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1. Introduction and preliminaries

LetH = Ω × (τ1, τ2) × (0,∞), in the present work, we consider the following Kirchhoff equation

|ut|
putt −

(
ζ0 + ζ1‖∇u‖22 + σ(∇u,∇ut)L2(Ω)

)
∆u(t) − ∆utt(t)

+

∫ t

0
h(t − %)∆u(%)d% + β1|ut(t)|m−2ut(t)

+

∫ τ2

τ1

|β2(s)||ut(t − s)|m−2ut(t − s)ds = u ln |u|k.

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω

ut(x,−t) = f0(x, t), in Ω × (0, τ2)
u(x, t) = 0, in ∂Ω × (0,∞),

(1.1)
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where Ω ∈ RN is a bounded domain with sufficiently smooth boundary ∂Ω. ζ0, ζ1, σ, β1, k are positive
constants, β2 is a real number. p ≥ 0 for N = 1, 2, and 0 ≤ p ≤ 4

N−2 for N ≥ 3, and m ≥ 1 for N = 1, 2,
and 1 < m ≤ N+2

N−2 for N ≥ 3, τ1 < τ2 are non-negative constants and β2 : [τ1, τ2] → R is a bounded
function , h is a positive function.

Physically, the relationship between the stress and strain history in the beam inspired by Boltzmann
theory called viscoelastic damping term, where the kernel of the term of memory is the function h
(See [8, 13, 15–22, 25]. In [3], Balakrishnan and Taylor they proposed a new model of damping called
it the Balakrishnan-Taylor damping , as it relates to the span problem and the plate equation. For more
depth, here are some papers that focused on the study of this damping [3, 6, 10, 16, 30].

The effect of the delay often appear in many applications and piratical problems and turns a lot of
systems into different problems worth studying. Recently, the stability and the asymptotic behavior
of evolution systems with time delay especially the distributed delay effect has been studied by many
authors [1, 9, 12–14, 24, 25, 27–29, 31, 32, 34]. The great importance of the logarithmic nonlinearity
in physics is that they appear in several issues and theories, including symmetry, cosmology, quantum
mechanics, as well as nuclear physics. It is also used in many applications such as optical, nuclear and
even subterranean physics. Many researchers also touched on this type of problem in several different
issues, where the global existence of solutions, stability and blow-up of solutions were studied. For
more information, the reader is referred to [4, 5, 7].

Based on all of the above, the combination of these terms of damping (Memory term, Balakrishnan-
Taylor damping, logarithmic nonlinearity and the distributed delay terms ) in one particular problem

with the addition of the distributed delay term (
∫ τ2

τ1

|β2(s)||ut(t − s)|m−2ut(t − s)ds) we believe that it

constitutes a new problem worthy of study and research, different from the above that we will try to
shed light on.

Our paper is divided into several sections: in the next section we lay down the hypotheses, concepts
and lemmas we need. In the section 3, we state the global existence and in the section 4, we prove the
general decay of solutions. Finally, we put a general conclusion.

For studying our problem, in this section we will need some materials.
Firstly, introducing the following hypothesis for k, β2 and h:
(A1) h : R+ → R+ are non-increasing C1 functions satisfying

h(t) > 0, ζ0 −

∫ ∞

0
h(%)d% = l > 0. (1.2)

(A2)∃ϑ : R+ → R+ is a non-increasing C1 function, and a constant 1 ≤ θ < 3
2 satisfying

ϑ(t)hθ (t) + h′(t) ≤ 0, ∀t ≥ 0. (1.3)

(A3) β2 : [τ1, τ2]→ R is a bounded function satisfying∫ τ2

τ1

|β2(s)|ds < β1. (1.4)

(A4)The constant k in (1.1) is satisfying

0 < k < k0 := 2lπe3. (1.5)
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Let us introduce

(h ◦ ψ)(t) :=
∫

Ω

∫ t

0
h(t − %)|ψ(t) − ψ(%)|2d%dx.

and
M(t) :=

(
ζ0 + ζ1‖∇u‖22 + σ(∇u(t),∇ut(t))L2(Ω)

)
.

Lemma 1. (Sobolev-Poincare inequality [2]). Let 2 ≤ q < ∞(n = 1, 2) or 2 ≤ q < 2n
n−2 (n ≥ 3). Then,

∃c∗ = c(Ω, q) > 0 such that
‖u‖q ≤ c∗‖∇u‖2, ∀u ∈ H1

0(Ω).

As in [33], taking the following new variables

y(x, ρ, s, t) = ut(x, t − sρ),

which satisfy {
syt(x, ρ, s, t) + yρ(x, ρ, s, t) = 0,
y(x, 0, s, t) = ut(x, t).

(1.6)

So, problem (1.1) can be written as

|ut|
putt −

(
ζ0 + ζ1‖∇u‖22 + σ(∇u,∇ut)L2(Ω)

)
∆u(t)

+

∫ t

0
h(t − %)∆u(%)d% − ∆utt(t) + β1|ut(t)|m−2ut(t)

+

∫ τ2

τ1

|β2(s)||y(x, 1, s, t)|m−2y(x, 1, s, t)ds = u ln |u|k.

syt(x, ρ, s, t) + yρ(x, ρ, s, t) = 0.
u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω

y(x, ρ, s, 0) = f0(x, ρs), in Ω × (0, 1) × (0, τ2)
u(x, t) = 0, in ∂Ω × (0,∞),

(1.7)

where
(x, ρ, s, t) ∈ Ω × (0, 1) × (τ1, τ2) × (0,∞).

Now, we give the energy functional.

Lemma 2. The energy functional E, defined by

E(t) =
1

p + 2
‖ut‖

p+2
p+2 +

1
2

(
ζ0 −

∫ t

0
h(%)d%

)
‖∇u(t)‖22

+
1
2
‖∇ut(t)‖22 +

ζ1

4
‖∇u(t)‖42 +

1
2

(h ◦ ∇u)(t) −
1
2

∫
Ω

u2 ln |u|kdx

+
k
4
‖u(t)‖22 +

m − 1
m

∫ 1

0

∫ τ2

τ1

s|β2(s)|‖y(x, ρ, s, t)‖mmdsdρ, (1.8)

satisfies

E′ (t) ≤ −η0‖ut(t)‖mm +
1
2

(h′ ◦ ∇u)(t)
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−
1
2

h(t)‖∇u(t)‖22 −
σ

4

( d
dt

{
‖∇u(t)‖22

})2

≤ 0, (1.9)

where η0 = β1 −
∫ τ2

τ1
|β2(s)|ds > 0.

