1

n

)
points in L{q, n}.

The matrix H(x) =
{
xi j

}N,q

i, j=1
generated by all permutations of the coordinates of

x =
(
x1, x2, · · · , xq

)T
∈ X is called permutation matrix, where i1, i2, · · · , iq is a permutation of the

1, 2, · · · , q. Then each row of H(x) is a mixture point and H(x) = {x, x1, · · · , xN−1} is called
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permutation point set about x. The set of q components centroid points can be expressed as

C {q} =
q⋃

i=1
H(xi). A simplex-centroid design consists of 2q − 1 points: q permutations of (1, 0, · · · , 0),(

q
2

)
permutations of (1/2, 1/2, 0, · · · , 0), · · · , and one permutation of (1/q, 1/q, · · · , 1/q). The

corresponding model to be fitted to data at the points of the simplex-centroid design is

E(y) =

q∑
i=1

βixi +

q−1∑
i=1

q∑
i< j

βi jxix j + · · · + β12···qx1x2 · · · xq.

The Scheffé central polynomial model can reduce the number of trials without reducing the order of
the model and maintaining prediction accuracy.

In many practical problems, however, the response is influenced not only by the components’
proportion in the mixture, but also by other variables. We can consider the general model which was
introduced by Lee and Huang [8], this type of model can be expressed as follows:

E[y( j, x)] = f T
1 (x)β j + f T

2 (x)γ, x ∈ X ⊆ S q−1, j = 1, 2, · · · , s. (3.1)

In the model, f T
1 (x)β j describes the part of the response that is influenced by a qualitative factor,

which is generally referred to as the factorial effect, among them, f T
1 (x) = ( f11(x), f12(x), · · · , f1p1(x)),

β j = (β j1, β j2, · · · , β jp1)
T , s are the level of qualitative factor, y( j, x) is the value of the response variable

at design point x = (x1, x2, · · · , xq)T ∈ X ⊆ S q−1 at the jth level. f T
2 (x)γ is the part of the response

that is not affected by the qualitative factors, generally referred to as fixed effect, where f T
2 (x) =

( f21(x), f22(x), · · · , f2p2(x)), γ = (γ1, γ2, · · · , γp2)
T .

Taking the second-order general Scheffé central polynomial model as an example, the model (3.1)
can be expressed in the following three forms:

E
[
y( j, x)

]
= ( f T

L1
(x), f T

L2
(x))β j, j = 1, 2, · · · , s; (3.2)

E
[
y( j, x)

]
= f T

L1
(x)β(L1)

j
+ f T

L2
(x)γ(L2), j = 1, 2, · · · , s; (3.3)

E
[
y( j, x)

]
= f T

L2
(x)β(L2)

j
+ f T

L1
(x)γ(L1), j = 1, 2, · · · , s. (3.4)

Where fL1(x) = (x1, x2, · · · , xq)T and fL2(x) = (x1x2, x1x3, · · · , xq−1xq)T . Among them, both the primary
and interaction terms in model (3.2) are affected by qualitative factors; while these terms in model
(3.3) are factorial effects and fixed effects, respectively, and the case is quite the contrary in model
(3.4), with the two terms being fixed and factorial effects, respectively.

For example, a 21-herb formula, referred to as the modified Qing Fei Pai Du Tang (mQFPD) for
treating COVID-19, is now being tested in a clinical trial sponsored by the University of California,
San Diego. The results obtained by these experiments define the efficacy of the drugs. In this case, the
difference between the efficacies of the drugs on the gender of the patient can be considered as the first
part of models (3.3) and (3.4), while the fixed efficacy of the drugs can be considered as the second
part of the two models. Afterwards, the R-optimal design for models (3.3) and (3.4), is presented.

4. Main results

Denote the index set of the qualitative factor as Ds = {1, 2, · · · , s}, and denote z = ( j, x) ∈ Ω,
Ω = Ds × X as the product set formed by the mixture experiment region and the qualitative factor.
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Then the design on the experimental region Ω can be expressed as a product of two partial designs, i.e.,
ζ( j, x) = η( j)× ξ(x), where η is the design onDs and ξ(x) is the design on X. Then ζ has the following
form

ζ =

(
(1; x11, · · · , x1n1) (2; x21, · · · , x2n2) · · · (s; xs1, · · · , xsns)

(η(1); r11, · · · , r1n1) (η(2); r21, · · · , r2n2) · · · (η(s); rs1, · · · , rsns)

)
.

