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1. Introduction and preliminaries

Let H = Q X (11, 72) X (0, 0), in the present work, we consider the following Kirchhoff equation
ot [Py — ({o + 4IVull; + o (Vu, Vuz)Lzm))Au(t) — Auy (1)
!
+ f h(t — 0)Au(o)do + Bulu (D" uy(1)
0

+ f ; 1B ()l (t = )" u,(t — s)ds = uln|ul*. (1.1)

u(x, O)T]: up(x), u(x,0) =ui(x), in Q
u(x,—t) = fo(x,1), in Qx(0,1)
u(x,n) =0, in 0Q x (0, 00),
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where Q € R" is a bounded domain with sufficiently smooth boundary 6Q. ¢y, £y, o, B1, k are positive
constants, 3, is a real number. p > 0for N =1,2,and 0 < p < ﬁ forN >3,andm > 1for N = 1,2,
and 1 < m < %—fg for N > 3, 7; < 1, are non-negative constants and 3, : [11,72] — R is a bounded
function , 4 is a positive function.

Physically, the relationship between the stress and strain history in the beam inspired by Boltzmann
theory called viscoelastic damping term, where the kernel of the term of memory is the function &
(See [8,13,15-22,25]. In [3], Balakrishnan and Taylor they proposed a new model of damping called
it the Balakrishnan-Taylor damping , as it relates to the span problem and the plate equation. For more
depth, here are some papers that focused on the study of this damping [3, 6, 10, 16, 30].

The effect of the delay often appear in many applications and piratical problems and turns a lot of
systems into different problems worth studying. Recently, the stability and the asymptotic behavior
of evolution systems with time delay especially the distributed delay effect has been studied by many
authors [1,9, 12-14, 24, 25,27-29, 31,32, 34]. The great importance of the logarithmic nonlinearity
in physics is that they appear in several issues and theories, including symmetry, cosmology, quantum
mechanics, as well as nuclear physics. It is also used in many applications such as optical, nuclear and
even subterranean physics. Many researchers also touched on this type of problem in several different
issues, where the global existence of solutions, stability and blow-up of solutions were studied. For
more information, the reader is referred to [4, 5, 7].

Based on all of the above, the combination of these terms of damping (Memory term, Balakrishnan-

Taylor damping, logarithmic nonlinearity and the distributed delay terms ) in one particular problem
T2

with the addition of the distributed delay term ( 1B2($)]|ue, (2 — )" 2u,(t — s)ds) we believe that it

constitutes a new problem worthy of study and reTs]earch, different from the above that we will try to
shed light on.

Our paper is divided into several sections: in the next section we lay down the hypotheses, concepts
and lemmas we need. In the section 3, we state the global existence and in the section 4, we prove the
general decay of solutions. Finally, we put a general conclusion.

For studying our problem, in this section we will need some materials.

Firstly, introducing the following hypothesis for k, 8, and A:
(A1) h: R, — R, are non-increasing C' functions satisfying

hm>o,@—jmm@@:1>a (1.2)
0

(A2)39 : R, — R, is a non-increasing C' function, and a constant 1 < 6 < % satisfying
IO () + W () <0, V1> 0. (1.3)

(A3) 3, : [11,72] — R is a bounded function satisfying

‘[ B2(9)lds < Bi. (1.4)

(A4)The constant k in (1.1) is satisfying

0 <k < ko :=2Iné’. (1.5)
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Let us introduce )
(hoy)(r) := fgfo h(t — 0)l(1) — ¥(o0)*dodx.

and
M) = ({o + OlIVulls + o(Vu(?), Vuz(t))LZ(Q))-

Lemma 1. (Sobolev-Poincare inequality [2]). Let2 < g < oo(n = 1,2) or2 < g < ,12_—”2(n > 3). Then,

dc, = ¢(Q, q) > 0 such that
lull, < c.lVull,, Yu € Hy(Q).

As in [33], taking the following new variables

y(x,p, s, 1) = u(x,t — sp),

which satisfy

syi(x, 0,8, 1) +y,(x,p,5,1) =0,
y(X, 09 Sa t) = ut(-x7 t)'

So, problem (1.1) can be written as

Pty — (40 + GlIVulR + o (Va, VM:)Lz(Q))AM(I)
!

+ f h(t = 0)Au(Q)do — Auy (1) + Bilu (D" u (1)

072

+ | 1B)ly(x, 1, s, D" y(x, 1,5, Hds = uln |ul".

T1
sy (x,0,8,1) +y,(x,p,,1) = 0.
u(x,0) = ug(x), ux,0)=u(x), in Q
y(x, p,5,0) = fo(x,ps), in Qx(0,1)x(0,7,)
u(x,1) =0, in 0Q x (0, 00),

where
(xap, S, t) € Q X (0’ 1) X (Tl’ TZ) X (0’ OO)

Now, we give the energy functional.

