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Abstract: SARS-CoV-2 is the newly emerged infectious disease that started in Wuhan, China, in
early December 2019 and has spread the world over very quickly, causing severe infections and death.
Recently, vaccines have been used to curtail the severity of the disease without a permanent cure.
The fractional-order models are beneficial for understanding disease epidemics as they tend to capture
the memory and non-locality effects for mathematical models. In the present study, we analyze a
deterministic and fractional epidemic model of COVID-19 for Indonesia, incorporating vaccination
and environmental transmission of the pathogen. Further, the model is fitted to Indonesia’s active
cases data from 1 June 2021 to 20 July 2021, which helped determine the model parameters’ value for
our numerical simulation. Mathematical analyses such as boundedness, existence and uniqueness,
reproduction number, and bifurcation were presented. Numerical simulations of the integer and
fractional-order model were also carried out. The results obtained from the numerical simulations
show that an increase in the contact rate of the virus transmission from the environment leads to an
increase in the spread of SARS-CoV-2. In contrast, an increase in the vaccination rate negatively
impacts on our model basic reproduction number. These results envisage here are essential for the
control and possibly eradicate COVID-19 in Indonesia.
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1. Introduction

Coronavirus disease (COVID-19) is a fatal illness caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), a novel coronavirus [1]. The disease first originated from the Wuhan

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2022246


4417

City, Hubei Province in China in 2019 and has spread throughout every part of the world. As a result
of no cure to this epidemic, on 31 December 2019, World Health Organisation (WHO) received a
report of the disease. On 30 January 2020, WHO declared the COVID-19 outbreak a global health
emergency [1]. The disease was declared a global pandemic by the WHO on March 11, 2020 [2].
In Indonesia, the reported COVID-19 of confirmed cases on June 1, 2021, is 1,826,527 with 50723
deaths, 101325 active cases, and 1,674,479 recovered cases [3].

The COVID-19 disease spreads from person to person through infected air droplets due to
sneezing or coughing, can also be transmitted through human contacts. Initially, there was no vaccine
or treatment for SAR-CoV-2. Still, some preventive measures such as hand washing, lock-downs,
quarantine, use of face masks, sanitizers are used by different countries to reduce the rate of disease
transmission. Most countries implemented the closure of schools and air travel to help reduce the
importation of new cases, which primarily drives/leads to local transmission of the virus in the
susceptible population.

Vaccination programs play an essential role in controlling the spread of infectious diseases,
including COVID-19. The first mass COVID-19 vaccination program began in early December 2020.
According to WHO, 13 different vaccines have been administered [4]. The implementation of
COVID-19 vaccines such as AstraZeneca, Moderna, Pfizer, Johnson, and Johnson has helped reduce
the severity of the illness once susceptible humans contract the virus.

Numerous researchers have used mathematical models that use deterministic, stochastic, and
fractional order to explain the COVID-19 transmission. These models explain various strategies
which can be used to control or mitigate the spread of the disease in different countries by
incorporating lockdown measures, the pathogen in the environment, optimal control,
non-pharmaceutical interventions, cost-effectiveness analysis, role of the media campaign, treatment
and vaccination (see, for instance, [5–10]). The authors in [8] studied the impact of early detection
and vaccination strategy in the COVID-19 eradication program in Jakarta, Indonesia, by using an
S VEIQAR deterministic model. Results from sensitivity analysis of their model show that rapid
testing is crucial in reducing the basic reproduction number when COVID-19 is endemic in the
population rather than contact tracing. Further, their results indicated that vaccination strategy could
relax social distancing rules while maintaining the basic reproduction number at the minimum level
and eradicating COVID-19 from the population with a higher vaccination rate. The authors in [10],
used an S IQRD model for non-age and age structures to assess the impact of COVID-19 vaccination
in several provinces in Indonesia. Their study suggested that proper vaccine implementation is in the
early stage of the pandemic will help suppress the number of active cases and reduce the total number
of deaths. On the other hand, vaccines implementation should be consistent and not only for one or
two months as this will not reduce the number of infected persons. In contrast, the prioritisation of
the active and older adults (above 50) for vaccination will significantly reduce total Indonesia
COVID-19 deaths.

To capture the memory effect and the non-local in nature, many authors have utilized fractional
models to study infectious diseases such as Syphilis [11], Dengue fever [12] and COVID-19 [13–25].
For more on fractional models on COVID-19 infection interested readers is referred to the following
papers [26–30]. The study in [26] employed a set of six fractional differential equations to model the
transmission of COVID-19 by considering the disease transmission through the dead individuals and
the pathogen in the environment for Saudi Arabia. Analyses of the fractional model were presented,
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as well as numerical simulation carried out in their paper. Their results suggest that a decrease in
the pathogen viral load due to symptomatic and asymptomatic COVID-19 infected individuals and
asymptomatic infected individuals’ viral contribution in the environment decreases the disease burden
significantly.