First note that the information matrix of the design ξ is

M f (ξ) =

[
M11(ξ) M12(ξ)
M21(ξ) M22(ξ)

]
,

which is associated with the quantitative model E[y(x)] =
[
f T
1 (x), f T

2 (x)
] (
βT , γT

)T
. Let the general

model (3.1) be rewritten as

E
[
y( j, x)

]
=

[
eT

j ⊗ f T
1 (x), f T

2 (x)
] (
βT

1 , β
T
2 , · · · , β

T
s , γ

T
)T

= gT ( j, x)θ. (4.1)

By a result in Lee and Huang [8], the information matrix of the design ζ is

Mg(ζ) =

[
D ⊗ M11(ξ) η ⊗ M12(ξ)
ηT ⊗ M21(ξ) M22(ξ)

]
,

where D = diag {η(1), η(2), · · · , η(s)} , η =
[
η(1), η(2), · · · , η(s)

]T .

According to the R-optimality criterion, the minimization of
m∏

i=1
(M−1

g (ζ))ii amounts to minimization

of tr[log[
m∏

i=1
(M−1

g (ζ))ii]] for all ζ ∈ Ξ. The following theorem defines the conditions for R-optimality of

designs and the proof is given in the Appendix.

Theorem 1. For a design ζ( j, x) = η( j) × ξ(x), where η is the design onDs = {1, 2, · · · , s} and ξ is the
design on X ⊆ S q−1, the following equation holds for model (3.1):

tr[log[
m∏

i=1

(M−1
g (ζ))ii]] =

s∑
j=1

tr
(
log

(
1
η( j)

M−1
11 (ξ) + K(1)

))
+ tr

{
log

[
D22(ξ)

]}
,

where
K(1) =M−1

11 (ξ)M12(ξ)D22(ξ)M21(ξ)M−1
11 (ξ),

D22(ξ) =
[
M22(ξ) − M21(ξ)M−1

11 (ξ)M12(ξ)
]−1

.

Moreover, it also follows that, for ζ to be optimal, all the elements of ηmust be equal, i.e. η(1) = η(2) =

· · · = η(s) = 1/s.

If the optimal marginal design η is the uniform design onDs = {1, 2, · · · , s}, then we have

tr[log[
m∏

i=1

(M−1
g (ζ))ii]] = s · tr

(
log

(
s · M−1

11 (ξ) + K(1)

))
+ tr

{
log

[
D22(ξ)

]}
.

To verify the R-optimality of the designs by the equivalence theorem, the decision function presented
in Eq (2.3) can be simplified to

ψR(x, ξ) = f T (x)M−1(ξ)BM−1(ξ) f (x) − m ≤ 0,

where B = diag(1/M11, 1/M22, . . . , 1/Mmm), Mii = (M−1 (ξ))ii.
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Theorem 2. For a design ζ on Ω, let bii, d j j and ckk are the element on the main diagonal of M−1
11 (ξ),

D22(ξ) and K(1), respectively, if η is a uniform design on Ds, the decision function of the model (4.1)
under the R-optimal design is

ψR−g( j, x; ζ) =gT( j, x)M−1
g (ζ)BgM−1

g (ζ)g( j, x)

=s2u(x; ξ) + s ·
4∑

i=1

vi(x; ξ) +

4∑
i=1

ωi(x; ξ),

where Bg =

[
Is ⊗ B(s, 1) 0

0 H

]
, B(u, v) = diag (1/ (ub11 + vc11) , 1/ (ub22 + vc22) , · · · ,

1/
(
ubp1 p1 + vcp1 p1

)
), H = diag

(
1/d11, 1/d22, · · · , 1/dp2 p2

)
.