Lemma 2. The energy functional E, defined by

1 o 1 '
Ew = sl + 540 - fo Ho)do)Ivuli
G

4

-1 I o
f f siB2(Nly(x, ps s, Dl dsdp,
0 T|

m

1
+§||Vut(t)||§ +
Q

m

k
+Z||u(t)||§ +
satisfies

1
E'() < —nollu DIl + E(h’ o Vu)(r)

1 1
IVu(@)ll; + (e Viy® -3 f u® In ul*dx

(1.6)

(1.7)

(1.8)
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(o8

1 2 d 2 2
~SHOIVuOIE - Z(d—t{nwa»b}) <0, (1.9)

where ny = 51 — f: |B2(s)|ds > 0.

Proof. Taking the inner product of (1.7); with u,, then integrating over Q, we find
(ot uy (8), w () 120) — (M(OAU(E), u, (1)) 1202y — (At (1), us (1)) 122
A
+(f h(t — 0)Au(o)do, u ()12 + Br(ud™ s, u) 12
0

7
+ f Bo(Ny(x, 1, 5, D" 2y (x, 1, 5,0), (1) 2y dls

—(kuln |ul, u(1))12q) = 0.

(1.10)
A calculation direct, gives
1 d "
(PO, u (D) = ma(numnﬁj), (L11)
1d
OOy = 5 (IFwIE) (1.12)
by integration by parts, we find
—(M(@)Au(t), u ()2
= —((éo + &lIVull3 + o(Vu(o), V”t(t))Lz(Q))Au(t)a u ()2
= ({0 + §1||VM||% + O'(Vl/t(t), VM,(t))LZ(Q)) L Vu(t)Vut(t)dx
d
= (60+ &lIVUE + o), V)20 1 fg V(x|
d(l d 2
= 256+ L)) + 5 < livuwis)
(1.13)
and we have
( f h(t — 0)Au(o)do, u(1)2q)
0
= f h(t — 0)(Au(), u())2ydo
0
= —f h(t — o) fVu(x, o)Vu(x, t)dx]d@,
0 Q
(1.14)
" — Vu(x, 0).Vu(x, 1) = li{wu(x 0) — Vu(x t)(z)|2} - 1£{|Vu(x t)|2} (1.15)
I Y7 ’ ’ 2dt O '
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then

- f h(t — 0)(Vu(o), Vu,(1))12q)do

f h(t - 0) f —— IVu(x z)|2 dxdg
1 2
th(t—g) — fqu(x,t)—Vu(x,Q)l dx}]dg

_1 f h(t—Q)[ {||Vu(x t)IIZ}]dxdg

2

We use (1.2), we obtain

—

_fth(t_g)[d%{fgqu(x,t)—Vu(x,Q)lde}]dQ

_ %%{ f h(t—g)[ fg |Vu(x,t)—Vu(x,g)|2dx]}d9

\®]

—% f h’(t—g)[ f |Vu(x,t)—vu(x,g)|2dx]dg
0 Q

1d 1,
= 5o V(D = S o Vu),

; f it ‘9)[ {IIVu(t)llz}]dde
_%(fo h(t—Q)dg)(E{IIVu(t)”g})dx
_%(f(:h(Q)dQ)(d%{HVu(t)H%})dx

1d

¢ ) 1 2
_Ed_r{(fo h(g)dg)lqu(t)||2} + Eh(t)IIVu(t)Ilz-

By substitying (1.17) and (1.18) into (1.16), gives

and

( f At - 0)Auto)do, (1)
0 L2(Q)

_odql. 1 r 2
= 2limovun -5 fo ooV
1 1
5O 0 V)0 + ShOIVu(OI,

and we have

d (k 1
—(kulnlul,u,(t))Lz(Q):d—t{zllu(t)llg—i fg uzlnlulkdx}.

fh(t—g)f —— IVu(x 0) — Vu(x,1)| }]dxds.