Proof. Taking the inner product of (1.7)1 with ut, then integrating over Ω, we find

(|ut|
putt(t), ut(t))L2(Ω) − (M(t)∆u(t), ut(t))L2(Ω) − (∆utt(t), ut(t))L2(Ω)

+(
∫ t

0
h(t − %)∆u(%)d%, ut(t))L2(Ω) + β1(|ut|

m−2ut, ut)L2(Ω)

+

∫ τ2

τ1

|β2(s)|(|y(x, 1, s, t)|m−2y(x, 1, s, t), ut(t))L2(Ω)ds

−(ku ln |u|, ut(t))L2(Ω) = 0.
(1.10)

A calculation direct, gives

(|ut|
putt(t), ut(t))L2(Ω) =

1
p + 2

d
dt

(
‖ut(t)‖

p+2
p+2

)
, (1.11)

−(∆utt(t), ut(t))L2(Ω) =
1
2

d
dt

(
‖∇ut(t)‖22

)
, (1.12)

by integration by parts, we find

−(M(t)∆u(t), ut(t))L2(Ω)

= −(
(
ζ0 + ζ1‖∇u‖22 + σ(∇u(t),∇ut(t))L2(Ω)

)
∆u(t), ut(t))L2(Ω)

=

(
ζ0 + ζ1‖∇u‖22 + σ(∇u(t),∇ut(t))L2(Ω)

) ∫
Ω

∇u(t).∇ut(t)dx

=

(
ζ0 + ζ1‖∇u‖22 + σ(∇u(t),∇ut(t))L2(Ω)

) d
dt

{ ∫
Ω

|∇u(t)|2dx
}

=
d
dt

{1
2

(
ζ0 +

ζ1

2
‖∇u‖22

)
‖∇u(t)‖22

}
+
σ

4
d
dt

{
‖∇u(t)‖22

}2

,

(1.13)

and we have

(
∫ t

0
h(t − %)∆u(%)d%, ut(t))L2(Ω)

=

∫ t

0
h(t − %)(∆u(%), ut(t))L2(Ω)d%

= −

∫ t

0
h(t − %)

[ ∫
Ω

∇u(x, %)∇u(x, t)dx
]
d%,

(1.14)

and
− ∇u(x, %).∇u(x, t) =

1
2

d
dt

{
|∇u(x, %) − ∇u(x, t)(t)|2

}
−

1
2

d
dt

{
|∇u(x, t)|2

}
, (1.15)
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then

−

∫ t

0
h(t − %)(∇u(%),∇ut(t))L2(Ω)d%

= −

∫ t

0
h(t − %)

∫
Ω

[1
2

d
dt

{
|∇u(x, %) − ∇u(x, t)|2

}]
dxds.

−

∫ t

0
h(t − %)

∫
Ω

[1
2

d
dt

{
|∇u(x, t)|2

}]
dxd%

=
1
2

∫ t

0
h(t − %)

[ d
dt

{ ∫
Ω

|∇u(x, t) − ∇u(x, %)|2dx
}]

d%

−
1
2

∫ t

0
h(t − %)

[ d
dt

{
‖∇u(x, t)‖22

}]
dxd%. (1.16)

We use (1.2), we obtain

1
2

∫ t

0
h(t − %)

[ d
dt

{ ∫
Ω

|∇u(x, t) − ∇u(x, %)|2dx
}]

d%

=
1
2

d
dt

{ ∫ t

0
h(t − %)

[ ∫
Ω

|∇u(x, t) − ∇u(x, %)|2dx
]}

d%

−
1
2

∫ t

0
h′(t − %)

[ ∫
Ω

|∇u(x, t) − ∇u(x, %)|2dx
]
d%

=
1
2

d
dt

(h ◦ ∇u)(t) −
1
2

(h′ ◦ ∇u)(t), (1.17)

and

−
1
2

∫ t

0
h(t − %)

[ d
dt

{
‖∇u(t)‖22

}]
dxd%

= −
1
2

( ∫ t

0
h(t − %)d%

)( d
dt

{
‖∇u(t)‖22

})
dx

= −
1
2

( ∫ t

0
h(%)d%

)( d
dt

{
‖∇u(t)‖22

})
dx (1.18)

= −
1
2

d
dt

{( ∫ t

0
h(%)d%

)
‖∇u(t)‖22

}
+

1
2

h(t)‖∇u(t)‖22.

By substitying (1.17) and (1.18) into (1.16), gives( ∫ t

0
h(t − %)∆u(%)d%, ut(t)

)
L2(Ω)

=
d
dt

{1
2

(h ◦ ∇u)(t) −
1
2

( ∫ t

0
h(%)d%

)
‖∇u(t)‖22

}
−

1
2

(h′ ◦ ∇u)(t) +
1
2

h(t)‖∇u(t)‖22, (1.19)

and we have

−(ku ln |u|, ut(t))L2(Ω) =
d
dt

{k
4
‖u(t)‖22 −

1
2

∫
Ω

u2 ln |u|kdx
}
. (1.20)
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Now, multiplying the Eq (1.7)2 by −y|β2(s)|, and integrating over Ω× (0, 1)× (τ1, τ2), and using (1.6)2,
we get

d
dt

m − 1
m

∫
Ω

∫ 1

0

∫ τ2

τ1

s|β2(s)|.|y(x, ρ, s, t)|mdsdρdx

= −(m − 1)
∫

Ω

∫ 1

0

∫ τ2

τ1

|β2(s)|.|y|m−1yρdsdρdx

= −
m − 1

m

∫
Ω

∫ 1

0

∫ τ2

τ1

|β2(%)|
d

dρ
|y(x, ρ, s, t)|mdsdρdx

=
m − 1

m

∫
Ω

∫ τ2

τ1

|β2(s)|
(
|y(x, 0, s, t)|m − |y(x, 1, s, t)|m

)
dsdx

=
m − 1

m

( ∫ τ2

τ1

|β2(s)|ds
) ∫

Ω

|ut(t)|mdx

−
m − 1

m

∫
Ω

∫ τ2

τ1

|β2(s)|.|y (x, 1, s, t) |mdsdx

=
m − 1

m

( ∫ τ2

τ1

|β2(s)|ds
)
‖ut(t)‖mm

−
m − 1

m

∫ τ2

τ1

|β2(s)|‖y (x, 1, s, t) ‖mmds, (1.21)

and by Young’s inequality, we have∫ τ2

τ1

|β2(s)|
(
|y(x, 1, s, t)|m−2y(x, 1, s, t), ut(t)

)
L2(Ω)

ds (1.22)

≤
1
m

( ∫ τ2

τ1

|β2(s)|ds
)
‖ut(t)‖mm +

m − 1
m

∫ τ2

τ1

|β2(s)|‖y (x, 1, s, t) ‖mmds.