In the following, the approximate R-optimal design on the model (3.3) and (3.4) are derived from
the results of theorem 2. Suppose ζ∗ is a R-optimal design on the region Ds × S q−1 and denoted by
η∗× ξ∗, where η∗ is the uniform design onDs. For the model (3.3), the design ξ over the mixture region
is arranged by using the set of second-order generalized simplex-centroid points C{q, 2}, denoted as

ξ =

(
H(x1) H(x2)

r1 r2

)
,

where x1 = (1, 0, · · · , 0)T and x2 = (1/2, 1/2, · · · , 0)T are the vertices and mid-points of the edges of
the simplex, respectively. H(xi) =

{
xi1, xi2, · · · , xini

}
is permutation point set about xi, i = 1, 2, and the

weights of corresponding point satisfy n1r1 +n2r2 = 1. Then the function ψR−g( j, x; ζ) can be expressed
as

ψR−g( j, x; ζ) =

(
a0 + a1

b0
+

(q − 1) r2

2r1 (2r1 + r2)

) q∑
i=1

x2
i +

(
a2

b0
+

r2

r1 (2r1 + r2)

)∑
i< j

xix j

−

(
a3

b1
+ 2qr2

2 + 8r1r2

)∑
i, j

x2
i x j −

12r2

r1 (2r1 + r2)

∑
i< j<k

xix jxk

+
32r2

1 + 32r1r2 + 4qr2
2

r1r2 (2r1 + r2)

∑
i< j

x2
i x2

j +
32r1 + (4q + 8) r2

r1 (2r1 + r2)

∑
i, j,k

x2
i x jxk,

where

a0 =16s2r4
1 + 8 (2q − 3) s2r3

1r2 +
(
4q2 − 5q + 8

)
s2r2

1r2
2,

a1 = (q − 1) s
[
8r3

1r2 + (9q − 16) r2
1r2

2 + (q − 2) (3q − 4) r1r3
2 +

(q − 2)2 (q − 1)
4

r4
2

]
,

a2 =s (1 − s)
[
16r3

1r2 + (6q − 8) r2
1r2

2

]
,

a3 =8sr2
1 + (6q − 8) sr1r2 + (q − 1) (q − 2) sr2

2,

b0 =b1

[
4r2

1 + (3q − 4) r1r2 +
(q − 1) (q − 2)

2
r2

2

]
,

b1 =4sr3
1 + (2sq + q − 3s − 1) r2

1r2 +
(q − 1) (q − 2)

2
r1r2

2.
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Let q = 3, s = 2, ΦR(ζ, r1) =
m∏

i=1
(M−1

g (ζ))ii, hi(r1) = ψR−g( j, x; ζ), x ∈ H(xi), i = 1, 2 is adopted

to denote the values of the decision function at the two types of design points, respectively. If ζ∗ is a
R-optimal design, on the one hand there should be

r∗1 = arg min
r1∈(0,1/n1)

m∏
i=1

(M−1
g (ζ))ii,

on the other hand
hi(r∗1) = ψR−g( j, x; ζ∗) = sn1 + n2, x ∈ H (xi) , i = 1, 2.

As r1 transforms, ΦR(ζ, r1) changes as shown in Figure 1(a), we can find the optimal design

ξ∗ =

(
H(x1) H(x2)
0.2269 0.1065

)
.

Figure 1(b) shows the changes of h1(r1) and h2(r1), which can be seen when r1 = r∗1, h1(r1) and
h2(r1) intersect at a point, whose coordinates are

(
r∗1, sn1 + n2

)
= (0.2269, 9). The contour map of the

function ψR−g( j, x; ζ∗) on the region Ω is shown in Figure 2. It is obvious to see that the maximum of
the decision function is no greater than the number of model parameters and the maximum is attained
at the support points of ξ∗. According to the Eq (2.3), the design ξ∗ is R-optimal for model (3.3) and
satisfies the equivalence theorem.

Figure 1. R-optimal design on model (3.3) with q = 3 and s = 2.

Figure 2. The contour map of decision function of ζ∗.
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Table 1 lists the weights of R-optimal designs for model (3.3) and model (3.4) with 3 ≤ q ≤ 6 and
2 ≤ s ≤ 6. The corresponding values of the common logarithm of decision function, lg[ΦR(M(ζ))], are
also listed in the fifth and eighth columns of the table. In model (3.3), for any q, the weights of vertices
increase with the total number of level combinations. On the contrary, in model (3.4), the weights of
vertices decrease with the increase of the total number of level combinations.

Table 1. The weights of R-optimal designs for 3 ≤ q ≤ 6 and 2 ≤ s ≤ 6.