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)
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Now, multiplying the Eq (1.7), by —y|8,(s)|, and integrating over Q X (0, 1) X (71, 7), and using (1.6),,

we get

d m-1

g f f By, 5, D" dsclpdx

- -y [ f [ tyasdpas
QJo T]

m-—1 b rm d

= _—ff f IﬂZ(Q)ld_ly(xapas’t)lmdepdx

QJo Jr P

- 1 T
_m ff Iﬂz(S)l(Iy(x, 0,5, 0" - [y(x, 1, s, t)I'”)dsdx
m o Jn

1 T2
—f |B2(s)lds flu,(t)lmdx

ff 1B2()I.ly (x, 1, 5,0) ["dsdx
m-—1

_ T( ] |,82(s)|ds)||btz(l)||m

m—1
e f B2y (x, 1, 5, D) [[;,ds, (1.21)
T1
and by Young’s inequality, we have
T2
f BB L, 023 L) s (1.22)
T]

AL
L f wz(s)IdS)lluz(t)||nm1+
m T

By replacement (1.11)—(1.13) and (1.19)—(1.22) into (1.10), we find (1.8) and (1.9). Hence, by (1.4),
we get the function E is a non-increasing. This completes of the proof. O

Lemma 3. Let g € (0, 1). Then, 3d,, > 0 such that
vilnv] <V + dgov]_a", Yv > 0. (1.23)

Lemma 4. [11,23] (Logarithmic Sobolev inequality) Let u € H(l) Q) and a > 0. Then
2 1o 2 a 2 2
u”In fuldx < =|lu|l; Inlull; + —|IVull5 = (1 + Ina)||u|l5. (1.24)
Q 2 271'

Theorem 1. Suppose that (1.2)—(1.5) are satisfied. Then, for any uy,u; € Hé (Q) N LXQ), and f, €
L*(Q,(0, 1), (11, 12)), there exists a weak solution u of problem (1.7) such that

u € C(10, T[, Hy(Q)) N C'(10, T[, L*(Q)),
u, € C(10, T[, Hy(Q)) N L*(10, T[, L*(€2, (0, 1), (11, 72))).
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2. Global existence

In this section, under smallness condition the global existence result is proved. Introducing the

following functionals

1 ! 1 1
Ju) = E(go_f(;h(Q)dQ)”VM(t)”%"'E”Vlfiz(t)”%_Efgu2ln|u|kdx
4
4
1 Ty
j(;f sIB2(Nly(x, o, 5, Dlld sdp,

1 k
+5(ho Vu)(r) + V()3 + Znu(r)u%

m-—1
+

m

and
1w = (a- fo th(g)dp)nwa)u%||Vu,(t)||§
-3 fg u? In|ulfdx + (h o Vu)(@).
Hence
E() = piznutui:iw(u),
and

J(u)

1 A
(e - fo Hedo)IVu(IB + IV (®IB + (o Vio(o)}

m—1 1 1)
&1 IVu(®)ll3 + f f siB2()lly(x, p, 5, Dl dsdp
0 T]

+_
4 m

k 1
+Z||u(t)||§ + 31w,

First, suppose that

and we define
201k

3
C, = k(E +Ina), w,:=e * ,
the condition (2.5) makes C; > 0.

Lemma 5. The following inequalities hold

k f u’ Infuldx < ke)||Vull3, Yu € Hy(Q),
Q

and 1/3
( f |u|3dx) < ¢ lIVull, Vu € Hi(Q),
Q

where c, is the smallest embedding constant of H(l) (Q) in L= (Q).

2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

2.7)

(2.8)
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Proof. Let
Q={ueQ:ju>1}, BL={ueQ:u <1}

So, by (2.8) and (1.23) , gives

kfuzlnluldx = kf u21n|u|dx+kf u? In |uldx
Q Q Qy

k f wWinluldx <k | |uPdx <k f luldx
O Q Q

3 3
ke IVul3.

IA

IA

O

Lemma 6. Suppose that (1.2), (2.5) and ug, u; € Hy(Q) N L*(Q), and fy € L*(Q, (0, 1)) hold, ||ul» < w.

and PQ2nl — ka*) nle?
) 2rl — ka”) nle
0 < E(O {E , , } 2.9
< E(0) <minq £, 36k27rcg 2 2.9)
Then,
I(u) >0, Yte[0,T). (2.10)
Proof. By (1.2), (2.3) and (1.24), we have
E@t) > Ju))
l 1 1
> EIIVu(t)H% + EIIVut(t)H% ~3 fguz In [ul*dx
1 k
+3h0 Vi®) + SV + 5ol
m— 1 1 T2
+ f f sIB2()lly(x, o, 5, DIld sdp
m 0 T1
1 ka? k(3 1
> z(l - g)lqu(t)H% + 5(5 +lna- 1n||u||§)||u||§. @.11)
Then, by (2.5) and (2.6), gives
1 k
E(t) 2 F(w) = 3C10” = 70’ Ine?, (2.12)
where w = ||u||,. After studying the function ¥, we conclude that exist w, > 0 in which ¥ is increasing
on (0, w.), and deceasing on (w., o). Furthermore, we have lim,,_,,., = —co. and from him
1 k
max F(w) = =C w? — —w?*Inw? := E,. (2.13)
O<w<+oo 2 4

Suppose ||ull, < w. is not true in [0, 7). Hence, by continuity of u(¢), it follows that there exists
0 <ty < T satisfying ||u(x, tp)|l, = w.. From (2.12) give

E(ty) > F (w.) = E;. But this is impossible because E(¢) < E(0) < E;, Vt > 0.