By replacement (1.11)–(1.13) and (1.19)–(1.22) into (1.10), we find (1.8) and (1.9). Hence, by (1.4),
we get the function E is a non-increasing. This completes of the proof. �

Lemma 3. Let ε0 ∈ (0, 1). Then, ∃dε0 > 0 such that

ν| ln ν| ≤ ν2 + dε0ν
1−ε0 , ∀ν > 0. (1.23)

Lemma 4. [11, 23] (Logarithmic Sobolev inequality) Let u ∈ H1
0(Ω) and a > 0. Then∫

Ω

u2 ln |u|dx ≤
1
2
‖u‖22 ln ‖u‖22 +

a2

2π
‖∇u‖22 − (1 + ln a)‖u‖22. (1.24)

Theorem 1. Suppose that (1.2)–(1.5) are satisfied. Then, for any u0, u1 ∈ H1
0(Ω) ∩ L2(Ω), and f0 ∈

L2(Ω, (0, 1), (τ1, τ2)), there exists a weak solution u of problem (1.7) such that

u ∈ C(]0,T [,H1
0(Ω)) ∩C1(]0,T [, L2(Ω)),

ut ∈ C(]0,T [,H1
0(Ω)) ∩ L2(]0,T [, L2(Ω, (0, 1), (τ1, τ2))).
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2. Global existence

In this section, under smallness condition the global existence result is proved. Introducing the
following functionals

J(u) =
1
2

(
ζ0 −

∫ t

0
h(%)d%

)
‖∇u(t)‖22 +

1
2
‖∇ut(t)‖22 −

1
2

∫
Ω

u2 ln |u|kdx

+
1
2

(h ◦ ∇u)(t) +
ζ1

4
‖∇u(t)‖42 +

k
4
‖u(t)‖22

+
m − 1

m

∫ 1

0

∫ τ2

τ1

s|β2(s)|‖y(x, ρ, s, t)‖mmdsdρ,

(2.1)

and

I(u) =

(
ζ0 −

∫ t

0
h(%)d%

)
‖∇u(t)‖22 + ‖∇ut(t)‖22

−3
∫

Ω

u2 ln |u|kdx + (h ◦ ∇u)(t). (2.2)

Hence

E(t) =
1

p + 2
‖ut‖

p+2
p+2 + J(u), (2.3)

and

J(u) =
1
6

{(
ζ0 −

∫ t

0
h(%)d%

)
‖∇u(t)‖22 + ‖∇ut(t)‖22 + (h ◦ ∇u)(t)

}
+
ζ1

4
‖∇u(t)‖42 +

m − 1
m

∫ 1

0

∫ τ2

τ1

s|β2(s)|‖y(x, ρ, s, t)‖mmdsdρ

+
k
4
‖u(t)‖22 +

1
3

I(u). (2.4)

First, suppose that

e−
3
2 < a <

√
2lπ
k
, (2.5)

and we define
C1 := k(

3
2

+ ln a), ω∗ := e
2C1−k

k , (2.6)

the condition (2.5) makes C1 > 0.

Lemma 5. The following inequalities hold

k
∫

Ω

u2 ln |u|dx ≤ kc3
p‖∇u‖32, ∀u ∈ H1

0(Ω), (2.7)

and ( ∫
Ω

|u|3dx
)1/3

≤ cp‖∇u‖2, ∀u ∈ H1
0(Ω), (2.8)

where cp is the smallest embedding constant of H1
0(Ω) in L∞(Ω).
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Proof. Let
Ω1 = {u ∈ Ω : |u| > 1}, Ω2 = {u ∈ Ω : |u| ≤ 1}.

So, by (2.8) and (1.23) , gives

k
∫

Ω

u2 ln |u|dx = k
∫

Ω1

u2 ln |u|dx + k
∫

Ω2

u2 ln |u|dx

≤ k
∫

Ω1

u2 ln |u|dx ≤ k
∫

Ω1

|u|3dx ≤ k
∫

Ω

|u|3dx

≤ kc3
p‖∇u‖32.

�

Lemma 6. Suppose that (1.2), (2.5) and u0, u1 ∈ H1
0(Ω)∩ L2(Ω), and f0 ∈ L2(Ω, (0, 1)) hold, ‖u‖2 < ω∗

and

0 < E(0) < min
{
E1,

l2(2πl − ka2)
36k2πc6

p
,
πle2

2

}
. (2.9)

Then,
I(u) ≥ 0, ∀t ∈ [0,T ). (2.10)

Proof. By (1.2), (2.3) and (1.24), we have

E(t) ≥ J(u(t))

≥
l
2
‖∇u(t)‖22 +

1
2
‖∇ut(t)‖22 −

1
2

∫
Ω

u2 ln |u|kdx

+
1
2

(h ◦ ∇u)(t) +
ζ1

4
‖∇u(t)‖42 +

k
4
‖u(t)‖22

+
m − 1

m

∫ 1

0

∫ τ2

τ1

s|β2(s)|‖y(x, ρ, s, t)‖mmdsdρ

≥
1
2

(
l −

ka2

2π

)
‖∇u(t)‖22 +

k
2

(3
2

+ ln a −
1
2

ln ‖u‖22
)
‖u‖22. (2.11)

Then, by (2.5) and (2.6), gives

E(t) ≥ F (ω) :=
1
2

C1ω
2 −

k
4
ω2 lnω2, (2.12)

where ω = ‖u‖2. After studying the function F , we conclude that exist ω∗ > 0 in which F is increasing
on (0, ω∗), and deceasing on (ω∗,∞). Furthermore, we have limω→+∞ = −∞. and from him

max
0<ω<+∞

F (ω) =
1
2

C1ω
2
∗ −

k
4
ω2
∗ lnω2

∗ := E1. (2.13)

Suppose ‖u‖2 < ω∗ is not true in [0,T ). Hence, by continuity of u(t), it follows that there exists
0 < t0 < T satisfying ‖u(x, t0)‖2 = ω∗. From (2.12) give
E(t0) ≥ F (ω∗) = E1. But this is impossible because E(t) ≤ E(0) < E1, ∀t ≥ 0.
Now, from (2.11), we get

E(t) ≥ J(u(t)) ≥
1
2

(
l −

ka2

2π

)
‖∇u(t)‖22 > 0,
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which implies

‖∇u(t)‖22 ≤
( 4π
2πl − ka2

)
E(t) ≤

( 4π
2πl − ka2

)
E(0). (2.14)

Hence, by (2.2), (2.7) and (2.14), we get

I(t) ≥ l‖∇u(t)‖22 − 3
∫

Ω

u2 ln |u|kdx

≥

{
l − 3kc3

p

( 4π
2πl − ka2 E(0)

)1/2}
‖∇u(t)‖22. (2.15)

According (2.5), (2.9) and (2.15), we obtain

I(t) ≥ 0. (2.16)

This completes the proofs. �

3. General decay

In this section, we state and prove the asymptotic behavior of the system (1.7). For this goal, we set

Ψ(t) :=
1

p + 1

∫
Ω

u(t)|ut|
put(t)dx +

σ

4
‖∇u(t)‖42 +

∫
Ω

∇u(t)∇ut(t)dx, (3.1)

and

Φ(t) :=
∫

Ω

(
∆ut −

1
p + 1

|ut|
put

) ∫ t

0
h(t − %)(u(t) − u(%))d%dx, (3.2)

and

Θ(t) :=
∫ 1

0

∫ τ2

τ1

se−ρs|β2(s)|.‖y(x, ρ, s, t)‖mmdsdρ.