Model(3.3) Model(3.4)
q s r1(x1) r2(x2) lg[ΦR(M(ζ))] r1(x1) r2(x2) lg[ΦR(M(ζ))]
3 2 0.2269 0.1065 12.2362 0.1589 0.1744 16.6097
3 3 0.2412 0.0921 16.3870 0.1333 0.2000 24.9193
3 4 0.2521 0.0812 20.9449 0.1168 0.2165 33.5317
3 5 0.2607 0.0726 25.8066 0.1051 0.2282 42.3861
3 6 0.2677 0.0656 30.9111 0.0963 0.2371 51.4420
4 2 0.1486 0.0676 23.3663 0.0868 0.1088 33.1658
4 3 0.1595 0.0603 29.4999 0.0625 0.1250 48.7669
4 4 0.1684 0.0544 36.1694 0.0560 0.1293 61.7016
4 5 0.1758 0.0495 43.2376 0.0513 0.1325 74.8992
4 6 0.1820 0.0453 50.6236 0.0477 0.1349 88.3275
5 2 0.1064 0.0468 38.2574 0.0522 0.0739 55.3620
5 3 0.1146 0.0427 46.5072 0.0448 0.0776 72.5382
5 4 0.1216 0.0392 55.4224 0.0400 0.0800 90.0000
5 5 0.1277 0.0362 64.8325 0.0365 0.0817 107.7430
5 6 0.1330 0.0335 74.6359 0.0339 0.0830 125.7450
6 2 0.0807 0.0344 57.0488 0.0400 0.0506 78.8374
6 3 0.0871 0.0318 67.5197 0.0342 0.0530 100.8750
6 4 0.0926 0.0296 78.7860 0.0305 0.0545 123.1450
6 5 0.0975 0.0276 90.6445 0.0278 0.0556 145.6890
6 6 0.1019 0.0258 102.973 0.0257 0.0564 168.5050

For any design ζ of the mixture model with qualitative factors, we measure its quality by efficiency,
and the efficiency under A-optimality criterion can be expressed as:

Ae f f (ζ) =
trM−1

g (ζA)

trM−1
g (ζ)

.

The relative A-efficiencies of different R-optimal designs in model (3.3) are displayed in Table 2. In
model (3.3), for any q, whereas the efficiencies decrease with the increase of the total number of
qualitative levels, the R-optimal designs in most cases have relatively high efficiencies. It should be
noticed that the R-optimal designs for q = 6 and s = 2 have an A-efficiency of 98.89 % relative to the
A-optimal designs. In other words, the R-optimal designs in model (3.3) perform excellently in terms
of the A-optimality criterion.
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Table 2. The relative A-efficiencies of R-optimal designs for 3 ≤ q ≤ 6 and 2 ≤ s ≤ 6.

q s Ae f f (ζ∗R) q s Ae f f (ζ∗R)
3 2 0.9666 5 2 0.9852
3 3 0.9616 5 3 0.9807
3 4 0.9601 5 4 0.9773
3 5 0.9607 5 5 0.9749
3 6 0.9623 5 6 0.9733
4 2 0.9788 6 2 0.9889
4 3 0.9735 6 3 0.9852
4 4 0.9702 6 4 0.9821
4 5 0.9685 6 5 0.9797
4 6 0.9679 6 6 0.9778

5. Conclusions

This paper tackles the R-optimal design under the interaction of qualitative factors and mixture
components. It considers the continuous R-optimal designs for the second-order Scheffé model with
qualitative factors. The obtained results show that the optimal marginal design η is the uniform design
under R-optimality criterion. For model (3.3), general analytical expressions for the decision function
under the R-optimal designs are derived, and the R-optimality is confirmed by the equivalence theorem.
Finally, we remark further that the performance of R-optimal designs in terms of the A-optimality
criterion is excellent.
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Appendix

A.1 Proof of Theorem 1

The inverse matrices of M f (ξ) is

M−1
f (ξ) =

[
M−1

11 (ξ) + K(1) −M−1
11 (ξ)M12(ξ)D22(ξ)

−D22(ξ)M21(ξ)M−1
11 (ξ) D22(ξ)

]
,

we have

M−1
g (ζ) =

[
F11(ζ) F12(ζ)
F21(ζ) F22(ζ)