Now, from (2.11), we get

2
E(f) > J(u(t) > %(1 _ %)nwmng >0,

AIMS Mathematics Volume 7, Issue 3, 4517-4539.
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which implies

IV < (5 JEO) < (57 JECO)

Hence, by (2.2), (2.7) and (2.14), we get

1(?)

v

NIVu@®)|3 -3 f u? In |ul*dx
Q

%

Ar 12
{z ~3ke (TE(O)) }||Vu(t)||§.
According (2.5), (2.9) and (2.15), we obtain

I(t) > 0.

This completes the proofs.

3. General decay

(2.14)

(2.15)

(2.16)

In this section, we state and prove the asymptotic behavior of the system (1.7). For this goal, we set

W) = f w(OlwlPu(Ddx + Z|Vu@)|l + f Vu(h)Vu,(Hdx,
p +1 Q 4 Q

and

|ut|”ut) fo h(t — 0)(u(r) — u(o))dodx,

1
d(r) = L(Au,—p+l

1 19)
@) = f f se B (9)-lly(x, o, 5, Dl d sdp.
0 T1

and

Lemma 7. The functional Y(t) defined in (3.1) satisfies, for any € > 0
, !
V@) < p—n ullyl; = (5 = aler + e)lIVully = &IVl
+c(h o Vu)(t) + ||Vul5 + k f u? In |uldx
Q

+c<s)(||u,||z+ f wz(s)|.||y(x,1,s,r>||zds).

Proof. A differentiation of (3.1) and using (1.7),, gives

’ 1 2 2
Y = p+lllutlliiz+Llu,|”uﬂudx+UlIVMIIZLVu,Vudx

AIMS Mathematics Volume 7, Issue 3,
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+ f Vu(t)Vu,()dx + ||Vl
Q

1 +2 2 4 -2
= D5 = ollVully = &illVull, B | ™ uudx

p+1 Q
Ji
+ f Vu(t) f th(t—Q)Vu(g)dgdxHIVutII%+k f u? In |uldx
Q 0 J2 Q
—~ fg f ; Ba(lly(x, 1, s, O™ y(x, 1, s, £).udsdx . (3.5)

J3

We estimate the last 3 terms of the RHS of (3.5). Applying Hélder’s, Sobolev-Poincare and Young’s
inequalities, (1.2) and (1.8), we find

Ji < BTl + c@)lludly,
gpy clIVully + c(@)lludl,
. m E(O) (m=2)/2
e Cf’( I )
ec1||Vulls + c(&)llul, (3.6)

IA

IA

2
IVull; + c(&)llul,

IA

and
2 & 2, €
Jo < (Go—DIIVull; + EIIVMIIZ + 8—(h o Vu)(r)
4
< Go—1+ ZVulR + =(h o Vi),
2 &4
by letting &4 = [, we get
l
o < (- E)IIVMI@ + c(h o Vu)(2). 3.7
Similarly to J;, we have
T2
J3 < eollVulls + C(S)f 1B2(9)].lly(Cx, 1, s, D)l nds. (3.8)
Combining (3.6)—(3.8) and (3.5), we get
, 1 [
() < mllufll’;ﬁ - (5 — &(cr + eIVl = ilIVull;
+kf u? In |uldx + ||Vu,||§ + c(h o Vu)(t)
Q
T2
ety + f By 1, 5. Dllds).

O

AIMS Mathematics Volume 7, Issue 3, 4517-4539.
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Lemma 8. The functional O(t) defined in (3.37) satisfies, for any 6 > 0

1 ! +
o0 < -—| f o)l +o{2+ 2o - 17 + 1)1Vul}
0

p+1
+10||Vull; + 6

ocE0)(1 d 2)2
v
l (2 AN

+(2c(6 + (—15))(;; o Vu)(®) + c(go, 8)(h o Vi) 1+ ()

+C(5)(|Iutllﬁi+f Wz(S)I-IIy(X,l,S,t)lledS)

+(61<1 + C(EQO)) - f h(g)d@)nw,n%

0

) (h(O)ci

e c(dl))(h’ o Vu)(1).