(3.3)

Lemma 7. The functional Ψ(t) defined in (3.1) satisfies, for any ε > 0

Ψ′(t) ≤
1

p + 1
‖ut‖

p+2
p+2 − (

l
2
− ε(c1 + c2))‖∇u‖22 − ζ1‖∇u‖42

+c(h ◦ ∇u)(t) + ‖∇ut‖
2
2 + k

∫
Ω

u2 ln |u|dx

+c(ε)
(
‖ut‖

m
m +

∫ τ2

τ1

|β2(s)|.‖y(x, 1, s, t)‖mmds
)
. (3.4)

Proof. A differentiation of (3.1) and using (1.7)1, gives

Ψ′(t) =
1

p + 1
‖ut‖

p+2
p+2 +

∫
Ω

|ut|
puttudx + σ‖∇u‖22

∫
Ω

∇ut∇udx
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+

∫
Ω

∇u(t)∇utt(t)dx + ‖∇ut‖
2
2

=
1

p + 1
‖ut‖

p+2
p+2 − ζ0‖∇u‖22 − ζ1‖∇u‖42 −β1

∫
Ω

|ut|
m−2utudx︸                  ︷︷                  ︸

J1

+

∫
Ω

∇u(t)
∫ t

0
h(t − %)∇u(%)d%dx︸                                   ︷︷                                   ︸

J2

+‖∇ut‖
2
2 + k

∫
Ω

u2 ln |u|dx

−

∫
Ω

∫ τ2

τ1

|β2(s)||y(x, 1, s, t)|m−2y(x, 1, s, t).udsdx︸                                                       ︷︷                                                       ︸
J3

. (3.5)

We estimate the last 3 terms of the RHS of (3.5). Applying Hölder’s, Sobolev-Poincare and Young’s
inequalities, (1.2) and (1.8), we find

J1 ≤ εβm
1 ‖u‖

m
m + c(ε)‖ut‖

m
m

≤ εβm
1 cm

p ‖∇u‖m2 + c(ε)‖ut‖
m
m

≤ εβm
1 cm

p

(E(0)
l

)(m−2)/2

‖∇u‖22 + c(ε)‖ut‖
m
m

≤ εc1‖∇u‖22 + c(ε)‖ut‖
m
m, (3.6)

and

J2 ≤ (ζ0 − l)‖∇u‖22 +
ε4

2
‖∇u‖22 +

c
ε4

(h ◦ ∇u)(t)

≤ (ζ0 − l +
ε4

2
)‖∇u‖22 +

c
ε4

(h ◦ ∇u)(t),

by letting ε4 = l, we get

J2 ≤ (ζ0 −
l
2

)‖∇u‖22 + c(h ◦ ∇u)(t). (3.7)

Similarly to J1, we have

J3 ≤ εc2‖∇u‖22 + c(ε)
∫ τ2

τ1

|β2(s)|.‖y(x, 1, s, t)‖mmds. (3.8)

Combining (3.6)–(3.8) and (3.5), we get

Ψ′(t) ≤
1

p + 1
‖ut‖

p+2
p+2 − (

l
2
− ε(c1 + c2))‖∇u‖22 − ζ1‖∇u‖42

+k
∫

Ω

u2 ln |u|dx + ‖∇ut‖
2
2 + c(h ◦ ∇u)(t)

+c(ε)
(
‖ut‖

m
m +

∫ τ2

τ1

|β2(s)|.‖y(x, 1, s, t)‖mmds
)
.

�
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Lemma 8. The functional Φ(t) defined in (3.37) satisfies, for any δ > 0

Φ′(t) ≤ −
1

p + 1

( ∫ t

0
h(%)d%

)
‖ut‖

p+2
p+2 + δ

(
ζ0 + 2(ζ0 − l)2 + 1

)
‖∇u‖22

+ζ1δ‖∇u‖42 + δ
σE(0)

l

(1
2

d
dt
‖∇u‖22

)2

+

(
2c(δ +

1
δ

)
)
(h ◦ ∇u)(t) + c(ε0, δ)(h ◦ ∇u)1/(1+ε0)(t)

+c(δ)
(
‖ut‖

m
m +

∫ τ2

τ1

|β2(s)|.‖y(x, 1, s, t)‖mmds
)

+

(
δ1(1 + c(E(0))p) −

∫ t

0
h(%)d%

)
‖∇ut‖

2
2

−

(h(0)c2
p

4δ1
+ c(δ1)

)
(h′ ◦ ∇u)(t). (3.9)

Proof. A differentiation of (3.37) and using (1.7)1, gives

Φ′(t) =

∫
Ω

(
∆utt − utt|ut|

p
) ∫ t

0
h(t − %)(u(t) − u(%))d%dx

+

∫
Ω

(
∆ut −

1
p + 1

|ut|
put

) ∫ t

0
h′(t − %)(u(t) − u(%))d%dx

−
1

p + 1

( ∫ t

0
h(%)d%

)
‖ut‖

p+2
p+2 −

( ∫ t

0
h(%)d%

)
‖∇ut‖

2
2

= − (ζ0 + ζ1‖∇u‖22)
∫

Ω

∇u
∫ t

0
h(t − %)(∇u(t) − ∇u(%))d%dx︸                                                                 ︷︷                                                                 ︸

J1

−σ

∫
Ω

∇u∇utdx.
∫

Ω

∇u
∫ t

0
h(t − %)(∇u(t) − ∇u(%))d%dx︸                                                                     ︷︷                                                                     ︸
J2

+

∫
Ω

( ∫ t

0
h(t − %)∇u(%)d%

)
.
( ∫ t

0
h(t − %)(∇u(t) − ∇u(%))d%

)
dx︸                                                                              ︷︷                                                                              ︸

J3

+β1

∫
Ω

|ut|
m−2ut

( ∫ t

0
h(t − %)(u(t) − u(%))d%

)
dx︸                                                        ︷︷                                                        ︸

J4

+

∫
Ω

∫ τ2

τ1

|β2(s)||y(x, 1, s, t)|m−2y(x, 1, s, t).
( ∫ t

0
h(t − %)(u(t) − u(%))d%

)
dsdx︸                                                                                            ︷︷                                                                                            ︸

J5

−
1

p + 1

∫
Ω

|ut|
put

∫ t

0
h′(t − %)(u(t) − u(%))d%dx︸                                                        ︷︷                                                        ︸

J6
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−

∫
Ω

∇ut

∫ t

0
h′(t − %)(∇u(t) − ∇u(%))d%dx︸                                                  ︷︷                                                  ︸

J7

− k
∫

Ω

u ln |u|.
( ∫ t

0
h(t − %)(u(t) − u(%))d%

)
dsdx︸                                                      ︷︷                                                      ︸

J8

−
1

p + 1

( ∫ t

0
h(%)d%

)
‖ut‖

p+2
p+2 −

( ∫ t

0
h(%)d%

)
‖∇ut‖

2
2. (3.10)

We estimate the terms of the RHS of (3.10). Applying Hölder’s, Sobolev-Poincare and Young’s
inequalities, (1.2) and (1.8), we find

|J1| ≤ (ζ0 + ζ1‖∇u‖22)
(
δ‖∇u‖22 +

(ζ0 − l)
4δ

(h ◦ ∇u)(t)
)

≤ δζ0‖∇u‖22 + δζ1‖∇u‖42 +

(
ζ0(ζ0 − l)