]
,
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where ζ = η × ξ,

F11(ζ) = (D ⊗ M11(ξ))−1 + (D ⊗ M11(ξ))−1 η ⊗ M12(ξ)[
M22(ξ) − ηT ⊗ M21(ξ) (D ⊗ M11(ξ))−1 η ⊗ M12(ξ)

]−1

ηT ⊗ M21(ξ)
[
D−1 ⊗ M−1

11 (ξ)
]−1

=
(
D−1 ⊗ M−1

11 (ξ)
)

+
(
D−1 ⊗ M−1

11 (ξ)
)
η ⊗ M12(ξ)[

M22(ξ) − ηT D−1η ⊗ M21(ξ)M−1
11 (ξ)M12(ξ)

]−1
ηT D−1 ⊗ M21(ξ)M−1

11 (ξ)

=D−1 ⊗ M−1
11 (ξ) +

(
D−1η ⊗ M−1

11 (ξ)M12(ξ)
)

D22η
T D−1 ⊗ M21(ξ)M−1

11 (ξ)

=D−1 ⊗ M−1
11 (ξ) + D−1ηηTD−1 ⊗ M−1

11 (ξ)M12(ξ)M21(ξ)M−1
11 (ξ)

=D−1 ⊗ M−1
11 (ξ) + Js ⊗ K(1),

F12(ζ) = − (D ⊗ M11(ξ))−1 (η ⊗ M12(ξ))[
M22(ξ) − ηT ⊗ M21(ξ) (D ⊗ M11(ξ))−1 η ⊗ M12(ξ)

]−1

= − D−1 ⊗ M−1
11 (ξ)η ⊗ M12(ξ)D22(ξ)

= − D−1η ⊗ M−1
11 (ξ)M12(ξ)D22(ξ)

= − 1s ⊗ M−1
11 (ξ)M12(ξ)D22(ξ)

=FT
21(ζ),

F22(ζ) =
[
M22(ξ) − M21(ξ)M−1

11 (ξ)M12(ξ)
]−1

=D22(ξ),

and 1s is a s × 1 vector of all ones, js is the s × s matrix with all elements equal to unity.
As a result, we have

tr[log[
m∏

i=1

(M−1
g (ζ))ii]] = tr

{
log

[
D−1 ⊗ M−1

11 (ξ) + Js ⊗ K(1)

]}
+ tr

{
log

[
D22(ξ)

]}
=

s∑
j=1

tr
(
log

(
1
η( j)

M−1
11 (ξ) + K(1)

))
+ tr

{
log

[
D22(ξ)

]}
≥

s∏
j=1

tr
(
log

(
1
η( j)

M−1
11 (ξ) + K(1)

))
+ tr

{
log

[
D22(ξ)

]}
,

the equality is attained if and only if the elements of η is equal, i.e. η(1) = η(2) = · · · = η(s) = 1/s.

A.2 Proof of Theorem 2

ψR−g( j, x; ζ) =gT( j, x)M−1
g (ζ)BgM−1

g (ζ)g( j, x)

=s2u(x; ξ) + s ·
4∑

i=1

vi(x; ξ) +

4∑
i=1

ωi(x; ξ)
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where
u(x; ξ) = f T

1 (x)M−1
11 (ξ)B(s, 1)M−1

11 (ξ) f1(x),
v1(x; ξ) = 2 f T

1 (x)M−1
11 (ξ)B(s, 1)K(1) f1(x),

v2(x; ξ) = f T
1 (x)K(1)B(s, 1)K(1) f1(x),

v3(x; ξ) = − f T
1 (x)M−1

11 (ξ)B(s, 1)M−1
11 (ξ)M12(ξ)D22(ξ) f2(x),

v4(x; ξ) = − f T
1 (x)K(1)B(s, 1)M−1

11 (ξ)M12(ξ)D22(ξ) f2(x),
ω1(x; ξ) = f T

1 (x)M−1
11 (ξ)M12(ξ)D22(ξ)HD22(ξ)M21(ξ)M−1

11 (ξ) f1(x),
ω2(x; ξ) = − f T

1 (x)M−1
11 (ξ)M12(ξ)D22(ξ)HD22(ξ) f2(x),

ω3(x; ξ) = − f T
2 (x)D22(ξ)HD22(ξ)M21(ξ)M−1

11 (ξ) f1(x),
ω4(x; ξ) = f T

2 (x)D22(ξ)HD22(ξ) f2(x).
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