Proof. A differentiation of (3.37) and using (1.7);, gives

D'(1)

+ f f IBz(S)IIy(x,l,s,t)l’"‘zy(x,l,s,t).( f h(t—Q)(u(t)—u(Q))dQ)dsdx
Q Jr 0

AIMS Mathematics

f (Au,,—unm,w) f h(t - 0)(u(t) — u(o))dodx
Q 0

. fQ (Au,—pi il fo (1 = 0)(ult) - u(0))dodx

—([ “txde)lul - ( | oo Ivu

~ (o + &lIVull) f Vu f h(t — 0)(Vu(t) — Vu(o))dodx
Q 0

Ji

—UfVuVutdx.fVuf h(t — 0)(Vu(t) — Vu(o))dodx
Q Q 0

J2

. f ( f i ~ 0 Vuto)do) f At — XVt ~ Vat)do)dx
Q 0 0

J3

1 f |ut|m_2ut( f h(t—Q)(u(t)—u(Q))dQ)dX
Q 0

J4

Js

f el f (1 — 0)(u(t) — u(0))dodx
Q 0

Js

(3.9)

Volume 7, Issue 3, 4517-4539.
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_ f Vi f (1 = 0)(Vult) - Vu(o))dodx
Q

—k f wln Jul. f h(t—g)(u(t)—u(g))dg)dsdx
Q

Jg

— 1 ' p+2 ! 2
p+1( fo no)do w2 - ( fo ho)do IV (3.10)

We estimate the terms of the RHS of (3.10). Applying Holder’s, Sobolev-Poincare and Young’s
inequalities, (1.2) and (1.8), we find

| /1]

IA

-1
(o + {1||Vu||§)(5IIVMII§ + %(ﬁ ° Vu)(t))

o(do =D N £1(do — DE(0)
46 416

IA

oGolVul + 62,1Vl + Jono vao,

(3.11)

and

J>

IA

2 _
50( f Vuvu,dx) vl + 297D 6 v

46
2 _
sTEO (S SvuR) + 8= D0 o, (3.12)

|J3]

IA

t 2
Y fg ( f h(t—Q)(IVu(t)—Vu(Q)I—Vlu(t)l)dg) dx

0

t 2
‘o ( f h(t - Q)(Vu(t)—Vu(Q))dg) dx

26(Zo — D[Vl + c((s + )(h o Vu)(f), (3.13)

IA

[ J4]

IA

Ol + 5B f ( fo h(r—g)(u(r)—u(g))d@)mdx

Q

IA

c(@)llurlly, + 7o = D"y fo h(t - 0)IVu(r) — Vu(o)ll; do

IA

E
@l + o{B7& - l)'"‘lc;1(¥><’"‘2>/2)(h o Vu)(1)
c(O)lugll;, + 6c3(h o Vu)(t), (3.14)

IA

Similarly, we have
T2
/5l < 0(5)f B2(ON Ny, 1, 5, Dllds + dcalh o Vu)(@). (3.15)
71

AIMS Mathematics Volume 7, Issue 3, 4517-4539.
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By exploiting the Sobolev embedding, we have

1 . c o,
el < m(éluutniﬁgiha fg fo (~h (r—g))m(t)—u(mﬁdgdx)
< BB IIVull; = e o Vu)(), (3.16)
and
h(0
|7l < 61||Vut||§——4(5)(h’ovu)(t). (3.17)
1

Applying (1.24) for v = |u|, using the embedding of H,(Q) in L¥(Q) and performing the same
calulactions as before,weget, for any &5 > 0 and any &, € (0, 1),

kf(u2 +d80u]_‘9°).
Q

) f 2 f Wi - 0)(ult) - u())do
Q 0

+c(&o, &5) fQ fo h(t — 0)(u(t) — u(o))do

2 C
ces||Vul 2 + — f
&5 Jo

+c(&o, &5) fg f h(t — 0)(u(t) — u(o))de

0
then, by letting &5 = g and using Holder’s inequality, we get

|l dx

IA

fo Wt - 0)(u(t) - u(@))do

dx + &s f wtdx
Q

2
|1+£

de

IA

2
dx

IA

f h(t = 0)(ult) - u(o))do

0

0
dx,

2
‘IJrs

sl < SlIVull3 + (Es(h o Vu)(1) + c(g9, 6)(h o Vi) /(7). (3.18)

According (3.11)—(3.18) and (3.10), we get (3.9). m|
Lemma 9. The functional ©O(t) defined in (3.3) satisfies

1 19}
oW < -m f f BV p. 5. DI dsdp
0 T]
n f Baly (6, 1, 5,0 (s + Ballun(OI (3.19)

T1

Proof. By differentiating of O(7), and using (1.7),, gives

1 T)
—-m f f f e PBo()IyI" "y, (x, p, 5, 1) dsdpdx
Q JO T]

1 19)
—ff f se P |Br(s)].Iy(x, p, s, )" dsdpdx
Q 0 T1

T2
- f f I,Bz(S)I[e‘SIy(x,l,s,t)l”’—Iy(x,O,s,t) " |dsdx.
Q J1

®'(1)
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Applying y(x,0, s,1) = u,(x,t),and e™* < e ¥ < 1, forany 0 < p < 1, and we set ; = ¢” ", we obtain

1 T2
0® < -m f f f By p, 5, D dsdpdx
Q JO T1

-1 f f 1B2(9)lly(x, 1, s, H|"dsdx + f |B2(s)lds fg || (H)dx,
QJT1 T

using (1.4), we find (3.19).

