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Abstract: Catastrophe reinsurance is an important way to prevent and resolve catastrophe risks. As
a consequence, the pricing of catastrophe reinsurance becomes a core problem in catastrophic risk
management field. Due to the severity of catastrophe loss, the Peak Over Threshold (POT) model in
extreme value theory (EVT) is extensively applied to capture the tail characteristics of catastrophic loss
distribution. However, there is little research available on the pricing formula of catastrophe excess of
loss (Cat XL) reinsurance when the catastrophe loss is modeled by POT. In the context of POT model,
we distinguish three different relations between retention and threshold, and then prove the explicit
pricing formula respectively under the standard deviation premium principle. Furthermore, we fit POT
model to the earthquake loss data in China during 1990-2016. Finally, we give the prices of earthquake
reinsurance for different retention cases. The computational results illustrate that the pricing formulas
obtained in this paper are valid and can provide basis for the pricing of Cat XL reinsurance contracts.

Keywords: standard deviation premium principle; catastrophe reinsurance; POT model; pricing;
excess-of-loss reinsurance
Mathematics Subject Classification: 62P05, 62M20

1. Introduction

In the past few decades, natural disasters such as earthquakes, floods, and typhoons occurred more
frequently, which usually lead to serious casualties and property damage. In order to disperse the risk
of a possible large payment caused by these catastrophe events, insurance companies may purchase
catastrophe excess of loss (Cat XL) contracts from reinsurers. It is thus natural and important to ask:
What is the correct price of a Cat XL contract?

The early pricing model of catastrophe reinsurance is introduced by Strickler [23] in 1960. In [23]
(see also [12]), the author supposed a constant deterministic rate of catastrophes, which not only brings
an elegant pricing formula but also causes no statistical approach to update the model in accordance
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to new data. Combing the compound Poisson process and the POT model, Ekheden and Hossjer [8]
suggested a new pricing model to overcome the drawbacks of [23, 12]. Under the standard deviation
premium principle, they got the approximate price of a Cat XL contract using Monte Carlo simulation
techniques. Subsequently, Leppisaari [15] further improved the pricing model established in [8] by
providing a micro-simulation approach to catastrophe reinsurance pricing. Considering the influence of
interest rate fluctuation, Chao [3] priced a new type of multi-risk catastrophe reinsurance contract with
interest rate dynamics described by the Cox-Ingersoll-Ross model. However, we have to emphasize
that the above works [3, 8, 15] cannot give accurate price of Cat XL contract due to the lack of explicit
pricing formulas. For more related results, we refer the interested readers to [1, 6, 21] and the references
therein.

We also remark that catastrophe bond is an innovative financial instrument, by which the insurers
can transfer the risk of a possible large payment caused by catastrophic events to the capital market.
As pointed in the pioneer work of Cox and Pedersen [5], the catastrophe risk cannot be replicated
by a portfolio of the traditional securities such as stock and bond, which means that the pricing of a
catastrophe bond has to be done in an incomplete market framework. In [5], the authors derived the
theoretically pricing of the catastrophe bond via a time-repeatable representative agent utility, which
is based on an interest rate term structure model and the probability of catastrophe risk model. Under
the same framework as [5], Zimbidis [27] calculated the price of a Greek risk bond for earthquakes
by applying the equilibrium pricing theory together with extreme value theory. Another common
technique employed for pricing in an incomplete market is indifference pricing via expected utility,
see e.g. [7, 14, 26]. Among others, the paper by Young [26] is the first to calculate the indifference
price of a contingent claim in a stochastic interest rate environment for an exponential utility function.
In [14], by using the utility indifference pricing method, Karagiannis et al. further obtained the price
of an agricultural catastrophe bond, which can be described as an over-the-counter insurance contract
on catastrophe risk between an insurance company and a hedge-fund.

The relationship between the catastrophe bond and reinsurance has attracted the attention of some
researchers. For example, Finken et al. [10] showed that catastrophe bonds involving parametric or
index triggers can provide low-risk insurers with an alternative to reinsurance contracts when basis
risk is not too high. Subsequently, Hérdle and Cabrera [13] performed the calibration of a parametric
catastrophe bond that was sponsored by the Mexican government, and found that combining
reinsurance with catastrophe bond is optimal. Trottier and Lai [24] further developed a contingent
claims framework and illustrated that it is optimal to cover small losses using reinsurance and hedge
higher losses by using a CAT bond.