4δ
+
ζ1(ζ0 − l)E(0)

4lδ

)
(h ◦ ∇u)(t),

(3.11)

and

J2 ≤ δσ
( ∫

Ω

∇u∇utdx
)2

‖∇u‖22 +
σ(ζ0 − l)

4δ
(h ◦ ∇u)(t)

≤ δ
σE(0)

l

(1
2

d
dt
‖∇u‖22

)2

+
σ(ζ0 − l)

4δ
(h ◦ ∇u)(t), (3.12)

|J3| ≤ δ

∫
Ω

( ∫ t

0
h(t − %)(|∇u(t) − ∇u(%)| − ∇|u(t)|)d%

)2

dx

+
1
4δ

∫
Ω

( ∫ t

0
h(t − %)(∇u(t) − ∇u(%))d%

)2

dx

≤ 2δ(ζ0 − l)2‖∇u‖22 + c
(
δ +

1
δ

)
(h ◦ ∇u)(t), (3.13)

|J4| ≤ c(δ)‖ut‖
m
m + δβm

1

∫
Ω

( ∫ t

0
h(t − %)(u(t) − u(%))d%

)m

dx

≤ c(δ)‖ut‖
m
m + δβm

1 (ζ0 − l)m−1cm
p

∫ t

0
h(t − %)‖∇u(t) − ∇u(%)‖m2 d%

≤ c(δ)‖ut‖
m
m + δ

(
βm

1 (ζ0 − l)m−1cm
p (

E(0)
l

)(m−2)/2
)
(h ◦ ∇u)(t)

≤ c(δ)‖ut‖
m
m + δc3(h ◦ ∇u)(t), (3.14)

Similarly, we have

|J5| ≤ c(δ)
∫ τ2

τ1

|β2(s)|.‖y(x, 1, s, t)‖mmds + δc4(h ◦ ∇u)(t). (3.15)

AIMS Mathematics Volume 7, Issue 3, 4517–4539.



4529

By exploiting the Sobolev embedding, we have

|J6| ≤
1

p + 1

(
δ1‖ut‖

2(p+1)
2(p+1) +

c
δ1

∫
Ω

∫ t

0
(−h′(t − %))|u(t) − u(%)|2d%dx

)
≤ cδ1(E(0))p‖∇ut‖

2
2 − c(δ1)(h′ ◦ ∇u)(t), (3.16)

and

|J7| ≤ δ1‖∇ut‖
2
2 −

h(0)
4δ1

(h′ ◦ ∇u)(t). (3.17)

Applying (1.24) for ν = |u|, using the embedding of H1
0(Ω) in L∞(Ω) and performing the same

calulactions as before,weget, for any ε5 > 0 and any ε0 ∈ (0, 1),

|J8| ≤ k
∫

Ω

(u2 + dε0u
1−ε0).

∣∣∣∣∣ ∫ t

0
h(t − %)(u(t) − u(%))d%

∣∣∣∣∣dx

≤ c
∫

Ω

u2
∣∣∣∣∣ ∫ t

0
h(t − %)(u(t) − u(%))d%

∣∣∣∣∣dx + ε5

∫
Ω

u2dx

+c(ε0, ε5)
∫

Ω

∣∣∣∣∣ ∫ t

0
h(t − %)(u(t) − u(%))d%

∣∣∣∣∣ 2
1+ε0

dx

≤ cε5‖∇u‖22 +
c
ε5

∫
Ω

∣∣∣∣∣ ∫ t

0
h(t − %)(u(t) − u(%))d%

∣∣∣∣∣2dx

+c(ε0, ε5)
∫

Ω

∣∣∣∣∣ ∫ t

0
h(t − %)(u(t) − u(%))d%

∣∣∣∣∣ 2
1+ε0

dx,

then, by letting ε5 = δ
c and using Hölder’s inequality, we get

|J8| ≤ δ‖∇u‖22 +
c
δ

(h ◦ ∇u)(t) + c(ε0, δ)(h ◦ ∇u)1/(1+ε0)(t). (3.18)

According (3.11)–(3.18) and (3.10), we get (3.9). �

Lemma 9. The functional Θ(t) defined in (3.3) satisfies

Θ′(t) ≤ −η1

∫ 1

0

∫ τ2

τ1

s|β2(s)|.‖y(x, ρ, s, t)‖mmdsdρ

−η1

∫ τ2

τ1

|β2(s)|.‖y (x, 1, s, t) ‖mmds + β1‖ut(t)‖mm. (3.19)

Proof. By differentiating of Θ(t), and using (1.7)2, gives

Θ′(t) = −m
∫

Ω

∫ 1

0

∫ τ2

τ1

e−sρ|β2(s)|.|y|m−1yρ (x, ρ, s, t) dsdρdx

= −

∫
Ω

∫ 1

0

∫ τ2

τ1

se−sρ|β2(s)|.|y(x, ρ, s, t)|mdsdρdx

−

∫
Ω

∫ τ2

τ1

|β2(s)|
[
e−s|y (x, 1, s, t) |m − |y (x, 0, s, t) |m

]
dsdx.
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Applying y(x, 0, s, t) = ut(x, t), and e−s ≤ e−sρ ≤ 1, for any 0 < ρ < 1, and we set η1 = e−τ2 , we obtain

Θ′(t) ≤ −η1

∫
Ω

∫ 1

0

∫ τ2

τ1

s|β2(s)|.|y(x, ρ, s, t)|mdsdρdx

−η1

∫
Ω

∫ τ2

τ1

|β2(s)||y(x, 1, s, t)|mdsdx +

∫ τ2

τ1

|β2(s)|ds
∫

Ω

|ut|
m(t)dx,

using (1.4), we find (3.19).
�

Now, we introduce the functional

G(t) := E(t) + ε1Ψ(t) + ε2Φ(t) + ε3Θ(t), (3.20)

for some positive constants εi, i = 1, 2, 3 to be determined.

Lemma 10. There exist µ1, µ2 > 0, such that

µ1E(t) ≤ G(t) ≤ µ2E(t). (3.21)

Proof. From (3.1), by using Hölder inequality (for q1 =
p+2
p+1 , q2 = p + 2), Young’s inequality (for

κ > 0), and embedding H1
0 ↪→ L2(p+1), ‖ut‖

p
p+2 ≤ [(p + 2)E(0)]

p
(p+2) , we find

Ψ(t) ≤
1

p + 1
‖ut(t)‖

p+1
p+2‖u(t)‖p+2 +

1
2

(
‖∇ut(t)‖22 + ‖∇u(t)‖22

)
≤

κ

2(p + 1)2 ‖ut(t)‖
2(p+1)
p+2 +

1
2κ
‖u(t)‖2p+2

+
1
2

(
‖∇ut(t)‖22 + ‖∇u(t)‖22

)
≤

κ

2(p + 1)2 ‖ut(t)‖
p
p+2‖ut(t)‖

p+2
p+2 +

1
2κ
‖u(t)‖2p+2

+
1
2

(
‖∇ut(t)‖22 + ‖∇u(t)‖22

)
(3.22)

≤
κ[(p + 2)E(0)]

p
(p+2)

2(p + 1)2 ‖ut(t)‖
p+2
p+2 + c(κ)‖∇u(t)‖22 +

1
2
‖∇ut(t)‖22,

where c(κ) = (C0
2κ + 1

2 ), with C0 comes from the embedding H1
0 ↪→ L2(p+1).