O
Now, we introduce the functional
G(t) = E@) +&¥Y() + &0(1) + £30(2), (3.20)
for some positive constants g;,i = 1,2, 3 to be determined.
Lemma 10. There exist uy, u, > 0, such that
M E(r) < G(1) < o E(1). (3.21)

Proof. From (3.1), by using Holder inequality (for g; = 2 ﬁ q» = p + 2), Young’s inequality (for
k > 0), and embedding Hy < L*"*D, ||u,||‘"+2 < [(p + 2)E(0)]77, we find

WO < a0l + 5 (190 + 19uto]R)
< G 1)2” u(ll s+ ||u(t>||,,+2
+—(||Vut<r>||§ . ||Vu(r>||§)
<5 1)2|| wOI Ml DI + —||u<r>||,,+2
5 (19 + 19 utoR) (3.22)
S i()’ﬁ] OIS + cITutol + 3190l

where c(k) = (20 + 1), with Cy comes from the embedding H} < L*P*D.
According to the relations (3.22), (3.37)—(3.39) and by using Holder Young’s and poincare inequalities,
we get

G0 - EQ)| < &2t 2)E(0)]7

N 8‘( 20 +1)2 lluz<t>ll”i§+c(K)||Vu(t)||§)

+(er + 82) IIVut(t)Ilz +e—+ IIVu(t)||2
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2p+1) (&o — De(p)

t&) 2(p 50 IR + e o Vi)
+63 fo fT se P Ba(NlIy(x, o, 5, DIl d sdp, (3.23)
where c(p) = 1% +1).
By e < 1, we find
IG(1) — E(t)| < C(e1,€,83,KEQ). (3.24)

We pick k = 1 and choosing &1, &; and &3 sufficiently small, then (3.21) follows from (3.24).
O

Lemma 11. Suppose that (1.2)—(1.5),(2.5) and (2.9) hold, let €y € (0,1). There exist ki, ky,typ > 0
satisfying

G @) < —kiE®) + ky(h o Vu)(®) + c(g9)(h o Vi) /10 1), ¢ > 1. (3.25)

Proof. Since the function /4 is a positive and continuous, for all 7, > 0, we have

! 1)
f h(o)do > f h(o)do := hy, Yt > t,.
0 0

By using the relation (1.9) with the results of Lemmas 7, 8 and 9,
then, for ¢ > 1y, we get

Gt = E@+e¥V (@) +ed()+e0()
(e = eaho) 3 + {szaa - i ivul

IA

£26(%0 + 240 = ) + 1) - 81(— — &y + CZ))}”V””z

e+ 6,1 + «(EO)) - ho]}nwtnz

A T\ ||%)2

g
{
{
+{cel L 2eer(5+ )}(h o Vu)(1) + c(eo, 8)(h o V) /I+0(p)
3-
{

+{&0

; [ c(61))}(h' o Vii)(1)

+Hec(e) + £2¢(0) + 381 — no}||ut||2 + ke j; u? In [uldx

Heree) + e2c(6) -~ mes f " By 1,5, llnds

s [ | f By, 5, D sdp. (3.26)
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Using (1.8) ,we obtain, for any y > 0,

gn <

1 (p+1)
EW) + o }u 2

p+2

1 {81 — 82/’10

Hetio - erty + y—gl}nv ull!

Hed(to+ 20 -1+ 1) - el(——s<c1+cz>>+ <§o—ho)}||w||2
e + &a[6,(1 + c(EO)) - ho] + }||Vut||2

T }( IV ||2) + Ll

{
{
{
+{cal +2cex(6 + ~ ) + }(h o Vu)(t) + c(0, 8)(h o V) /+) (1)
(-
{
{

+

]

—+

2y c(&))}(h’ o Vi)
+e1c(e) + £,¢(0) + 361 — no}llutllﬁ + k(g; — %) f u*In |ue|d x
Q