In the present study, we investigate the potential impact of the environmental pathogen which drives
the COVID-19 spread in the human population, thus causing the resurgent of the infection. Vaccination
is currently used to curb the spread of the disease to some extent. Still, due to the mutation of the
original virus, which is more harmful, a fraction of those vaccinated can also become exposed and
may contract the disease at a low rate. Thus, we introduce a modification parameter to ascertain this
phenomenon. We note that the environment plays a vital role in the COVID-19 transmission, as it
can be transported in the air or exist in our physical environment. Hence, we extend an integer and
fractional epidemic model of COVID-19 for Indonesia by incorporating vaccination and environmental
transmission of the pathogen.

The outline of the manuscript is as follows: In Section 2, we give mathematical preliminaries.
Section 3 presents a mathematical model that describes the spread of COVID-19 in Indonesia with
the incorporation of vaccination and environmental pathogen. Formulation of fractional COVID-19
model is given in Section 4 and the model analyses is presented in Section 5. Section 6 presents the
numerical simulations using the Caputo operator. The paper is concluded in Section 7 discussing the
results obtained from the study.

2. Fractional calculus preliminaries

Here, we give a few mathematical definitions for fractional derivatives, which shall be used to study
the COVID-19 model with vaccination.

Definition 1. Let χ ∈ Ck be a function, then the classical Caputo derivative with a fractional order
τ ∈ (k − 1, k) for k ∈ N is thus defined as follows [31]:

CDτ
t (χ(t)) =

1
τ(k − τ)

∫ t

0
χk(ϕ)(t − ϕ)k−τ−1dϕ.

Thus, we see clearly that CDτ
t (χ(t))→ χ(t)′ if τ→ 1.

Definition 2. The integral operator for Definition 1 with a fractional order τ ≥ 0 for the function
χ : R→ B is given by

CIτt (χ(t)) =
1
τ(τ)

∫ t

0
χ(ϕ)(t − ϕ)(τ−1)dϕ,

for 0 < τ < 1, t > 0.

Next, we define the equilibrium for any Caputo fractional-order ordinary differential model. Hence,
it is give as follows:

Definition 3. If (χ∗) is the steady state, then [32]

CDτ
t (χ(t)) = f (t, χ(t))

for τ ∈ (0, 1) if and only if f (t, χ∗) = 0.
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3. Model formulation

In this section, we formulate an S VEIRP model, which consists of the human population and the
pathogens in the environment. The human compartments consist of the susceptible (S (t)), vaccinated
(V(t)), exposed (E(t)), infectious (I(t)), and recovered individuals at any time t (R(t)). While the
pathogen/virus in the environment at any time t is denoted by P(t). Therefore, the total human
population over time is given by N(t) = S (t) + V(t) + E(t) + I(t) + R(t).

Humans are recruited into the susceptible class at a rate π. These susceptible humans are exposed
to the COVID-19 disease at a rate of force of infection denoted by

λ(t) =

(
β1I(t) + β2P(t)

)
N(t)

,

where β1 and β2 are the effective contact rate for the infectious individuals and pathogens in the
environment, respectively. The exposed individuals can become infected at a rate γ. The infectious
individuals can then recover at a rate σ. In this model, we have assumed that all human compartments
have a natural mortality rate µ, and the infectious individuals assume an induced death rate δ. Further,
the susceptible individuals can be vaccinated at a rate γ while those in the vaccination compartment
can contract the infectious after being exposed at rate λω. Here ω is the modification parameter which
is much much less than the rate of the initial infection of COVID-19 infection. On the other hand, we
have assumed that humans shade the pathogen into the environment at a per capita rate ξ. The model
parameters are summarised in Table 1 below and the schematic diagram describing the interactions
between the compartments given in Figure 1.

Combining the model assumption and descriptions with parameters in Table 1, we have the
following system. 

dS
dt

= π − λS (t) − (µ + α)S (t),

dV
dt

= αS (t) − (µ + λω)V(t),

dE
dt

= λS (t) + λωV(t) − (µ + γ)E(t),

dI
dt

= γE(t) − (µ + σ + δ)I(t),

dR
dt

= σI(t) − µR(t),

dP
dt

= ξI(t) − θP(t),

(3.1)

subject to the initial conditions

S (0) > 0, E(0) ≥ 0, I(0) ≥ 0,V(0) ≥ 0, R(0) ≥ 0, P(0) ≥ 0. (3.2)

AIMS Mathematics Volume 7, Issue 3, 4416–4438.



4420

Table 1. Descriptions of model parameters.

Parameters Parameter description Units
π Recruitment rate People per day
µ Natural mortality rate Per day
α Vaccination rate of susceptible Per day
ω Modification parameter due to V(t) Per day
γ Rate at which exposed become infectious Per day
θ Removal rate of virus from environment Per day
σ Recovery rate of infected Per day
δ Disease death rates for infected Per day
ξ Contamination rates of environment by infected Per day
β1 Contact rates for infected Per person per day
β2 Contact rate for environment classes Per person per day

Figure 1. COVID-19 model flow chart. The circle repsesnts the human compartments while
the green oval shap represents the pathogen in the enviroment. The broken line denoting the
transmission effects of the infected population on the P compartment.