However, as far as we know, there is no study found in the literature that focused on explicit
pricing formula of catastrophe reinsurance through POT modelling except the one by Xiao and Meng
[25]. Based on the POT model, [25] proved explicit Cat XL contract formulas in term of three
different retention cases under the assumption that catastrophe reinsurance premium is calculated by
the expectation principle. However, in the practice of (re)insurance, the reinsurers usually charge for
their capital costs apart from the expected claims. It follows, then that a percentage of the standard
deviation is often added to the pure premium. In view of this, the object of this paper is to prove
explicit pricing formula for Cat XL contract under the standard deviation premium principle.

The reminder of this paper is organized as follows. Section 2 briefly describes the Extreme Value
Theory. In Section 3, we prove the catastrophe reinsurance pricing formulas in three different relations
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between the retention and the threshold. In Section 4, we present an empirical analysis according to
the earthquake loss data in China during 1990-2016. Finally, it ends with conclusions in Section 5.

2. Extreme Value Theory

The frequency of catastrophe risk is low, but the losses are very serious, which has obvious
characteristics of heavy tail. Specifically, Extreme Value Theory is mainly employed to research the
extreme value distribution and its characteristics of random variables.

Extreme Value Theory mainly provides two characterization methods based on the extreme value
behavior of the observation data, namely Block Maximum Method (BMM) and Peak Over Threshold
(POT). The former one divides the data into several groups, and then takes the maximum (or minimum)
in these groups as a sample for fitting. The latter one firstly selects a threshold, and then fit the data
that exceeds the threshold. For the BMM, it only takes into account the maximum value (or minimum
value) during the modeling process, but extreme value data actually appear in series. This may cause
a large amount of effective data information to be lost. In order to make full use of data, we apply in
this paper the POT model first introduced by Pickands [20] to fit the earthquake catastrophe loss. This
model is to study the asymptotic distribution of observation samples greater than the threshold.

Let X, X5, -+, X,, be a sequence of independent and identically distributed random variable with
distribution function F. Denote by u(u > 0) the threshold. Additionally, the Y = X —u is called excess.
Correspondingly, the distribution function of Y is called as conditional excess distribution function

F(u+y) - Fu)
1-Fu

F,(y)=PX-u<yX>u)= y=0,

which yields
Fx)=0-Fu)F,(x—u+ Fu), x>u>0. 2.1

Let x. = sup{x € R : F(x) < 1}. According to Balkema and Haan [2] and Pickands [19], for large
enough u > 0, there holds

lim sup |F,(y)-Gy;u,B,6€)]=0

U= X O<y<xo—u

where G is a generalized Pareto distribution (GPD). Thence, for large u > 0, F,(y) can be well
approximated by G , namely

y—l/f
-(1+62) 7. £>0.y20;
g

Fu) ~ Geoy) = 11— exp (—%) £=0, y>0; 2.2)

y -1/
1—(1+§—) , £<0, 0y < -p/é¢,

o
where ¢ and 8 are the shape parameter and the scale parameter, respectively. Note that the variance of
GPD does not exist if &€ > 1/2. To ensure the price of Cat XL contract can be calculated by the standard

deviation premium principle, we assume that ¢ < 1/2 from now on.
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Substituting (2.2) into (2.1), we have the following result,

X—U

(1—F(u))(1—(1+§ - ))+F(u), £#0, x2u>0;
F(x) = 4 2.3)
(1 = F(w) (1 _ exp (-%)) FFW), £=0,x>u>0.

3. Pricing formulas of Cat XL contracts

Since catastrophic risks possesses obvious characteristics of heavy tails, many scholars (e.g. [4, 16,
18]) adopted heavy-tailed distributions to fit catastrophe loss data, e.g. Gamma distribution, log-normal
distribution, etc. However, these distributions cannot well reflect the large losses of catastrophe risk.
Therefore, these general heavy-tailed distributions are not suitable for fitting the high over claims of
catastrophe reinsurance. Meanwhile the extreme value distribution is able to make up for this defect,
see [11, 15, 17, 22, 27].