T2

+1&1¢(8) + &£2¢(0) - 77183} Ba(NlIyCx, 1, 5, Dllds

m—1 b prm
(= mees 2220 [ il p.s.oiidsdp
0 T

Using the Logarithmic Sobolev inequality (1.24), we get

G0

AIMS Mathematics

<

y(p + 1) pi2
1772

1
—vE(t - &hy +
Y ()+p+1{81 & +
Hetid - endy + L i

l
+{825(§0 20— 7 + 1) = (5 — oler + &)

(12
+26 - ho + @ i }||Vu||§

e+ £06,(1 + c(EO)) - ho] + }||Vut||2

e 70 }( < v ||2)

+icer + 2ce(6 + ) + = }(h o Vu)(t) + c(go, 6)(h o Vu)/+¥0)(p)

{
{
{
4
{
{

+

Py c<61>)}<h' o Vu)(t)

1
5 82(
Herc(e) + £:2¢5) + e381 — no}uutnz

T2

+i&1c(e) + £,¢(0) — 77183} 1B2(9)I.lly(x, 1, s, D)l s

7]

(3.27)
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-1 L
{~men+ T2 [ [ atolivcep. sidsdp
m 0 T]

k
—5{@1 - %)(20 +1Ina) - 1n||u||§) - g}nuné.
Using (1.9), (2.1), (2.4), and (2.10), we find
4 4 4
In flull? < ln(%J(t)) < ln(%E(t)) < ln(%E(O)).

According (2.9) and (3.29), we have
2(1 +Ina) - In lull5 > 0.

Next, we carefully choose our constants.

Letting 6, = m, and we choose & small enough such that

[
E—S(Cl +C2) > 0.

Then, we pick ¢ small enough such that

ho(4 — &(ct + ¢2)) _ ho}

0 < mi { ;=
MG 2@ -+ D) 2
For any fixed d,, 6 and &, we select &1, &, and &3 so small satisfying

0
382 <& < h082.

/
Ha 1= 62000 + 28 = 7 + 1) + e1(5 = (1 +¢2)) > 0,
and

1 hO)E
= — &
2 46,

eic(e) + &,c(0) + &361 — 19 <0,
e1c(e) + &c(0) —me; <0,

cE(0) <0

+¢(6y)) > 0,

826

Finally, we choose v, k small enough such that

yip+1) -

— &hy + 0, -=>0,
g1 — &y D +2 &1 2>
-1
825—81+Z<0, —7]183+M<0,
4 m
2
Yy y kcya
— (o —h - = 0,
/l3+2(§0 0) + (&1 2) o S

(3.28)

(3.29)
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&1 — &2lho — 81(1 + c(EO))] + % <0,

(1 - %)(2(1 tina) - 1n||u||§) _ % > 0.

Therefore, (3.28) becomes, for positive constants k;,i = 1,2

G () < —kE@) +ky(ho Vu)(@) + c(go)(h o Vu) /120 (1), Vi > t.

O
Remark 1. By (1.2), (2.3), (2.4) and (2.10), we have
[
E@) > J@) > 8||Vu(t)||§, (3.30)
then, by (1.9)
, 6
IVull; < 7E(O). (3.31)
Hence, using (1.9) and Young’s inequality, gives
1 1
E'OI < —nollu DI, + E(h' o Vu)(r) — Eh(t)llvbt(l)ll%
o(d S\
-2 (S{ivuir})
1 1
< E(h, o Vu)(1) — Eh(l)IIVu(t)llg
!
1
< f f W (t = o)(IVu@)I3 + IVu(o)|3)dodx — Eh(I)IIVM(t)Ilﬁ
aJo
6 3
< 7(2h(0) - Eh(r))E(O)
< cE(0). (3.32)
Corollary 1. Suppose that (1.2)—(1.5) hold, let u is a solution of (1.7). Then
1/(26-1)
9()(h o Vit)(1) < c( _ E’(t)) : (3.33)
and, for all gy € (0, 1)
1/(26-1)(1+&9)
91 (h o Vi) /70 (1) < c(so)( - E’(t)) (3.34)

Theorem 2. Suppose that (1.2)—(1.5) are satisfied, let (ugy, uy, fo) satisfy (2.9), ¢ € (0,260 — 1). Then,
Jor k small enough, AU > 0 such that the solution of (1.7) satisfies

—1/(20-2+¢)
) , Yt 1. (3.35)

E(7) sr(1+ f 9?71 (0)do

fo
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Hence, if there exist ¢; € (0,20 — 1) and ty > 0 such that

00 d -1/(26-2+¢)
f (1+ f 029-“9(9)519) dt < oo,
I I

0 0

Then, for all r € (0,60) and ty > 0, AU’ > 0 such that the solution of (1.7) satisfies

—1/(6-1+r)
) , Yt > 1.