Parameter estimation and model fitting

In this subsection, we estimate the biological parameters of the COVID-19 model (3.1) using the
reported active cases (undergoing treatment) of COVID-19 in Indonesia for the given period starting
from 1 June 2021 to 20 July 2021 [33]. We utilize the well-known least square fitting technique to
estimate the parameters. The initial value of the total population of Indonesia based on the data is

N(0) = 270, 200, 000 [34] and the average life span is
1

71.47
years [35]. The initial populations of

vaccinated, exposed, infectious, and recovered as stated in [3]. The data are given by
V(0) = 10714300, E(0) = 61108, I(0) = 101325, and R(0) = 1674479. The initial of the susceptible
population is taken as S (0) = 257, 648, 788. We assume the initial population of P(0) is given by
P(0) = 100000. The estimated and fitted parameters are displayed in Table 2. The fitting result to the
reported data through our model is compared in Figure 2. Hence, it can be seen that the simulation
model is quite in accordance with the actual data.
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Table 2. Model parameters values used for numerical simulations.

Parameters Value (per day) Source
π µ × N(0) Estimated
µ 1

71.47×365 [35]
α 0.0270 Fitted
γ 0.0225 Fitted
θ 0.0118 Fitted
σ 0.0246 Fitted
ω 0.1507 Fitted
δ 0.0145 Fitted
β1 0.0956 Fitted
β2 0.1167 Fitted
ξ 0.2114 Fitted
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Figure 2. Data fitting to COVID-19 active cases using model (3.1).

4. The fractional model

We transform the integer model (3.1) into a fractional differential model such that yields

CDτ
0,1S (t) =

1
Γ(1 − τ)

∫ t

0
(t − ϕ)−τS ′(ϕ)dϕ,

CDτ
0,1V(t) =

1
Γ(1 − τ)

∫ t

0
(t − ϕ)−τV ′(ϕ)dϕ,

CDτ
0,1E(t) =

1
Γ(1 − τ)

∫ t

0
(t − ϕ)−τE′(ϕ)dϕ,

CDτ
0,1I(t) =

1
Γ(1 − τ)

∫ t

0
(t − ϕ)−τI′(ϕ)dϕ,

CDτ
0,1P(t) =

1
Γ(1 − τ)

∫ t

0
(t − ϕ)−τP′(ϕ)dϕ.

(4.1)
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Using the Caputo operator, we convert system (3.1) to the following system of fractional order
differential equation

C
0D

τ
t S (t) = π − (β1I(t) + β2P(t))

S (t)
N(t)

− (µ + α)S (t),

C
0D

τ
t V(t) = αS (t) − (µ +

(
β1I(t) + β2P(t)

)
N(t)

ω)V(t),

C
0D

τ
t E(t) = (β1I(t) + β2P(t))

S (t)
N(t)

− (β1I(t) + β2P(t))
ωV(t)
N(t)

− (µ + γ)E(t),
C
0D

τ
t I(t) = γE(t) − (µ + σ + δ)I(t),

C
0D

τ
t P(t) = ξI(t) − θP(t),

(4.2)

subject to initial conditions as in (3.2).

5. Model analyses

This model analyses assumes that the recovered individuals do not contribute to COVID-19
infections and transmissions. Next, we establish some basic properties out model (4.2).

5.1. The model basic properties

We prove that the model system (4.2) is positive, bounded, and biologically meaningful over the
modelling time for t ≥ 0.

Proof. Adding the total change in the human population gives

C
0D

τ
t N(t) = C

0D
τ
t S (t) +C

0 D
τ
t V(t) +C

0 D
τ
t E(t) +C

0 D
τ
t I(t),

= π − µN − (σ + δ),
≤ π − µN.

(5.1)

The solutions of (5.1) yields

N(t) ≤ N(0)Eτ,1(−µtτ) + πtτE(τ,τ+1)(−µtτ).

We have that N(t) ≤
π

µ
as t → ∞. Thus, the COVID-19 model feasible region defined as Ω̄ which

consists of the human population pathogen in the environment is given by

Ω̄ =

{(
S (t),V(t), E(t), I(t)

)
∈ R4

+ : N(t) ≤
π

µ
, P(t) ∈ R+ : P(t) ≤

πξ

µθ

}
.

Hence, the COVID-19 model (4.2) which incorporates vaccination is biological feasible and bounded
for all time t ≥ 0, which completes the proof. �

5.2. Existence and uniqueness of solutions of the fractional model

For simplicity in our mathematical analyses we will set in (4.2) as follows:

Q0 = (µ + α), Q1 = (µ + γ) and Q2 = (µ + σ + δ).
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Here, we investigate and prove that the solutions to Eq (4.2) exist and are unique over the modelling
time using the fixed point theory.