Let N(¢) be a Poisson process with a constant arrival rate A and let D be the cedant’s retention. X;
denotes the economic loss of the ith catastrophe event, and X; is independent of the N. The catastrophe
excess of loss (Cat XL) contract is defined as follows: If the aggregate claim of the ceding insurance
company as a result of a single catastrophic event exceeds the retention D, the excess X; — D will be
paid by the reinsurer. Therefore, the total amount of claims paid by the reinsurer can be expressed by

N(t) N@)

7= Z(X,- ~ D), =: Z C,
i=1 i=1

where (X; — D), = max{X; — D, 0}.
In the light of the standard deviation premium principle, the Cat XL contract price V is given by

V=EQZ)+pxSDZ) (3.1)

where E(Z) is the pure premium, p X S D(Z) is an additional loading with typically p € [0.1,0.5].
It is well known that
E(Z) = E(N)E(C)) = 1E(C)

and
Var(Z) = E*(C;))Var(N) + E(N)Var(C;) = AE(C?). (3.2)

Moreover, by the total expectation formula, one has
E(C}) = E|(X; - D)}|X; > D| P(X; > D) + E|(X; - D)}|X; < D| P(X; < D)
= E [(X,. - D)X, > D] P(X; > D).
This together with (3.2) imply that
Var(Z) = AE [(X; - DIX; > D| P(X; > D). (3.3)

Similarly,
E(Z) = AE[(X; — D),|X; > D] P(X; > D). (3.4)
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Combining (3.1), (3.3) and (3.4), we have that

V = AE[(X; - D),|X; > D] P(X; > D) + p \//lE [(X,- — D2IX; > D] P(X; > D). (3.5)
To proceed, we need the following proposition.

Proposition 3.1. If a random variable X obeys the generalized Pareto distribution G(x; 8, ), then there

holds
3 BTE - kk!

- §k+1r(1 +f_l)

where k is a positive integer, ¢ < 1/k and I'(+) is the Gamma function.

E(XY

In practical applications, the relationship between the retention D and the threshold « is uncertain.
Motivated by the idea of [25], we next prove the pricing formula of the Cat XL contract under three
different cases between D and u.

Case (I). D = u.
For this case, by Proposition 3.1, one has

E|(X;- D)IX; > D| = f Do(x _ppdW o f g futydt
0

> FO) 56
— E(Xz) - L
(1-61-2¢)
where F(D) = 1 — F(D). Similarly, we also have
__B
E[X;-D|X; > D] = T—¢ 3.7

Let n be the sample size, and let n, be the number of the sample exceeding the threshold u.
According to the historical simulation method, (D) can be estimated by n,/n. It then follows from
(3.5)—(3.7) that

mAB__ pBN2An,

T -8 " (-l -28)

Case (II). D > u.
In this case, we have

Y I PRRRRC I {€)) _f+°°2f(l+D) _f+°°2
E|(X;- DYIX; > D| = fD (x-D) For” ) T Four dt = 0 PdF ().

Since Fp(x) = Gepiep-uw(x) and the fact that the generalized Pareto distribution excess distribution
function is still a generalized Pareto distribution, it follows that

2(B+ED —w)

E|(X;- D)|X; > D| = fo PdGepeep-u(t) = T2 (3.8)

Similarly,
B+E&D —u)

E[X; - D|X; > D] = 1 —¢

(3.9)
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On the other hand, there holds

_ F(D) - F(w)

P(X > D)= (l I~ F)

)(1 — F) = (1= Gep(D —w)) (1 - F(u)). (3.10)

Thus, we can use (3.5) and (3.8)—(3.10) to get

[ AB+ED- 1) (1= Gep(D = w)) (1 = F(u))

I-¢
(B +£D - ) \22(1 = Geg(D ) (1 - F(u)
+ .
-1 -29

Case (III). D < u.

In this case, the POT model discards the data information that the catastrophe loss is below the
threshold, therefore, the loss data lie in the range of (D, u) cannot be captured by the POT model. For
this sake, we need to find other distribution to describe the information below the threshold.
Considering that this article uses China earthquake data for empirical analysis, and it has been proved
in [16] that the log-normal distribution is the best fitting for China earthquake loss data among the 12
common heavy tail distributions. Therefore, we choose the log-normal distribution as the fitting
distribution of the main data. Namely, the part of the loss data above the threshold is fitted by the
generalized Pareto distribution G(x), the rest part is fitted by a log-normal distribution F(x; u, 0%)
with the probability density function given by

( (Inx — p)?
0—@ 20’2

Then the mixed fitting distribution function can be expressed as follows:

flp 0?) = ) £>0.