According to the relations (3.22), (3.37)–(3.39) and by using Hölder, Young’s and poincare inequalities,
we get

|G(t) − E(t)| ≤ ε1

(
κ[(p + 2)E(0)]

p
(p+2)

2(p + 1)2 ‖ut(t)‖
p+2
p+2 + c(κ)‖∇u(t)‖22

)
+(ε1 + ε2)

1
2
‖∇ut(t)‖22 + ε1

σ

4
‖∇u(t)‖42
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+ε2
1

2(p + 1)
‖ut(t)‖

2(p+1)
2(p+1) + ε2

(ζ0 − l)c(p)
2

(h ◦ ∇u)(t)

+ε3

∫ 1

0

∫ τ2

τ1

se−ρs|β2(s)|.‖y(x, ρ, s, t)‖mmdsdρ, (3.23)

where c(p) = ( cp

p+1 + 1).
By e−ρs < 1, we find

|G(t) − E(t)| ≤ C(ε1, ε2, ε3, κ)E(t). (3.24)

We pick κ = 1 and choosing ε1, ε2 and ε3 sufficiently small, then (3.21) follows from (3.24).
�

Lemma 11. Suppose that (1.2)–(1.5),(2.5) and (2.9) hold, let ε0 ∈ (0, 1). There exist k1, k2, t0 > 0
satisfying

G′(t) ≤ −k1E(t) + k2(h ◦ ∇u)(t) + c(ε0)(h ◦ ∇u)1/(1+ε0)(t), t ≥ t0. (3.25)

Proof. Since the function h is a positive and continuous, for all t0 > 0, we have∫ t

0
h(%)d% ≥

∫ t0

0
h(%)d% := h0, ∀t ≥ t0.

By using the relation (1.9) with the results of Lemmas 7, 8 and 9,
then, for t ≥ t0, we get

G′(t) := E′(t) + ε1Ψ
′(t) + ε2Φ

′(t) + ε3Θ
′(t)

≤

{ 1
p + 1

(ε1 − ε2h0)
}
‖ut‖

p+2
p+2 +

{
ε2ζ1δ − ε1ζ1

}
‖∇u‖42

+

{
ε2δ(ζ0 + 2(ζ0 − l)2 + 1) − ε1(

l
2
− ε(c1 + c2))

}
‖∇u‖22

+

{
ε1 + ε2[δ1(1 + c(E(0))p) − h0]

}
‖∇ut‖

2
2

+

{
ε2δ

σE(0)
l
−
σ

4

}(1
2

d
dt
‖∇u‖22

)2

+

{
cε1 + 2cε2(δ +

1
δ

)
}
(h ◦ ∇u)(t) + c(ε0, δ)(h ◦ ∇u)1/(1+ε0)(t)

+

{1
2
− ε2(

h(0)c2
p

4δ1
+ c(δ1))

}
(h′ ◦ ∇u)(t)

+

{
ε1c(ε) + ε2c(δ) + ε3β1 − η0

}
‖ut‖

m
m + kε1

∫
Ω

u2 ln |u|dx

+

{
ε1c(ε) + ε2c(δ) − η1ε3

} ∫ τ2

τ1

|β2(s)|.‖y(x, 1, s, t)‖mmds

−η1ε3

∫ 1

0

∫ τ2

τ1

|β2(s)|.‖y(x, ρ, s, t)‖mmdsdρ. (3.26)
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Using (1.8) ,we obtain, for any γ > 0,

G′(t) ≤ −γE(t) +
1

p + 1

{
ε1 − ε2h0 +

γ(p + 1)
p + 2

}
‖ut‖

p+2
p+2

+

{
ε2ζ1δ − ε1ζ1 +

γζ1

4

}
‖∇u‖42

+

{
ε2δ(ζ0 + 2(ζ0 − l)2 + 1) − ε1(

l
2
− ε(c1 + c2)) +

γ

2
(ζ0 − h0)

}
‖∇u‖22

+

{
ε1 + ε2[δ1(1 + c(E(0))p) − h0] +

γ

2

}
‖∇ut‖

2
2

+

{
ε2δ

σE(0)
l
− σ

}(1
2

d
dt
‖∇u‖22

)2

+
kγ
4
‖u‖22

+

{
cε1 + 2cε2(δ +

1
δ

) +
γ

2

}
(h ◦ ∇u)(t) + c(ε0, δ)(h ◦ ∇u)1/(1+ε0)(t)

+

{1
2
− ε2(

h(0)c2
p

4δ1
+ c(δ1))

}
(h′ ◦ ∇u)(t)

+

{
ε1c(ε) + ε2c(δ) + ε3β1 − η0

}
‖ut‖

m
m + k(ε1 −

γ

2
)
∫

Ω

u2 ln |u|dx

+

{
ε1c(ε) + ε2c(δ) − η1ε3

} ∫ τ2

τ1

|β2(s)|.‖y(x, 1, s, t)‖mmds{
− η1ε3 +

γ(m − 1)
m

} ∫ 1

0

∫ τ2

τ1

|β2(s)|‖y(x, ρ, s, t)‖mmdsdρ. (3.27)

Using the Logarithmic Sobolev inequality (1.24), we get

G′(t) ≤ −γE(t) +
1

p + 1

{
ε1 − ε2h0 +

γ(p + 1)
p + 2

}
‖ut‖

p+2
p+2

+

{
ε2ζ1δ − ε1ζ1 +

γζ1

4

}
‖∇u‖42

+

{
ε2δ(ζ0 + 2(ζ0 − l)2 + 1) − ε1(

l
2
− ε(c1 + c2))

+
γ

2
(ζ0 − h0) + (ε1 −

γ

2
)
kcpa2

2π

}
‖∇u‖22

+

{
ε1 + ε2[δ1(1 + c(E(0))p) − h0] +

γ

2

}
‖∇ut‖

2
2

+

{
ε2δ

σE(0)
l
− σ

}(1
2

d
dt
‖∇u‖22

)2

+

{
cε1 + 2cε2(δ +

1
δ

) +
γ

2

}
(h ◦ ∇u)(t) + c(ε0, δ)(h ◦ ∇u)1/(1+ε0)(t)

+

{1
2
− ε2(

h(0)c2
p

4δ1
+ c(δ1))

}
(h′ ◦ ∇u)(t)

+

{
ε1c(ε) + ε2c(δ) + ε3β1 − η0

}
‖ut‖

m
m

+

{
ε1c(ε) + ε2c(δ) − η1ε3

} ∫ τ2

τ1

|β2(s)|.‖y(x, 1, s, t)‖mmds
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− η1ε3 +

γ(m − 1)
m

} ∫ 1

0

∫ τ2

τ1

|β2(s)|‖y(x, ρ, s, t)‖mmdsdρ

−
k
2

{
(ε1 −

γ

2
)
(
2(1 + ln a) − ln ‖u‖22

)
−
γ

2

}
‖u‖22. (3.28)

Using (1.9), (2.1), (2.4), and (2.10), we find

ln ‖u‖22 ≤ ln
(4
k

J(t)
)
≤ ln

(4
k

E(t)
)
≤ ln

(4
k

E(0)
)
. (3.29)

According (2.9) and (3.29), we have

2(1 + ln a) − ln ‖u‖22 > 0.