Let B(G) denote the Banach space which consists of a real valued continuous function over the
interval G = [0, d] whose norm are defined as follows for our model compartments:

||S || = sup
t∈G
|S (t)|, ||V || = sup

t∈G
|V(t)|, ||E|| = sup

t∈G
|E(t)|, ||I|| = sup

t∈G
|I(t)|,

and ||P|| = supt∈G |P(t)|. Further, we also define the norm

||S (t),V(t), E(t), I(t), P(t)|| = ||S (t)|| + ||V(t)|| + ||E(t)|| + ||I(t)|| + ||P(t)||.

Proof. We convert model (4.2) using the Caputo integral and obtain

S (t) = S (0) +C
D
τ
0,1

{
π − λS − Q0S

}
,

V(t) = V(0) +C
D
τ
0,1

{
αS − (µ + λω)V

}
,

E(t) = E(0) +C
D
τ
0,1

{
λ(S + ωV) − Q1E

}
,

I(t) = I(0) +C
D
τ
0,1

{
γE − Q2I

}
,

P(t) = P(0) +C
D
τ
0,1

{
ξI − θP

}
.

Applying Definition 2, we have that

S (t) = S (0) +
1

Γ(τ)

∫ t

0
(t − ζ)τ−1K1(ζ, S (ζ))dζ,

V(t) = V(0) +
1

Γ(τ)

∫ t

0
(t − ζ)τ−1K1(ζ,V(ζ))dζ,

E(t) = E(0) +
1

Γ(τ)

∫ t

0
(t − ζ)τ−1K1(ζ, E(ζ))dζ,

I(t) = I(0) +
1

Γ(τ)

∫ t

0
(t − ζ)τ−1K1(ζ, I(ζ))dζ,

P(t) = P(0) +
1

Γ(τ)

∫ t

0
(t − ζ)τ−1K1(ζ, P(ζ))dζ,

(5.2)

with the following kernels: 

K1(t, S (t)) = π − λS − Q0S ,
K2(t,V(t)) = αS − (µ + λω)V,
K3(t, E(t)) = λ(S + ωV) − Q1E,
K4(t, I(t)) = γE − Q2I,
K5(t, P(t)) = ξI − θP.

(5.3)

The expressions Ki in Eq (5.3) for i = 1, 2, · · · , 5 satisfies the Lipschitz for the model respective
compartments (S (t),V(t), E(t), I(t), P(t)) have an upper bound. Firstly, we present the proof for the
susceptible (S ) compartment. Let S and S̄ be two different functions, we thus have that

||K1(t, S (t)) − K1(t, S̄ (t))|| = ||α2V + (λ + Q0)(S (t) − S̄ (t))||.
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Setting `1 = (||α2V + (λ + Q0)||), we get

||K1(t, S (t)) − K1(t, S̄ (t))|| ≤ `1||S (t) − S̄ (t)||.

Similarly for the remaining state variables, we have that

||K2(t,V(t)) − K2(t, V̄(t))|| ≤ `2||V(t) − V̄(t)||,
||K3(t, E(t)) − K3(t, Ē(t))|| ≤ `3||E(t) − Ē(t)||,
||K4(t, I(t)) − K4(t, Ī(t))|| ≤ `4||I(t) − Ī(t)||,
||K5(t, P(t)) − K5(t, P̄(t))|| ≤ `5||P(t) − P̄(t)||,

where `1, `2, `3, `4 and `5 represents the Lipschitz constants for each kernels Ki for i = 1, 2, · · · , 5
respectively. Thus, the Lipschitz condition is satisfied. To complete the uniqueness proof by applying
the Banach theory, we also show that system (5.2) is recursive in nature. Therefore

S k(t) = S (0) +
1

Γ(τ)

∫ t

0
(t − ζ)τ−1K1(ζ, S (ζ))dζ,

Vk(t) = V(0) +
1

Γ(τ)

∫ t

0
(t − ζ)τ−1K1(ζ,V(ζ))dζ,

Ek(t) = E(0) +
1

Γ(τ)

∫ t

0
(t − ζ)τ−1K1(ζ, E(ζ))dζ,

Ik(t) = I(0) +
1

Γ(τ)

∫ t

0
(t − ζ)τ−1K1(ζ, I(ζ))dζ,

Pk(t) = P(0) +
1

Γ(τ)

∫ t

0
(t − ζ)τ−1K1(ζ, P(ζ))dζ.