F(x) = Fx pt, ) sy + [ F i . 07) + (1= FQui 1, 07) Gep(x = )| Lo

where [ is a indicator function.
Set J; = [(x— D)*f(x)dxand J, = | e ((x —u) + (u— D)2) f(x)dx. For J,, we easily see that

Jy = f ' x*f(x)dx — 2D f ' xf(x)dx + D* f ' f(x)dx
D D

D
2 2
:ezﬂﬂaz[q)(lnu—,u—ZO' )_(D(lnD—,u—ZO' )]
o o
3.11)
— - 2 oy — 2
DR [(D(lnu U 20')_(1)(111D u—20 )]
o o

+D?

q)(lnu —,u) ~ q)(lnD —,u)]’
o o
where @(+) is the standard normal distribution.
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For J,, one has

J, = m(x —u)’ f(x)dx + 2(u — D) Oo(x — u)f(x)dx + (u — D) f ) f(x)dx
—Fu) fo Tt (I;(J;)”) dt + 2(u — D)F(u) 0 S i;;‘) dt + (u — DY*F(u)
232

+2(u - D)F(u) B + (u— D)*F(u).

(1-61-12¢) 1-¢
This and (3.11) give that

=F(u)

1
E [(Xi - D)3|Xi > D] = ﬁ[‘ll + J>]

_ 1 JEErE] P Inu—p—20? ® InD—u-20"
F(D) o o

2Dt [@(—ln”_”_zgz)—cp(—lnD_”_z‘Tz)] (3.12)
g g
s q)(lnu—,u)_q)(lnD—/J)]
ag g
g B .
+F(M)m+2(M—D)F(M)1_§+(M—D) F(l/i)}

Similar to the proof of (3.12), we also have

E[X; - D|X; > D]

__ [ orn m“—ﬂ—vj_ (mD—u—aj]
_F(D){eﬂ [(D( o ® o (3.13)
ofo(e2)-o(e2:2))
o o

+ Fu) + (u— D)F(u)}.

1-¢
Combining (3.5), (3.12), (3.13), P(X > D) = 1 — F(D;u,0?) and F(u) = n,/n, the pricing formula of
Case (III) can arrive. The concrete result of formula is omitted for brevity.

4. Empirical experiments

4.1. Parameter calibration of the pricing model

This study uses the earthquake direct economic loss (million Chinese Yuan, MCY) data, consisting
of 257 observations, provided by China earthquake information network*. In order to ensure the
comparability of the loss data in each year, all actual direct economic losses caused by the earthquake

* http://www.csi.ac.cn/.
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were adjusted to the year of 2016’s level via the Gross Domestic Product (GDP) provided by the
China Statistical Yearbook'. More precisely,

GDP of 2016

Adjusted loss = Actual loss X .
justed loss ctual loss GDP of base year

Since the form of the GPD function depends on the characteristics of the tail of sample data, it is
necessary to test the heavy tail of the data before constructing the POT model. There are two commonly
inspection methods including exponential quantile-quantile (QQ) diagram and kurtosis comparison.
This paper makes a comprehensive application of the above two methods to judge the characteristics
of the tail. As can be seen from Figure 1, the tail behavior of the exponential QQ graph is upward
convex, which suggests a heavy-tailed underlying distribution. In addition, the value of kurtosis is
72.7865, which is significantly larger than 3. Thus, we can determined that the earthquake economic
loss data posses the characteristic of heavy tail.

Exponential Quantiles

Ordered Data «10%

Figure 1. Exponential QQ plot of economic loss.

One of the main challenges for fitting the POT model is the selection of a suitable threshold. To
this end, we draw the Hill plot of economic loss data, see Figure 2. The Hill plot is constructed such
that the tail index « is plotted as a function of the number k of exceedances, where @ = 1/£. For a
more detailed description, see [9]. Looking at Figure 2, we see that the curve begins to show a steady
trend at k = 40, which is equivalent to u = 906. This means that we can select 906 as the threshold.
Moreover, Figure 3 shows the GPD fitted to exceedances of u = 906. It is clear to see that the fit for
the selected threshold is fairly good.