Next, we carefully choose our constants.
Letting δ1 = h0

2(1+c(E(0))p) , and we choose ε small enough such that

l
2
− ε(c1 + c2) > 0.

Then, we pick δ small enough such that

δ < min
{ h0( l

2 − ε(c1 + c2))
2(ζ0 + 2(ζ0 − l)2 + 1)

;
h0

2

}
.

For any fixed δ1, δ and ε, we select ε1, ε2 and ε3 so small satisfying

h0

2
ε2 < ε1 < h0ε2.

µ3 := −ε2δ(ζ0 + 2(ζ0 − l)2 + 1) + ε1(
l
2
− ε(c1 + c2)) > 0,

and

1
2
− ε2(

h(0)c2
p

4δ1
+ c(δ1)) > 0,

ε1c(ε) + ε2c(δ) + ε3β1 − η0 < 0,
ε1c(ε) + ε2c(δ) − η1ε3 < 0,

ε2δ
σE(0)

l
− σ < 0.

Finally, we choose γ, k small enough such that

ε1 − ε2h0 +
γ(p + 1)

p + 2
< 0, ε1 −

γ

2
> 0,

ε2δ − ε1 +
γ

4
< 0, −η1ε3 +

γ(m − 1)
m

< 0,

−µ3 +
γ

2
(ζ0 − h0) + (ε1 −

γ

2
)
kcpa2

2π
< 0,
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ε1 − ε2[h0 − δ1(1 + c(E(0))p)] +
γ

2
< 0,

(ε1 −
γ

2
)
(
2(1 + ln a) − ln ‖u‖22

)
−
γ

2
> 0.

Therefore, (3.28) becomes, for positive constants ki, i = 1, 2

G′(t) ≤ −k1E(t) + k2(h ◦ ∇u)(t) + c(ε0)(h ◦ ∇u)1/(1+ε0)(t), ∀t ≥ t0.

�

Remark 1. By (1.2), (2.3), (2.4) and (2.10), we have

E(t) ≥ J(t) ≥
l
6
‖∇u(t)‖22, (3.30)

then, by (1.9)

‖∇u‖22 ≤
6
l

E(0). (3.31)

Hence, using (1.9) and Young’s inequality, gives

|E′(t)| ≤ −η0‖ut(t)‖mm +
1
2

(h′ ◦ ∇u)(t) −
1
2

h(t)‖∇u(t)‖22

−
σ

4

( d
dt

{
‖∇u(t)‖22

})2

≤
1
2

(h′ ◦ ∇u)(t) −
1
2

h(t)‖∇u(t)‖22

≤

∫
Ω

∫ t

0
h′(t − %)(‖∇u(t)‖22 + ‖∇u(%)‖22)d%dx −

1
2

h(t)‖∇u(t)‖22

≤
6
l

(
2h(0) −

3
2

h(t)
)
E(0)

≤ cE(0). (3.32)

Corollary 1. Suppose that (1.2)–(1.5) hold, let u is a solution of (1.7). Then

ϑ(t)(h ◦ ∇u)(t) ≤ c
(
− E′(t)

)1/(2θ−1)

, (3.33)

and, for all ε0 ∈ (0, 1)

ϑ(t)(h ◦ ∇u)1/(1+ε0)(t) ≤ c(ε0)
(
− E′(t)

)1/(2θ−1)(1+ε0)

. (3.34)

Theorem 2. Suppose that (1.2)–(1.5) are satisfied, let (u0, u1, f0) satisfy (2.9), ς ∈ (0, 2θ − 1). Then,
for k small enough, ∃Γ > 0 such that the solution of (1.7) satisfies

E(t) ≤ Γ

(
1 +

∫ t

t0
ϑ2θ−1+ς(%)d%

)−1/(2θ−2+ς)

, ∀t ≥ t0. (3.35)
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Hence, if there exist ς1 ∈ (0, 2θ − 1) and t0 > 0 such that∫ ∞

t0

(
1 +

∫ t

t0
ϑ2θ−1+ς1(%)d%

)−1/(2θ−2+ς1)

dt < ∞. (3.36)

Then, for all r ∈ (0, θ) and t0 > 0, ∃Γ > 0 such that the solution of (1.7) satisfies

E(t) ≤ Γ

(
1 +

∫ t

t0
ϑθ+r(%)d%

)−1/(θ−1+r)

, ∀t ≥ t0. (3.37)

Proof. Multiplying (3.25) by ϑ(t), using Corollary 1 and (3.32), we find

ϑ(t)G′(t) ≤ −k1ϑ(t)E(t) + c(−E′(t))1/(2θ−1) + c(−E′(t))1/(2θ−1)(1+ε0)

≤ −k1ϑ(t)E(t) + c(−E′(t))ε0/(2θ−1)(1+ε0)(−E′(t))1/(2θ−1)(1+ε0)

+c(−E′(t))1/(2θ−1)(1+ε0)

≤ −k1ϑ(t)E(t) + c(−E′(t))1/(2θ−1)(1+ε0), ∀t ≥ t0. (3.38)

Multiply (3.38) by ϑη(t)Eη(t), with η = (2θ − 1)(1 + ε0) − 1, and using the fact that ϑ′ ≤ 0 to get

ϑη+1(t)Eη(t)G′(t) ≤ −k1ϑ
η+1(t)Eη+1(t) + c(ϑE)η(t)(−E′(t))1/(η+1).

By using Young’s inequality, with q = η + 1 and q∗ = (η + 1)/η, gives, for all ε′ > 0,

ϑη+1(t)Eη(t)G′(t) ≤ −k1ϑ
η+1(t)Eη+1(t) + c(ε′ϑη+1(t)Eη+1(t) − c(ε′)E′(t))

= −(k1 − cε′)ϑη+1(t)Eη+1(t) − c(ε′)E′(t), ∀t ≥ t0.

We select 0 < ε′ < k1
c and recalling ϑ′ ≤ 0 and E′ ≤ 0, to find, for k3 = k1 − ε

′c

(ϑη+1EηG)′(t) ≤ ϑη+1(t)Eη(t)G′(t) ≤ −k3ϑ
η+1(t)Eη+1(t) − cE′(t), ∀t ≥ t0,

which implies
(ϑη+1EηG + cE)′(t) ≤ −k3ϑ

η+1(t)Eη+1(t), ∀t ≥ t0.

Let
Y(t) := (ϑη+1EηG + cE)(t) ∼ E(t), (3.39)

we obtain
Y′(t) ≤ −cϑη+1(t)Yη+1(t) = −cϑ1/(2θ−1)(1+ε0)(t)Y1/(2θ−1)(1+ε0)(t), ∀t ≥ t0. (3.40)

Integrating of (3.40) over (t0, t) and using (3.39), we get (3.35) with ς = (2θ − 1)ε0.