(5.4)

After some algebraic calculations, the difference between the successive terms together with the model
initial conditions, we obtain

ΨS ,k(t) = S k(t) − S k−1(t) =
1

Γ(τ)

∫ t

0
(t − ζ)τ−1

(
K1(ζ, S k−1(ζ)) − K1(ζ, S k−2(ζ))

)
dζ,

ΨV,k(t) = Vk(t) − Vk−1(t) =
1

Γ(τ)

∫ t

0
(t − ζ)τ−1

(
K1(ζ,Vk−1(ζ)) − K1(ζ,Vk−2(ζ))

)
dζ,

ΨE,k(t) = Ek(t) − Ek−1(t) =
1

Γ(τ)

∫ t

0
(t − ζ)τ−1

(
K1(ζ, Ek−1(ζ)) − K1(ζ, Ek−2(ζ))

)
dζ,

ΨI,k(t) = Ik(t) − Ik−1(t) =
1

Γ(τ)

∫ t

0
(t − ζ)τ−1

(
K1(ζ, Ik−1(ζ)) − K1(ζ, Ik−2(ζ))

)
dζ,

ΨP,k(t) = Pk(t) − Pk−1(t) =
1

Γ(τ)

∫ t

0
(t − ζ)τ−1

(
K1(ζ, Pk−1(ζ)) − K1(ζ, Pk−2(ζ))

)
dζ,

(5.5)
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where in (5.5) S k(t) =
∑k

i=0 ΨS ,i(t),Vk(t) =
∑k

i=0 ΨV,i(t), Ek(t) =
∑k

i=0 ΨE,i(t), Ik(t) =
∑k

i=0 ΨI,i(t)
and Pk(t) =

∑k
i=0 ΨP,i(t). Furthermore, let

Ψ(S ,(k−i))(t) = S k−1(t) − S k−2(t),Ψ(V,(k−i))(t) = Vk−1(t) − Vk−2(t),
Ψ(I,(k−i))(t) = Ψ(E,(k−i))(t) = Ek−1(t) − Ek−2(t), Ik−1(t) − Ik−2(t),
Ψ(P,(k−i))(t) = Pk−1(t) − Pk−2(t),

then we have that

||ΨS ,k(t)|| ≤
`1

Γ(τ)

∫ t

0
(t − ζ)τ−1||ΨS ,k−1(ζ)||dζ,

||ΨV,k(t)|| ≤
`2

Γ(τ)

∫ t

0
(t − ζ)τ−1||ΨV,k−1(ζ)||dζ,

||ΨE,k(t)|| ≤
`3

Γ(τ)

∫ t

0
(t − ζ)τ−1||ΨE,k−1(ζ)||dζ,

||ΨI,k(t)|| ≤
`4

Γ(τ)

∫ t

0
(t − ζ)τ−1||ΨI,k−1(ζ)||dζ,

||ΨP,k(t)|| ≤
`7

Γ(τ)

∫ t

0
(t − ζ)τ−1||ΨP,k−1(ζ)||dζ.

Thus, since the conditions for a Lipschitz function are all satisfied by S (t),V(t), E(t), I(t), P(t) and the
functions Ki for i = 1, · · · , 5, we conclude that it is bounded. The proof ends here. �

5.3. The disease free equilibrium and the basic reproduction number

At disease free equilibrium (DFE) we have a whole susceptible population without an infection,
therefore E∗ = I∗ = P∗ = 0. By applying Definition 3, the DFE denoted by E0 is thus given by

E0 =

(
π

Q0
,
απ

µQ0
, 0, 0, 0

)
.

We employ the method of Next-generation matrix to compute the basic reproduction number (R0) of
COVID-19 infection spread as in [36]. The rate of generation of new infections and transition matrices
results from the compartments E, I and P. Hence, evaluation at the DFE we have that

F =


0 β1φ2 β2φ2

0 0 0
0 0 0

 , V =


Q1 0 0
−γ Q2 0
0 −ξ θ

 and V−1 =



1
Q1

0 0
γ

Q1Q2

1
Q2

0

γξ

θQ1Q2

ξ

θQ2

1
θ


,
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in which φ2 =
(µ + αω

µ + α

)
· The spectral radius is thus the maximum eigenvalue of the second generation

matrix R0 = τ(FV−1) and is given by

FV−1 =


γβ1φ2

Q1Q2
+
γξβ2φ2

θQ1Q2

β1φ2
Q2

+
ξβ2φ2
θQ2

β2φ2
θ

0 0 0
0 0 0

 .
Thus,

R0 = φ2

(
β1γ

Q1Q2
+

β2γξ

Q1Q2θ

)
= R0I + R0P,

where
R0I =

β1γφ2

Q1Q2
and R0P =

β2γξφ2

Q1Q2θ
.

In the above expression, R0I denotes the contribution from the infected population while R0P represents

the contribution from the pathogens in the environment. However, we note that
1

Q1Q2
and

1
Q1Q2θ

connotes the duration of stay in the I(t) and P(t) compartments respectively.