E() < F(l + f t 9% (0)do

1o

Proof. Multiplying (3.25) by ¥(¢), using Corollary 1 and (3.32), we find

< —kiHOE®) + c(—E' (1)) 4 (= E' (1)) /- DI +ew)
S _kl ﬁ(t)E(t) + c(_E/(t))so/(zﬁf1)(1+80)(_E1(l))1/(29*1)(1+80)
+c(_E/(t))1/(29—l)(1+€0)

—ki (D E(1) + c(—E' (1)) /D0y > g,

YOG (1)

Multiply (3.38) by #"(t)E"(t), with n = (260 — 1)(1 + &y) — 1, and using the fact that %' < 0 to get

IOET DG (1) < k™ (E™ (1) + c(IEY (1) (=E' (1)) D).
By using Young’s inequality, with ¢ = n+ 1 and ¢* = (n + 1)/n, gives, for all & > 0,

I OE" G (1) <~k (OE™ (1) + (€9 (DE™ (1) — c(6)E (1))

= —(ky — ceYITOE™(t) - c(€)E (1), Vit > 1.
We select 0 < & < ]% and recalling ¥ < 0 and E’ <0, to find, for k5 = k; — €'c
@ E'G) (1) < 9 OENDG (1) < —ks9" (DE™ (1) = cE' (1), Vi > 1,

which implies
I E"G + cE) (1) < —k39" N (HE™ (1), Vi > 1.

Let
Y(@) = (OTE"G + cE)®) ~ E(),

we obtain
y/(t) < _Cﬁ]]+l(l,)y77+l(t) — _Cﬁl/(29—l)(l+£0)(t)yl/(29—1)(1+80)(t)’ vt > tO-

Integrating of (3.40) over (¢, t) and using (3.39), we get (3.35) with ¢ = (20 — 1)ey.

Remark 2. Using (3.35) and (3.36), we can easily show that

foo E()dt < co.
0

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)
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At this point, to prove (3.37), let the functional

o) := fo (IVu(®) = Vu(t - 0)l})do, (3.42)

by using (3.31), (3.35), (3.36) and (3.41), we find

et) < 2f0(IIVu(t)II+||Vu(t—9)||§)dQ

12
< T (E(r) + E(t — 0))do
0
24 (! 24 (™
< T E(o)do < 7f E(o)dp < oo. (3.43)
0 0
Hence
sup '~ 19(7) < co. (3.44)
>0

Suppose that ¢(¢) > 0. Then, since ¢} is non-increasing, we get
O (" 0 o 16 2
) (h o Vu)(r) < o) (@ (@h" () "(IVu(r) — Vu(r - 0)ll>)do,
0
by Jensen’s inequality to obtain
1 " 46y 0 A
) (h o Vu)(r) < w(f)(m f F(@h" ()(IVu(t) — Vu(r - Q)“z)dQ) :
0

Hence, by (1.3) and (3.44) we find

t 1/6
HOhoVu)(t) < o'V ”(r)(ﬁ@‘l(O) fo NI’ ()(IVu(?) — Vu(t - Q)Ilﬁ)dg)
< c(=H o Vu)'?(r).
From (1.9), we have
9()(h o Vu)(®) < c(—E’0)"°(1). (3.45)
Since ¥ is non-increasing function, we get
1/(1+&p)
D)o Vi)' ) < (970900 o Vun)
1/(1+&p)
< (ﬁEO(O)ﬁ(t)(h o Vu)(t))
< c(@@D)(h o Vu)(r))"/1+e0)
< c(—E'(5)/00*eN(p), (3.46)

If () = 0, then o — Vu(o) is a constant function on [0, 7]. Therefore

(hoVu)(t) =0,
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and hence (3.45) and (3.46) hold.
At this point, multiplying (3.25) by ¥(¢) and we use (3.32), (3.45) and (3.46) to obtain, for any ¢ > £,
(as for (3.38))

IDOG (1) < —kOOE() + c(—E'(1))/@-D1+0) yp > 40 (3.47)

Inequality (3.32) with 26— 1 replaced by 6 is exactely (3.47). Then, the proof of (3.37) can be completed
as for the one of (3.35) (by taking 7 = (1 + &) — 1 and ¢ = fg;). The proof is complete. O

4. Conclusions

The purpose of this work was to study the global existence of the solutions for a nonlinear
viscoelastic Kirchhoff-type equation with a logarithmic nonlinearity, Balakrishnan-Taylor damping,
dispersion and distributed delay terms, and by the energy method we prove an explicit and general
decay rate result under suitable hypothesis. This type of problem is frequently found in some
mathematical models in applied sciences.

In the next work, we will try to using the same method with same problem. But in added of other
damping terms.
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