Remark 2. Using (3.35) and (3.36), we can easily show that∫ ∞

0
E(t)dt < ∞. (3.41)

AIMS Mathematics Volume 7, Issue 3, 4517–4539.



4536

At this point, to prove (3.37), let the functional

ϕ(t) :=
∫ t

0
(‖∇u(t) − ∇u(t − %)‖22)d%, (3.42)

by using (3.31), (3.35), (3.36) and (3.41), we find

ϕ(t) ≤ 2
∫ t

0
(‖∇u(t)‖ + ‖∇u(t − %)‖22)d%

≤
12
l

∫ t

0
(E(t) + E(t − %))d%

≤
24
l

∫ t

0
E(%)d% ≤

24
l

∫ ∞

0
E(%)d% < ∞. (3.43)

Hence
sup
t>0

ϕ1−(1/θ)(t) < ∞. (3.44)

Suppose that ϕ(t) > 0. Then, since ϑ is non-increasing, we get

ϑ(t)(h ◦ ∇u)(t) ≤
ϕ(t)
ϕ(t)

∫ t

0
(ϑθ(%)hθ(%))1/θ(‖∇u(t) − ∇u(t − %)‖22)d%,

by Jensen’s inequality to obtain

ϑ(t)(h ◦ ∇u)(t) ≤ ϕ(t)
( 1
ϕ(t)

∫ t

0
ϑθ(%)hθ(%)(‖∇u(t) − ∇u(t − %)‖22)d%

)1/θ

.

Hence, by (1.3) and (3.44) we find

ϑ(t)(h ◦ ∇u)(t) ≤ ϕ1−(1/θ)(t)
(
ϑθ−1(0)

∫ t

0
ϑ(%)hθ(%)(‖∇u(t) − ∇u(t − %)‖22)d%

)1/θ

≤ c(−h′ ◦ ∇u)1/θ(t).

From (1.9), we have

ϑ(t)(h ◦ ∇u)(t) ≤ c(−E′(t))1/θ(t). (3.45)

Since ϑ is non-increasing function, we get

ϑ(t)(h ◦ ∇u)1/(1+ε0)(t) ≤
(
ϑε0(t)ϑ(t)(h ◦ ∇u)(t)

)1/(1+ε0)

≤

(
ϑε0(0)ϑ(t)(h ◦ ∇u)(t)

)1/(1+ε0)

≤ c(ϑ(t)(h ◦ ∇u)(t))1/(1+ε0)

≤ c(−E′(t))1/(θ(1+ε0))(t). (3.46)

If ϕ(t) = 0, then %→ ∇u(%) is a constant function on [0, t]. Therefore

(h ◦ ∇u)(t) = 0,
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and hence (3.45) and (3.46) hold.
At this point, multiplying (3.25) by ϑ(t) and we use (3.32), (3.45) and (3.46) to obtain, for any t ≥ t0

(as for (3.38))

ϑ(t)G′(t) ≤ −k1ϑ(t)E(t) + c(−E′(t))1/(2θ−1)(1+ε0), ∀t ≥ t0. (3.47)

Inequality (3.32) with 2θ−1 replaced by θ is exactely (3.47). Then, the proof of (3.37) can be completed
as for the one of (3.35) (by taking η = θ(1 + ε0) − 1 and ς = θε0). The proof is complete. �

4. Conclusions

The purpose of this work was to study the global existence of the solutions for a nonlinear
viscoelastic Kirchhoff-type equation with a logarithmic nonlinearity, Balakrishnan-Taylor damping,
dispersion and distributed delay terms, and by the energy method we prove an explicit and general
decay rate result under suitable hypothesis. This type of problem is frequently found in some
mathematical models in applied sciences.

In the next work, we will try to using the same method with same problem. But in added of other
damping terms.

Acknowledgments

The researcher would like to thank the Deanship of Scientific Research, Qassim University for
funding publication of this project.

Conflict of interest

All authors declare no conflict of interest.

References

1. A. M. Alghamdi, S. Gala, C. Qian, M. A. Ragusa, The anisotropic integrability logarithmic
regularity criterion for the 3D MHD equations, Electron. Res. Arch., 28 (2020), 183–193.
https://doi.org/10.3934/era.2020012

2. R. Adams, J. Fourier, Sobolev space, New York: Academic Press, 2003.

3. A. V. Balakrishnan, L. W. Taylor, Distributed parameter nonlinear damping models for flight
structures, In: Proceedings: Damping, Washington: Flight Dynamics Lab and Air Force Wright
Aeronautical Labs, 1989.

4. J. D. Barrow, P. Parsons, Inflationary models with logarithmic potentials, Phys. Rev. D, 52 (1995),
5576–5587. https://doi.org/10.1103/PhysRevD.52.5576

5. K. Bartkowski, P. Gorka, One-dimensional Klein-Gordon equation with logarithmic nonlinearities,
J. Phys. A: Math. Theor., 41 (2008), 355201.

6. R. W. Bass D. Zes, Spillover nonlinearity, and flexible structures, In: NASA. Langley Research
Center, Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, Part 1.
Washington: NASA Conference Publication, 1991.

AIMS Mathematics Volume 7, Issue 3, 4517–4539.

http://dx.doi.org/https://doi.org/10.3934/era.2020012
http://dx.doi.org/https://doi.org/10.1103/PhysRevD.52.5576


4538

7. I. Bialynicki-Birula, J. Mycielski, Wave equations with logarithmic nonlinearities, Bull. Acad. Pol.
Sci., Ser. Sci., Math., Astron. Phys., 23 (1975), 461–466.

8. D. R. Bland, The theory of linear viscoelasticity, Mineola: Courier Dover Publications, 2016.

9. S. Boulaaras, A. Choucha, D. Ouchenane, B. Cherif, Blow up of solutions of two singular nonlinear
viscoelastic equations with general source and localized frictional damping terms, Adv. Differ. Equ.,
2020 (2020), 310. https://doi.org/10.1186/s13662-020-02772-0

10. S. Boulaaras, A. Draifia, K. Zennir, General decay of nonlinear viscoelastic Kirchhoff equation
with Balakrishnan-Taylor damping and logarithmic nonlinearity, Math. Method. Appl. Sci., 42
(2019), 4795–4814. https://doi.org/10.1002/mma.5693

11. H. Chen, P. Luo, G. W. Liu, Global solution and blow-up of a semilinear heat
equation with logarithmic nonlinearity, J. Math. Anal. Appl., 422 (2015), 84–98.
https://doi.org/10.1016/j.jmaa.2014.08.030

12. L. Shen, Sign-changing solutions to a N-Kirchhoff equation with critical exponential growth in RN ,
Bull. Malays. Math. Sci. Soc., 44 (2021), 3553–3570. https://doi.org/10.1007/s40840-021-01127-6

13. S. Boulaaras, A well-posedness and exponential decay of solutions for a coupled Lamé system
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