5.4. Local stability of the disease free equilibrium

The Jacobian matrix evaluated at the DFE gives

J(E0) =



−Q0 0 0
−β1µ

Q0

−β2µ

Q0

α −µ 0
−β1αω

Q0

−β2αω

Q0

0 0 −Q1 β2φ2 β2φ2

0 0 γ −Q2 0

0 0 0 ξ −θ



. (5.6)

The eigenvalues from matrix (5.6) are −µ, − Q0 and the solutions to the determinant from the matrix

J(E0)3×3 =


−Q1 β1φ2 β2φ2

γ −Q2 0

0 ξ −θ


. (5.7)

Equation (5.7) yields the following characteristic equation

λ3 + a2λ
2 + a1λ + a0 = 0, (5.8)
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where

a0 = θQ1Q2(1 −R0),
a1 = θ(Q1 + Q2) + Q1Q2(1 −R0I),
a2 = (θ + Q1 + Q2) > 0.

We note that R0I < R0 and hence a0 > 0 and a1 > 0 if R0 < 1. Also, it is clear that a1a2 >

a0. Therefore, their eigenvalues have negative real parts using the principles of the Routh-Hurwitz
criterion. The argument of the roots of Eq (5.8) are all greater than τπ

2 if R0 < 1. Hence E0 is locally
asymptotically stable whenever R0 < 1.

5.5. Endemic equilibrium

The endemic equilibrium (EE) is the condition that there is a COVID-19 patient and virus in the
environment, as well as the spread of the disease occurs in population. The EE denoted by E1 =

(S ∗,V∗, E∗, I∗, P∗) is obtained when S ∗,V∗, E∗, I∗, P∗ is not equal to zero. Equation system (4.2) can be
solved using the condition of the force of infection at equilibrium point (λ∗), with

λ∗ =

(
β1I∗ + β2P∗

)
N∗

· (5.9)

Setting the right-hand sides of the model (4.2) to zero and noting λ = λ∗ at equilibrium gives

S ∗ =
π

λ∗ + Q0
, V∗ =

πα

(λ∗ + Q0)(µ + λ∗ω)
,

E∗ =
λ∗(S ∗ + ωV∗)

Q1
, I∗ = φ0E∗, P∗ = φ1I∗,

(5.10)

where φ0 =
γ

Q2
and φ1 =

ξ

θ
· Substituting (5.10) into (5.9) and after some algebraic simplification we

have that the endemic equilibrium of the model satisfies λ∗ = 0 or

ν3λ
∗2 + ν2λ

∗ + ν1 = 0, (5.11)

where

ν1 = Q0Q1Q2µθ
(
1 −R0

)
,

ν2 = Q1Q2θ
(
µ + Q0ω

[
1 −

µ

µ + αω
R0

])
,

ν3 = Q1Q2ωθ.

We note that λ∗ = 0 corresponds to the DFE. Also, the coefficient ν3 in Eq (5.11) is always positive
while the value of the coefficient ν1 is positive or negative depending on the value of R0. If R0 < 1
then ν1 is positive and if R0 > 1 then ν1 is negative. Endemic equilibrium will exist when the solution
of the Eq (5.11) is positive (λ > 0). Thus, we establish the following results on the existence of the
endemic steady states of the model (4.2):
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Theorem 1. Model (4.2) has

(i) Precisely one unique endemic equilibrium if ν1 < 0 or R0 > 1;
(ii) Precisely one unique endemic equilibrium if ν2 < 0 and either ν1 = 0 or ν2

2 − 4ν1ν3 = 0;
(iii) Precisely two unique endemic equilibrium if ν2 < 0, ν1 > 0 and ν2

2 − 4ν1ν3 > 0;
(iv) No endemic equilibrium otherwise.

Using the Descartes’s rule of signs change, we identify the possible number of EE exhibited
by Eq (5.11) as summarised in Table 3 below.

Table 3. No of possible positive real roots for (5.11) if R0 > 1 or R0 < 1.

Cases ν1 ν2 ν3 R0 No of sign change No of possible positive real roots
1 - + + R0 > 1 1 1
2 + + + R0 < 1 0 0
3 - - + R0 > 1 1 1
4 + - + R0 < 1 2 0,2

We now present the bifurcation analysis in the next subsection.

5.6. Bifurcation analysis

According to Kuznetsov [37], a bifurcation is a change that occurs if the topological structure of a
system changes its parameters pass through a critical value. Hence, the system’s behaviour changes as
the basic reproduction number passes the value 1, that is at R0 = 1 being the critical point. However,
the occurrence of a backward bifurcation for any system has critical biological implications as it is not
enough to R0 below unity to eliminate the disease. Thus, the reduction of R0 below the critical points
denoted here as Rc

0 is necessary to eliminate the disease.
We use the Center Manifold Theorem (CMT) as in [38], to show that model (4.2) exhibits a

bifurcation. To employ the Center Manifold theory, we make a change of variables as follows S = x1,
V = x2, E = x3, I = x4, P = x5 and using the vector notation X = (x1, x2, x3, x4, x5)T for our model can
be written in the form

dX
dt

= F(X) = ( f1, f2, f3, f4, f5)T ,

given below
dx1

dt
= f1 = π − λx1 − (µ + α)x1,

dx2

dt
= f2 = αx1 − (µ + λω)x2,

dx3

dt
= f3 = λx1 + λωx2 − (µ + γ)x3,

dx4

dt
= f4 = γx3 − (µ + σ + δ)x4,

dx5

dt
= f5 = ξx4 − θx5.