¥ http://www.stats.gov.cn/english/Statisticaldata/AnnualData;.
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Figure 3. GPD fit for u = 906.
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In the case of u = 906, we can further compute the rest parameter estimates in the established
model, see Table 1.
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Table 1. Model parameter estimates.

GPD Log-normal distribution Poisson process
parameters & = 0.3303 fi =5.0350 1=95185
B =2260.5798 & =1.8817

4.2. Computational results

Let p = 0.3 and recall that the threshold u = 906. According to the three pricing formulas obtained
in Section 3, we are able to give the prices of earthquake reinsurance for different retentions, see
Table 2. Table 2 shows that, the price of Cat XL contract decreases as the retention increases, which is
consistent with reality. In addition, the price is higher under the standard deviation premium principle
than under the net premium principle. Higher premiums can enhance reinsurers’ willingness to cover
catastrophe risks, and then raise the market capacity of catastrophe reinsurance. Therefore, the standard
deviation premium principle is widely applied in pricing property and casualty (re)insurance, which is
conducive to the diversification of catastrophe risks.

Table 2. Cat XL contract prices under different retentions.

Price (MCY) D<u bD=u D>u
D=506 D=706 D=906 D=1106 D =1306
Net premium 5742 5329 5001 4717 4457
Additional premium 2526 2486 2448 2413 2378
Gross premium 8268 7815 7449 7130 6835

Moreover, we study how the Cat XL contract prices are affected by the claim distribution. Table 3
shows that the differences between Cat XL contract prices in the GPD and lognormal distribution vary
from 39.64% to 68.61%. This difference is especially marked in the tail (higer retention D), therefore
the heavy-tailed distribution is a more suitable choice for modelling catastrophe claim.

Table 3. Differences between Cat XL contract prices in the GPD and lognormal distribution.

D 906 1306 2306 3306

Differences MCY) 2953 2963 3131 3305
Differences (%) 39.64 43.34 5538 68.61

In Figure 4, we illustrate how the Cat XL contract prices are affected by loading parameter p. It is
obvious to observe that the price V is linear in p. When p increases by a factor of 5 (i.e., from 0.1 to
0.5), V increases by an approximate factor 1.5. This indicates that the choice of p has a major impact
on the Cat XL contract prices. Namely, the standard deviation S D(Z) heavily influences the pricing
results.
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Figure 4. Effect of loading parameter p.

5. Conclusions

Due to the heavy-tailed characteristic of catastrophe losses, reinsurance companies covering Cat
XL contracts face great risks, which leads to low willingness of reinsurance companies to underwrite
catastrophe contracts. In order to improve the underwriting willingness, the price of a Cat XL contract
is usually determinated by the standard deviation premium principle instead of net premium principle.

To capture the heavy tail characteristics of catastrophe risk, in this paper, we use the POT model to
fit the catastrophic loss data. Based on this, we obtain explicit pricing formulas in term of three
different relations between the retention and the threshold. Compared with the traditional catastrophe
reinsurance pricing method, the standard deviation premium principle includes two aspects: the
mathematical expectation of the catastrophe excess loss and the standard deviation. Computational
results show that the choice of the fitted claim distribution has a major impact on the Cat XL contract
prices. Also, the additional standard deviation is a significant factor when using the standard deviation
premium principle, thereby giving higher and fairer Cat XL contract prices. Thus, we can conclude
that the pricing method presented in this paper is effective and feasible.

Although this article only discusses the price of a Cat XL contract under the standard deviation
premium principle, the results obtained here are also applicable to other type of catastrophe
reinsurance contracts. For example, in the case of Cat XL contract with both the retention D; and
limit D, (i.e., Dy xs D, Cat XL contract), we can give the price of such Cat XL using the pricing
formula of retention D; minus the one of retention D,. In the other case of a mixed catastrophe
reinsurance contract of proportional reinsurance and excess-of-loss, it is clear that the price can also
be calculated with some slight modifications of the arguments presented in this paper. Therefore, our
results have certain reference value in the pricing field of catastrophe reinsurance, which can be
regarded as the extension and complement of the existed literatures.
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