Suppose β̄ to be the bifurcation parameter such that β̄ = β1 and solving R0 = 1, we have that

β̄ = β1 =
θQ1Q2 − β2γξφ2

γθφ2
.
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We compute the left and right eigenvectors of the Jacobian matrix at R0 = 1 and hence they are given
by W = (w1,w2,w3,w4,w5) and V = (v1, v2, v3, v4, v5). The Jacobian for model system (3.1) evaluated
at the DFE is found to be

J (E0 | R0 = 1) =



−Q0 0 0 −
(θQ1Q2−γξβ2φ2)φ3

γθφ2
−β2φ3

α −µ 0 −
(θQ1Q2−γξβ2φ2)φ4

γθφ2
−β2φ4

0 0 −Q1
θQ1Q2−γξβ2φ2

γθ
β2φ2

0 0 γ −Q2 0
0 0 0 ξ −θ


.

The matrix J (E0 | R0 = 1) has zero eigenvalue as one of its eigenvalues, thus CMT can be applied to
establish the existence of bifurcation. The right and left eigenvectors are found to be

w1 = −
Q1φ3

Q0φ2
, w2 = −

Q1 (αφ3 + Q0φ4)
µQ0φ2

, w3 = 1,w4 =
γ

Q2
, w5 =

γξ

θQ2
,

and
v1 = 0, v2 = 0, w3 =

γ

Q1
, w4 = 1, w5 =

β2γφ2

θQ1
·

Using the result from Theorem 4.1 of Castillo-Chavez and Song [38], we calculate the coefficients a as

a =
2(1 − ω)

Q0φ2(x∗1 + x∗2)2

[[ (β1θ + β2ξ)γ2

θQ2

( (αφ3 + Q0φ4)x∗1
µ

− φ3x∗2
)]

+
(β1x∗4 + β2x∗5)
Q0φ2(x∗1 + x∗2)

( 1
Q1

(αφ2 + Q0φ4)2Q1x∗1 + (Q1φ3µ)2x∗1 +
(αφ3 + Q0φ4)γQ1φ3(x∗1 − x∗2)

µ

)]
and that of b to be

b =
(x∗1 + ωx∗2)γ2

Q1Q2(x∗1 + x∗2)
+

(1 − ω)γx∗4
[(
αφ3 + Q0φ4

)
x∗1 + µφ3x∗2

]
µQ0φ2(x∗1 + x∗2)2 ,

where φ3 =
µ

α + µ
and φ4 =

αω

α + µ
. Hence, we have that a can either be positive or negative and

b > 0. This implies that our model exhibits a forward bifurcation exists a < 0 and b > 0 as shown
in Figure 3(a) and otherwise a backward bifurcation exists when a > 0 and b > 0 as illustrated in
Figure 3(b) respectively. We observe changes in the qualitative behaviour of the model (3.1) whenever
R0 = 1, with R0 being the bifurcation parameter. For values of R0 greater than unity, we have a
forward bifurcation, which implies that the disease will persist in the population, and decreasing R0

to values below one is not a sufficient condition to eradicate the disease. The existence of a backward
bifurcation makes disease control difficult because of the co-existence of the DFE and the EE for values
of R0 between Rc

0 and 1. Therefore increase in the removal rate of the pathogen from the environment,
θ, is not sufficient to introduce COVID-19 disease eradication. Implementing other control measures
such as educational campaigns, effective contact tracing, quarantine and isolation of the infected, and
proper hygiene is necessary to bring the population to a DFE state.

The dashed curve in Figure 4 is generated from Figure 3(b) by increasing the value of θ while
decreasing the numerical value of β1. This implies that as more people practice proper hygiene,
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including hand washing, effective mask usage, and sanitising, it leads to human behaviour change,
decreasing the effective transmission rate of COVID-19. These changes in the values of θ and β1 leads
to a change from backward bifurcation to a forward bifurcation, therefore making it easier to control
and contain the disease. We note that most epidemiological models exhibit backward bifurcation and
are influenced by a single model parameter. However, our model presents a unique and interesting
scenario whereby the backward bifurcation is driven by two vital epidemiological model parameters,
which are β1 and θ. We now present the numerical simulations in the next section.
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Figure 3. (a) Forward bifurcation plot of the force of infection, λ∗, against R0, for
β1 = 0.0656 and θ = 0.0218. (b) Backward bifurcation plot of the force of infection, λ∗,
against R0, for β1 = 0.0956 and θ = 0.0118. The rest parameters values are N(0) =

270200000, µ = 0.36, π = 100, α = 0.0290, γ = 0.925, σ = 0.0946, δ = 0.0645, ω =

0.36007, β2 = 0.65167, ξ = 0.0901.
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Figure 4. Bifurcation plot showing the impact of increasing θ, while reducing β1 on force of
infection λ∗. Note that the remaining parameter as the same as given in Figure 3 above.
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5.7. Effects of parameters β2 and α on R0

Figure 5 shows the transmission contact rate for the environment and the vaccination rate of the
susceptible individual as a function of the basic reproduction number. We plotted these parameters
against R0 to show their impact when R0 = 1 and R0 = 2. This is because the R0 for COVID-9 is
greater than 2 from model predictions for this pandemic in Indonesia (see [39] for instance). It can
be observed that an increase in β2 increases the R0 while an increase in α decreases the value of R0.

Further, at R0 = 1 the disease will be eradicated, as also shown using mathematical analyses.

(a)

Figure 5. 3D plot of β2 and α versus the basic reproduction number, R0.

6. Numerical simulations

In this section, we carry out numerical simulations of our model and in the following subsection we
present the epidemiological parameter estimates obtained under real data from the COVID-19 active
case for Indonesia. The data were used to calibrate our model and the results from fitting the data using
the least square method presented hitherto.

Numerical results of the fractional model

Here, we present numerical simulations based on the fractional model using the Caputo operator.
The fractional model (4.2) is then solved numerically by using the method as described in [40] and the
biological parameter values is given in Table 2. The approximate value of the reproduction number
using fitted parameters from Table 2 is R0 ≈ 8.4711.
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Figure 6 depicts the model versus data fitting for the case when τ = 1, 0.99. It is clear from the real
data case of COVID-19 that the fractional model has good resemblance fitting than the integer model.
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Figure 6. Data fitting to COVID-19 using model (4.2) with τ = 0.99.

Next, we varied some parameters and the Caputo operator (τ), whose choice was considered
according to this paper’s objective to analyze theirs on the dynamical behaviour of COVID-19
incidence/resurgent in Indonesia. The simulation results of varying β2, ω, and τ on the state variables
over time are shown graphically in Figures 7–9 respectively. In Figure 7, it can be seen that an
increase in β2 and τ leads to a decrease in the numbers of infected individuals who are infectious.
While an increase in the rate of exposure of vaccinated individuals also results in a decrease in the
number of infectives, as can be observed in Figure 8. It can also be observed that in both Figures 7
and 8, there is a comparative faster decrease in the number infected population at the value of τ = 0.95
than when τ = 1 as time progresses. Hence, the biological implication of increasing the transmission
rate from the pathogen and amplification parameter, ω, will help reduce the COVID-19 transmission.

On the other hand, Figure 9 shows the potential impact of varying τ on the susceptible, exposed,
infected, vaccinated, and the pathogen in the environment. Moreover, in Figure 9(a),(e) it is noticed
that a decrease in the value of τ from 1 to 0.9 results to a decrease in the healthy population and
the pathogen, even though the latter has a lower peak with an increase in time. In addition, from
Figure 9(c),(d), we observe a trend where the increase τ results in an increase in the infected and the
exposed population. However, that of the exposed has a higher peak over time when compared to that
of the infectious population. However, the variation of τ on the vaccinate gives an interesting result.
We see in 9(b) that varying τ over time leads to an increase and a decrease in the number of vaccinated
individuals before and after day 200, respectively. The significance of this result can be attributed to
human behaviour change during the pandemic.
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Figure 7. The effect of contact rate β2 on infected COVID-19 individuals for τ = 1 and
τ = 0.95.
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Figure 8. The effect of contact rate ω on infected COVID-19 individuals for τ = 1, 0.95.
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Figure 9. Simulation for the fractional model (4.2) with τ = 1, 0.98, 0.95 and τ = 0.9. on the
S ,V, E, I and P.
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7. Conclusions

In this paper, we studied the effect of environmental transmission and vaccination on the dynamics
of the COVID-19 pandemic in Indonesia. Mathematical analyses, which envisaged the integer and
fractional model, were analysed for the stability and properties investigated. The disease-free
equilibrium of the fractional model is locally asymptotically stable if the reproduction number is less
than one. In addition, the model was found to exhibit bifurcation. We adopted the least square method
to estimate and fit the model parameters using the reported active cases of COVID-19 in Indonesia.
Further, the real data for the fractional model versus the integer-order model are compared. According
to the simulation result, it can be seen that the fractional model has a close resemblance to the integer
model. The impact of some of the key model parameters on the disease dynamics and its elimination
is then shown graphically for various values of fractional-order of the Caputo derivative. The
simulations show that an increase in the transmission rate of the virus from our environment increases
the basic reproduction number, which contributes to more infection. Although the implementation of
the vaccine plays an important role in controlling the spread of COVID-19, the remaining challenge is
the efficacy of the vaccine used to deal with the new variant of COVID-19. Moreover, we conclude
that the use of the fractional epidemic model provides a better understanding and biologically more
insights into the disease dynamics.
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